1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 
19 #include <math.h>
20 #include <stdlib.h>
21 #include <string.h>
22 
23 #include <utils/Log.h>
24 
25 #include <SkMatrix.h>
26 
27 #include "Matrix.h"
28 
29 namespace android {
30 namespace uirenderer {
31 
32 ///////////////////////////////////////////////////////////////////////////////
33 // Defines
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 static const float EPSILON = 0.0000001f;
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 // Matrix
40 ///////////////////////////////////////////////////////////////////////////////
41 
identity()42 const Matrix4& Matrix4::identity() {
43     static Matrix4 sIdentity;
44     return sIdentity;
45 }
46 
loadIdentity()47 void Matrix4::loadIdentity() {
48     data[kScaleX]       = 1.0f;
49     data[kSkewY]        = 0.0f;
50     data[2]             = 0.0f;
51     data[kPerspective0] = 0.0f;
52 
53     data[kSkewX]        = 0.0f;
54     data[kScaleY]       = 1.0f;
55     data[6]             = 0.0f;
56     data[kPerspective1] = 0.0f;
57 
58     data[8]             = 0.0f;
59     data[9]             = 0.0f;
60     data[kScaleZ]       = 1.0f;
61     data[11]            = 0.0f;
62 
63     data[kTranslateX]   = 0.0f;
64     data[kTranslateY]   = 0.0f;
65     data[kTranslateZ]   = 0.0f;
66     data[kPerspective2] = 1.0f;
67 
68     mType = kTypeIdentity | kTypeRectToRect;
69 }
70 
isZero(float f)71 static bool isZero(float f) {
72     return fabs(f) <= EPSILON;
73 }
74 
getType() const75 uint8_t Matrix4::getType() const {
76     if (mType & kTypeUnknown) {
77         mType = kTypeIdentity;
78 
79         if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80                 data[kPerspective2] != 1.0f) {
81             mType |= kTypePerspective;
82         }
83 
84         if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85             mType |= kTypeTranslate;
86         }
87 
88         float m00 = data[kScaleX];
89         float m01 = data[kSkewX];
90         float m10 = data[kSkewY];
91         float m11 = data[kScaleY];
92         float m32 = data[kTranslateZ];
93 
94         if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95             mType |= kTypeAffine;
96         }
97 
98         if (m00 != 1.0f || m11 != 1.0f) {
99             mType |= kTypeScale;
100         }
101 
102         // The following section determines whether the matrix will preserve
103         // rectangles. For instance, a rectangle transformed by a pure
104         // translation matrix will result in a rectangle. A rectangle
105         // transformed by a 45 degrees rotation matrix is not a rectangle.
106         // If the matrix has a perspective component then we already know
107         // it doesn't preserve rectangles.
108         if (!(mType & kTypePerspective)) {
109             if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110                     (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111                 mType |= kTypeRectToRect;
112             }
113         }
114     }
115     return mType;
116 }
117 
getGeometryType() const118 uint8_t Matrix4::getGeometryType() const {
119     return getType() & sGeometryMask;
120 }
121 
rectToRect() const122 bool Matrix4::rectToRect() const {
123     return getType() & kTypeRectToRect;
124 }
125 
positiveScale() const126 bool Matrix4::positiveScale() const {
127     return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128 }
129 
changesBounds() const130 bool Matrix4::changesBounds() const {
131     return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132 }
133 
isPureTranslate() const134 bool Matrix4::isPureTranslate() const {
135     // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136     // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137     return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138 }
139 
isSimple() const140 bool Matrix4::isSimple() const {
141     return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142 }
143 
isIdentity() const144 bool Matrix4::isIdentity() const {
145     return getGeometryType() == kTypeIdentity;
146 }
147 
isPerspective() const148 bool Matrix4::isPerspective() const {
149     return getType() & kTypePerspective;
150 }
151 
load(const float * v)152 void Matrix4::load(const float* v) {
153     memcpy(data, v, sizeof(data));
154     mType = kTypeUnknown;
155 }
156 
load(const Matrix4 & v)157 void Matrix4::load(const Matrix4& v) {
158     memcpy(data, v.data, sizeof(data));
159     mType = v.getType();
160 }
161 
load(const SkMatrix & v)162 void Matrix4::load(const SkMatrix& v) {
163     memset(data, 0, sizeof(data));
164 
165     data[kScaleX]     = v[SkMatrix::kMScaleX];
166     data[kSkewX]      = v[SkMatrix::kMSkewX];
167     data[kTranslateX] = v[SkMatrix::kMTransX];
168 
169     data[kSkewY]      = v[SkMatrix::kMSkewY];
170     data[kScaleY]     = v[SkMatrix::kMScaleY];
171     data[kTranslateY] = v[SkMatrix::kMTransY];
172 
173     data[kPerspective0]  = v[SkMatrix::kMPersp0];
174     data[kPerspective1]  = v[SkMatrix::kMPersp1];
175     data[kPerspective2]  = v[SkMatrix::kMPersp2];
176 
177     data[kScaleZ] = 1.0f;
178 
179     // NOTE: The flags are compatible between SkMatrix and this class.
180     //       However, SkMatrix::getType() does not return the flag
181     //       kRectStaysRect. The return value is masked with 0xF
182     //       so we need the extra rectStaysRect() check
183     mType = v.getType();
184     if (v.rectStaysRect()) {
185         mType |= kTypeRectToRect;
186     }
187 }
188 
copyTo(SkMatrix & v) const189 void Matrix4::copyTo(SkMatrix& v) const {
190     v.reset();
191 
192     v.set(SkMatrix::kMScaleX, data[kScaleX]);
193     v.set(SkMatrix::kMSkewX,  data[kSkewX]);
194     v.set(SkMatrix::kMTransX, data[kTranslateX]);
195 
196     v.set(SkMatrix::kMSkewY,  data[kSkewY]);
197     v.set(SkMatrix::kMScaleY, data[kScaleY]);
198     v.set(SkMatrix::kMTransY, data[kTranslateY]);
199 
200     v.set(SkMatrix::kMPersp0, data[kPerspective0]);
201     v.set(SkMatrix::kMPersp1, data[kPerspective1]);
202     v.set(SkMatrix::kMPersp2, data[kPerspective2]);
203 }
204 
loadInverse(const Matrix4 & v)205 void Matrix4::loadInverse(const Matrix4& v) {
206     double scale = 1.0 /
207             (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
208                     (double) v.data[kTranslateY] * v.data[kPerspective1]) +
209              v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
210                      (double) v.data[kSkewY] * v.data[kPerspective2]) +
211              v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
212                      (double) v.data[kScaleY] * v.data[kPerspective0]));
213 
214     data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
215             v.data[kTranslateY] * v.data[kPerspective1])  * scale;
216     data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
217             v.data[kSkewX]  * v.data[kPerspective2]) * scale;
218     data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
219             v.data[kTranslateX] * v.data[kScaleY])  * scale;
220 
221     data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
222             v.data[kSkewY]  * v.data[kPerspective2]) * scale;
223     data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
224             v.data[kTranslateX] * v.data[kPerspective0])  * scale;
225     data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
226             v.data[kScaleX]  * v.data[kTranslateY]) * scale;
227 
228     data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
229             v.data[kScaleY] * v.data[kPerspective0]) * scale;
230     data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
231             v.data[kScaleX] * v.data[kPerspective1]) * scale;
232     data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
233             v.data[kSkewX] * v.data[kSkewY]) * scale;
234 
235     mType = kTypeUnknown;
236 }
237 
copyTo(float * v) const238 void Matrix4::copyTo(float* v) const {
239     memcpy(v, data, sizeof(data));
240 }
241 
getTranslateX() const242 float Matrix4::getTranslateX() const {
243     return data[kTranslateX];
244 }
245 
getTranslateY() const246 float Matrix4::getTranslateY() const {
247     return data[kTranslateY];
248 }
249 
multiply(float v)250 void Matrix4::multiply(float v) {
251     for (int i = 0; i < 16; i++) {
252         data[i] *= v;
253     }
254     mType = kTypeUnknown;
255 }
256 
loadTranslate(float x,float y,float z)257 void Matrix4::loadTranslate(float x, float y, float z) {
258     loadIdentity();
259 
260     data[kTranslateX] = x;
261     data[kTranslateY] = y;
262     data[kTranslateZ] = z;
263 
264     mType = kTypeTranslate | kTypeRectToRect;
265 }
266 
loadScale(float sx,float sy,float sz)267 void Matrix4::loadScale(float sx, float sy, float sz) {
268     loadIdentity();
269 
270     data[kScaleX] = sx;
271     data[kScaleY] = sy;
272     data[kScaleZ] = sz;
273 
274     mType = kTypeScale | kTypeRectToRect;
275 }
276 
loadSkew(float sx,float sy)277 void Matrix4::loadSkew(float sx, float sy) {
278     loadIdentity();
279 
280     data[kScaleX]       = 1.0f;
281     data[kSkewX]        = sx;
282     data[kTranslateX]   = 0.0f;
283 
284     data[kSkewY]        = sy;
285     data[kScaleY]       = 1.0f;
286     data[kTranslateY]   = 0.0f;
287 
288     data[kPerspective0] = 0.0f;
289     data[kPerspective1] = 0.0f;
290     data[kPerspective2] = 1.0f;
291 
292     mType = kTypeUnknown;
293 }
294 
loadRotate(float angle)295 void Matrix4::loadRotate(float angle) {
296     angle *= float(M_PI / 180.0f);
297     float c = cosf(angle);
298     float s = sinf(angle);
299 
300     loadIdentity();
301 
302     data[kScaleX]     = c;
303     data[kSkewX]      = -s;
304 
305     data[kSkewY]      = s;
306     data[kScaleY]     = c;
307 
308     mType = kTypeUnknown;
309 }
310 
loadRotate(float angle,float x,float y,float z)311 void Matrix4::loadRotate(float angle, float x, float y, float z) {
312     data[kPerspective0]  = 0.0f;
313     data[kPerspective1]  = 0.0f;
314     data[11]             = 0.0f;
315     data[kTranslateX]    = 0.0f;
316     data[kTranslateY]    = 0.0f;
317     data[kTranslateZ]    = 0.0f;
318     data[kPerspective2]  = 1.0f;
319 
320     angle *= float(M_PI / 180.0f);
321     float c = cosf(angle);
322     float s = sinf(angle);
323 
324     const float length = sqrtf(x * x + y * y + z * z);
325     float recipLen = 1.0f / length;
326     x *= recipLen;
327     y *= recipLen;
328     z *= recipLen;
329 
330     const float nc = 1.0f - c;
331     const float xy = x * y;
332     const float yz = y * z;
333     const float zx = z * x;
334     const float xs = x * s;
335     const float ys = y * s;
336     const float zs = z * s;
337 
338     data[kScaleX] = x * x * nc +  c;
339     data[kSkewX]  =    xy * nc - zs;
340     data[8]       =    zx * nc + ys;
341     data[kSkewY]  =    xy * nc + zs;
342     data[kScaleY] = y * y * nc +  c;
343     data[9]       =    yz * nc - xs;
344     data[2]       =    zx * nc - ys;
345     data[6]       =    yz * nc + xs;
346     data[kScaleZ] = z * z * nc +  c;
347 
348     mType = kTypeUnknown;
349 }
350 
loadMultiply(const Matrix4 & u,const Matrix4 & v)351 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
352     for (int i = 0 ; i < 4 ; i++) {
353         float x = 0;
354         float y = 0;
355         float z = 0;
356         float w = 0;
357 
358         for (int j = 0 ; j < 4 ; j++) {
359             const float e = v.get(i, j);
360             x += u.get(j, 0) * e;
361             y += u.get(j, 1) * e;
362             z += u.get(j, 2) * e;
363             w += u.get(j, 3) * e;
364         }
365 
366         set(i, 0, x);
367         set(i, 1, y);
368         set(i, 2, z);
369         set(i, 3, w);
370     }
371 
372     mType = kTypeUnknown;
373 }
374 
loadOrtho(float left,float right,float bottom,float top,float near,float far)375 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
376     loadIdentity();
377 
378     data[kScaleX] = 2.0f / (right - left);
379     data[kScaleY] = 2.0f / (top - bottom);
380     data[kScaleZ] = -2.0f / (far - near);
381     data[kTranslateX] = -(right + left) / (right - left);
382     data[kTranslateY] = -(top + bottom) / (top - bottom);
383     data[kTranslateZ] = -(far + near) / (far - near);
384 
385     mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
386 }
387 
mapZ(const Vector3 & orig) const388 float Matrix4::mapZ(const Vector3& orig) const {
389     // duplicates logic for mapPoint3d's z coordinate
390     return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
391 }
392 
mapPoint3d(Vector3 & vec) const393 void Matrix4::mapPoint3d(Vector3& vec) const {
394     //TODO: optimize simple case
395     const Vector3 orig(vec);
396     vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
397     vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
398     vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
399 }
400 
401 #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
402 
mapPoint(float & x,float & y) const403 void Matrix4::mapPoint(float& x, float& y) const {
404     if (isSimple()) {
405         MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
406         MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
407         return;
408     }
409 
410     float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
411     float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
412     float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
413     if (dz) dz = 1.0f / dz;
414 
415     x = dx * dz;
416     y = dy * dz;
417 }
418 
mapRect(Rect & r) const419 void Matrix4::mapRect(Rect& r) const {
420     if (isIdentity()) return;
421 
422     if (isSimple()) {
423         MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
424         MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
425         MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
426         MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
427 
428         if (r.left > r.right) {
429             float x = r.left;
430             r.left = r.right;
431             r.right = x;
432         }
433 
434         if (r.top > r.bottom) {
435             float y = r.top;
436             r.top = r.bottom;
437             r.bottom = y;
438         }
439 
440         return;
441     }
442 
443     float vertices[] = {
444         r.left, r.top,
445         r.right, r.top,
446         r.right, r.bottom,
447         r.left, r.bottom
448     };
449 
450     float x, y, z;
451 
452     for (int i = 0; i < 8; i+= 2) {
453         float px = vertices[i];
454         float py = vertices[i + 1];
455 
456         x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
457         y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
458         z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
459         if (z) z = 1.0f / z;
460 
461         vertices[i] = x * z;
462         vertices[i + 1] = y * z;
463     }
464 
465     r.left = r.right = vertices[0];
466     r.top = r.bottom = vertices[1];
467 
468     for (int i = 2; i < 8; i += 2) {
469         x = vertices[i];
470         y = vertices[i + 1];
471 
472         if (x < r.left) r.left = x;
473         else if (x > r.right) r.right = x;
474         if (y < r.top) r.top = y;
475         else if (y > r.bottom) r.bottom = y;
476     }
477 }
478 
decomposeScale(float & sx,float & sy) const479 void Matrix4::decomposeScale(float& sx, float& sy) const {
480     float len;
481     len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
482     sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
483     len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
484     sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
485 }
486 
dump(const char * label) const487 void Matrix4::dump(const char* label) const {
488     ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
489     ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
490     ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
491     ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
492     ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
493     ALOGD("]");
494 }
495 
496 }; // namespace uirenderer
497 }; // namespace android
498