1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent.locks;
8 import java.util.concurrent.TimeUnit;
9 import java.util.Collection;
10 
11 /**
12  * An implementation of {@link ReadWriteLock} supporting similar
13  * semantics to {@link ReentrantLock}.
14  * <p>This class has the following properties:
15  *
16  * <ul>
17  * <li><b>Acquisition order</b>
18  *
19  * <p>This class does not impose a reader or writer preference
20  * ordering for lock access.  However, it does support an optional
21  * <em>fairness</em> policy.
22  *
23  * <dl>
24  * <dt><b><i>Non-fair mode (default)</i></b>
25  * <dd>When constructed as non-fair (the default), the order of entry
26  * to the read and write lock is unspecified, subject to reentrancy
27  * constraints.  A nonfair lock that is continuously contended may
28  * indefinitely postpone one or more reader or writer threads, but
29  * will normally have higher throughput than a fair lock.
30  * <p>
31  *
32  * <dt><b><i>Fair mode</i></b>
33  * <dd>When constructed as fair, threads contend for entry using an
34  * approximately arrival-order policy. When the currently held lock
35  * is released, either the longest-waiting single writer thread will
36  * be assigned the write lock, or if there is a group of reader threads
37  * waiting longer than all waiting writer threads, that group will be
38  * assigned the read lock.
39  *
40  * <p>A thread that tries to acquire a fair read lock (non-reentrantly)
41  * will block if either the write lock is held, or there is a waiting
42  * writer thread. The thread will not acquire the read lock until
43  * after the oldest currently waiting writer thread has acquired and
44  * released the write lock. Of course, if a waiting writer abandons
45  * its wait, leaving one or more reader threads as the longest waiters
46  * in the queue with the write lock free, then those readers will be
47  * assigned the read lock.
48  *
49  * <p>A thread that tries to acquire a fair write lock (non-reentrantly)
50  * will block unless both the read lock and write lock are free (which
51  * implies there are no waiting threads).  (Note that the non-blocking
52  * {@link ReadLock#tryLock()} and {@link WriteLock#tryLock()} methods
53  * do not honor this fair setting and will immediately acquire the lock
54  * if it is possible, regardless of waiting threads.)
55  * <p>
56  * </dl>
57  *
58  * <li><b>Reentrancy</b>
59  *
60  * <p>This lock allows both readers and writers to reacquire read or
61  * write locks in the style of a {@link ReentrantLock}. Non-reentrant
62  * readers are not allowed until all write locks held by the writing
63  * thread have been released.
64  *
65  * <p>Additionally, a writer can acquire the read lock, but not
66  * vice-versa.  Among other applications, reentrancy can be useful
67  * when write locks are held during calls or callbacks to methods that
68  * perform reads under read locks.  If a reader tries to acquire the
69  * write lock it will never succeed.
70  *
71  * <li><b>Lock downgrading</b>
72  * <p>Reentrancy also allows downgrading from the write lock to a read lock,
73  * by acquiring the write lock, then the read lock and then releasing the
74  * write lock. However, upgrading from a read lock to the write lock is
75  * <b>not</b> possible.
76  *
77  * <li><b>Interruption of lock acquisition</b>
78  * <p>The read lock and write lock both support interruption during lock
79  * acquisition.
80  *
81  * <li><b>{@link Condition} support</b>
82  * <p>The write lock provides a {@link Condition} implementation that
83  * behaves in the same way, with respect to the write lock, as the
84  * {@link Condition} implementation provided by
85  * {@link ReentrantLock#newCondition} does for {@link ReentrantLock}.
86  * This {@link Condition} can, of course, only be used with the write lock.
87  *
88  * <p>The read lock does not support a {@link Condition} and
89  * {@code readLock().newCondition()} throws
90  * {@code UnsupportedOperationException}.
91  *
92  * <li><b>Instrumentation</b>
93  * <p>This class supports methods to determine whether locks
94  * are held or contended. These methods are designed for monitoring
95  * system state, not for synchronization control.
96  * </ul>
97  *
98  * <p>Serialization of this class behaves in the same way as built-in
99  * locks: a deserialized lock is in the unlocked state, regardless of
100  * its state when serialized.
101  *
102  * <p><b>Sample usages</b>. Here is a code sketch showing how to perform
103  * lock downgrading after updating a cache (exception handling is
104  * particularly tricky when handling multiple locks in a non-nested
105  * fashion):
106  *
107  * <pre> {@code
108  * class CachedData {
109  *   Object data;
110  *   volatile boolean cacheValid;
111  *   final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
112  *
113  *   void processCachedData() {
114  *     rwl.readLock().lock();
115  *     if (!cacheValid) {
116  *       // Must release read lock before acquiring write lock
117  *       rwl.readLock().unlock();
118  *       rwl.writeLock().lock();
119  *       try {
120  *         // Recheck state because another thread might have
121  *         // acquired write lock and changed state before we did.
122  *         if (!cacheValid) {
123  *           data = ...
124  *           cacheValid = true;
125  *         }
126  *         // Downgrade by acquiring read lock before releasing write lock
127  *         rwl.readLock().lock();
128  *       } finally {
129  *         rwl.writeLock().unlock(); // Unlock write, still hold read
130  *       }
131  *     }
132  *
133  *     try {
134  *       use(data);
135  *     } finally {
136  *       rwl.readLock().unlock();
137  *     }
138  *   }
139  * }}</pre>
140  *
141  * ReentrantReadWriteLocks can be used to improve concurrency in some
142  * uses of some kinds of Collections. This is typically worthwhile
143  * only when the collections are expected to be large, accessed by
144  * more reader threads than writer threads, and entail operations with
145  * overhead that outweighs synchronization overhead. For example, here
146  * is a class using a TreeMap that is expected to be large and
147  * concurrently accessed.
148  *
149  *  <pre> {@code
150  * class RWDictionary {
151  *   private final Map<String, Data> m = new TreeMap<String, Data>();
152  *   private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
153  *   private final Lock r = rwl.readLock();
154  *   private final Lock w = rwl.writeLock();
155  *
156  *   public Data get(String key) {
157  *     r.lock();
158  *     try { return m.get(key); }
159  *     finally { r.unlock(); }
160  *   }
161  *   public String[] allKeys() {
162  *     r.lock();
163  *     try { return m.keySet().toArray(); }
164  *     finally { r.unlock(); }
165  *   }
166  *   public Data put(String key, Data value) {
167  *     w.lock();
168  *     try { return m.put(key, value); }
169  *     finally { w.unlock(); }
170  *   }
171  *   public void clear() {
172  *     w.lock();
173  *     try { m.clear(); }
174  *     finally { w.unlock(); }
175  *   }
176  * }}</pre>
177  *
178  * <h3>Implementation Notes</h3>
179  *
180  * <p>This lock supports a maximum of 65535 recursive write locks
181  * and 65535 read locks. Attempts to exceed these limits result in
182  * {@link Error} throws from locking methods.
183  *
184  * @since 1.5
185  * @author Doug Lea
186  */
187 public class ReentrantReadWriteLock
188         implements ReadWriteLock, java.io.Serializable {
189     private static final long serialVersionUID = -6992448646407690164L;
190     /** Inner class providing readlock */
191     private final ReentrantReadWriteLock.ReadLock readerLock;
192     /** Inner class providing writelock */
193     private final ReentrantReadWriteLock.WriteLock writerLock;
194     /** Performs all synchronization mechanics */
195     final Sync sync;
196 
197     /**
198      * Creates a new {@code ReentrantReadWriteLock} with
199      * default (nonfair) ordering properties.
200      */
ReentrantReadWriteLock()201     public ReentrantReadWriteLock() {
202         this(false);
203     }
204 
205     /**
206      * Creates a new {@code ReentrantReadWriteLock} with
207      * the given fairness policy.
208      *
209      * @param fair {@code true} if this lock should use a fair ordering policy
210      */
ReentrantReadWriteLock(boolean fair)211     public ReentrantReadWriteLock(boolean fair) {
212         sync = fair ? new FairSync() : new NonfairSync();
213         readerLock = new ReadLock(this);
214         writerLock = new WriteLock(this);
215     }
216 
writeLock()217     public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
readLock()218     public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }
219 
220     /**
221      * Synchronization implementation for ReentrantReadWriteLock.
222      * Subclassed into fair and nonfair versions.
223      */
224     abstract static class Sync extends AbstractQueuedSynchronizer {
225         private static final long serialVersionUID = 6317671515068378041L;
226 
227         /*
228          * Read vs write count extraction constants and functions.
229          * Lock state is logically divided into two unsigned shorts:
230          * The lower one representing the exclusive (writer) lock hold count,
231          * and the upper the shared (reader) hold count.
232          */
233 
234         static final int SHARED_SHIFT   = 16;
235         static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
236         static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
237         static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
238 
239         /** Returns the number of shared holds represented in count  */
sharedCount(int c)240         static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
241         /** Returns the number of exclusive holds represented in count  */
exclusiveCount(int c)242         static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
243 
244         /**
245          * A counter for per-thread read hold counts.
246          * Maintained as a ThreadLocal; cached in cachedHoldCounter
247          */
248         static final class HoldCounter {
249             int count = 0;
250             // Use id, not reference, to avoid garbage retention
251             final long tid = Thread.currentThread().getId();
252         }
253 
254         /**
255          * ThreadLocal subclass. Easiest to explicitly define for sake
256          * of deserialization mechanics.
257          */
258         static final class ThreadLocalHoldCounter
259             extends ThreadLocal<HoldCounter> {
initialValue()260             public HoldCounter initialValue() {
261                 return new HoldCounter();
262             }
263         }
264 
265         /**
266          * The number of reentrant read locks held by current thread.
267          * Initialized only in constructor and readObject.
268          * Removed whenever a thread's read hold count drops to 0.
269          */
270         private transient ThreadLocalHoldCounter readHolds;
271 
272         /**
273          * The hold count of the last thread to successfully acquire
274          * readLock. This saves ThreadLocal lookup in the common case
275          * where the next thread to release is the last one to
276          * acquire. This is non-volatile since it is just used
277          * as a heuristic, and would be great for threads to cache.
278          *
279          * <p>Can outlive the Thread for which it is caching the read
280          * hold count, but avoids garbage retention by not retaining a
281          * reference to the Thread.
282          *
283          * <p>Accessed via a benign data race; relies on the memory
284          * model's final field and out-of-thin-air guarantees.
285          */
286         private transient HoldCounter cachedHoldCounter;
287 
288         /**
289          * firstReader is the first thread to have acquired the read lock.
290          * firstReaderHoldCount is firstReader's hold count.
291          *
292          * <p>More precisely, firstReader is the unique thread that last
293          * changed the shared count from 0 to 1, and has not released the
294          * read lock since then; null if there is no such thread.
295          *
296          * <p>Cannot cause garbage retention unless the thread terminated
297          * without relinquishing its read locks, since tryReleaseShared
298          * sets it to null.
299          *
300          * <p>Accessed via a benign data race; relies on the memory
301          * model's out-of-thin-air guarantees for references.
302          *
303          * <p>This allows tracking of read holds for uncontended read
304          * locks to be very cheap.
305          */
306         private transient Thread firstReader = null;
307         private transient int firstReaderHoldCount;
308 
Sync()309         Sync() {
310             readHolds = new ThreadLocalHoldCounter();
311             setState(getState()); // ensures visibility of readHolds
312         }
313 
314         /*
315          * Acquires and releases use the same code for fair and
316          * nonfair locks, but differ in whether/how they allow barging
317          * when queues are non-empty.
318          */
319 
320         /**
321          * Returns true if the current thread, when trying to acquire
322          * the read lock, and otherwise eligible to do so, should block
323          * because of policy for overtaking other waiting threads.
324          */
readerShouldBlock()325         abstract boolean readerShouldBlock();
326 
327         /**
328          * Returns true if the current thread, when trying to acquire
329          * the write lock, and otherwise eligible to do so, should block
330          * because of policy for overtaking other waiting threads.
331          */
writerShouldBlock()332         abstract boolean writerShouldBlock();
333 
334         /*
335          * Note that tryRelease and tryAcquire can be called by
336          * Conditions. So it is possible that their arguments contain
337          * both read and write holds that are all released during a
338          * condition wait and re-established in tryAcquire.
339          */
340 
tryRelease(int releases)341         protected final boolean tryRelease(int releases) {
342             if (!isHeldExclusively())
343                 throw new IllegalMonitorStateException();
344             int nextc = getState() - releases;
345             boolean free = exclusiveCount(nextc) == 0;
346             if (free)
347                 setExclusiveOwnerThread(null);
348             setState(nextc);
349             return free;
350         }
351 
tryAcquire(int acquires)352         protected final boolean tryAcquire(int acquires) {
353             /*
354              * Walkthrough:
355              * 1. If read count nonzero or write count nonzero
356              *    and owner is a different thread, fail.
357              * 2. If count would saturate, fail. (This can only
358              *    happen if count is already nonzero.)
359              * 3. Otherwise, this thread is eligible for lock if
360              *    it is either a reentrant acquire or
361              *    queue policy allows it. If so, update state
362              *    and set owner.
363              */
364             Thread current = Thread.currentThread();
365             int c = getState();
366             int w = exclusiveCount(c);
367             if (c != 0) {
368                 // (Note: if c != 0 and w == 0 then shared count != 0)
369                 if (w == 0 || current != getExclusiveOwnerThread())
370                     return false;
371                 if (w + exclusiveCount(acquires) > MAX_COUNT)
372                     throw new Error("Maximum lock count exceeded");
373                 // Reentrant acquire
374                 setState(c + acquires);
375                 return true;
376             }
377             if (writerShouldBlock() ||
378                 !compareAndSetState(c, c + acquires))
379                 return false;
380             setExclusiveOwnerThread(current);
381             return true;
382         }
383 
tryReleaseShared(int unused)384         protected final boolean tryReleaseShared(int unused) {
385             Thread current = Thread.currentThread();
386             if (firstReader == current) {
387                 // assert firstReaderHoldCount > 0;
388                 if (firstReaderHoldCount == 1)
389                     firstReader = null;
390                 else
391                     firstReaderHoldCount--;
392             } else {
393                 HoldCounter rh = cachedHoldCounter;
394                 if (rh == null || rh.tid != current.getId())
395                     rh = readHolds.get();
396                 int count = rh.count;
397                 if (count <= 1) {
398                     readHolds.remove();
399                     if (count <= 0)
400                         throw unmatchedUnlockException();
401                 }
402                 --rh.count;
403             }
404             for (;;) {
405                 int c = getState();
406                 int nextc = c - SHARED_UNIT;
407                 if (compareAndSetState(c, nextc))
408                     // Releasing the read lock has no effect on readers,
409                     // but it may allow waiting writers to proceed if
410                     // both read and write locks are now free.
411                     return nextc == 0;
412             }
413         }
414 
unmatchedUnlockException()415         private IllegalMonitorStateException unmatchedUnlockException() {
416             return new IllegalMonitorStateException(
417                 "attempt to unlock read lock, not locked by current thread");
418         }
419 
tryAcquireShared(int unused)420         protected final int tryAcquireShared(int unused) {
421             /*
422              * Walkthrough:
423              * 1. If write lock held by another thread, fail.
424              * 2. Otherwise, this thread is eligible for
425              *    lock wrt state, so ask if it should block
426              *    because of queue policy. If not, try
427              *    to grant by CASing state and updating count.
428              *    Note that step does not check for reentrant
429              *    acquires, which is postponed to full version
430              *    to avoid having to check hold count in
431              *    the more typical non-reentrant case.
432              * 3. If step 2 fails either because thread
433              *    apparently not eligible or CAS fails or count
434              *    saturated, chain to version with full retry loop.
435              */
436             Thread current = Thread.currentThread();
437             int c = getState();
438             if (exclusiveCount(c) != 0 &&
439                 getExclusiveOwnerThread() != current)
440                 return -1;
441             int r = sharedCount(c);
442             if (!readerShouldBlock() &&
443                 r < MAX_COUNT &&
444                 compareAndSetState(c, c + SHARED_UNIT)) {
445                 if (r == 0) {
446                     firstReader = current;
447                     firstReaderHoldCount = 1;
448                 } else if (firstReader == current) {
449                     firstReaderHoldCount++;
450                 } else {
451                     HoldCounter rh = cachedHoldCounter;
452                     if (rh == null || rh.tid != current.getId())
453                         cachedHoldCounter = rh = readHolds.get();
454                     else if (rh.count == 0)
455                         readHolds.set(rh);
456                     rh.count++;
457                 }
458                 return 1;
459             }
460             return fullTryAcquireShared(current);
461         }
462 
463         /**
464          * Full version of acquire for reads, that handles CAS misses
465          * and reentrant reads not dealt with in tryAcquireShared.
466          */
fullTryAcquireShared(Thread current)467         final int fullTryAcquireShared(Thread current) {
468             /*
469              * This code is in part redundant with that in
470              * tryAcquireShared but is simpler overall by not
471              * complicating tryAcquireShared with interactions between
472              * retries and lazily reading hold counts.
473              */
474             HoldCounter rh = null;
475             for (;;) {
476                 int c = getState();
477                 if (exclusiveCount(c) != 0) {
478                     if (getExclusiveOwnerThread() != current)
479                         return -1;
480                     // else we hold the exclusive lock; blocking here
481                     // would cause deadlock.
482                 } else if (readerShouldBlock()) {
483                     // Make sure we're not acquiring read lock reentrantly
484                     if (firstReader == current) {
485                         // assert firstReaderHoldCount > 0;
486                     } else {
487                         if (rh == null) {
488                             rh = cachedHoldCounter;
489                             if (rh == null || rh.tid != current.getId()) {
490                                 rh = readHolds.get();
491                                 if (rh.count == 0)
492                                     readHolds.remove();
493                             }
494                         }
495                         if (rh.count == 0)
496                             return -1;
497                     }
498                 }
499                 if (sharedCount(c) == MAX_COUNT)
500                     throw new Error("Maximum lock count exceeded");
501                 if (compareAndSetState(c, c + SHARED_UNIT)) {
502                     if (sharedCount(c) == 0) {
503                         firstReader = current;
504                         firstReaderHoldCount = 1;
505                     } else if (firstReader == current) {
506                         firstReaderHoldCount++;
507                     } else {
508                         if (rh == null)
509                             rh = cachedHoldCounter;
510                         if (rh == null || rh.tid != current.getId())
511                             rh = readHolds.get();
512                         else if (rh.count == 0)
513                             readHolds.set(rh);
514                         rh.count++;
515                         cachedHoldCounter = rh; // cache for release
516                     }
517                     return 1;
518                 }
519             }
520         }
521 
522         /**
523          * Performs tryLock for write, enabling barging in both modes.
524          * This is identical in effect to tryAcquire except for lack
525          * of calls to writerShouldBlock.
526          */
tryWriteLock()527         final boolean tryWriteLock() {
528             Thread current = Thread.currentThread();
529             int c = getState();
530             if (c != 0) {
531                 int w = exclusiveCount(c);
532                 if (w == 0 || current != getExclusiveOwnerThread())
533                     return false;
534                 if (w == MAX_COUNT)
535                     throw new Error("Maximum lock count exceeded");
536             }
537             if (!compareAndSetState(c, c + 1))
538                 return false;
539             setExclusiveOwnerThread(current);
540             return true;
541         }
542 
543         /**
544          * Performs tryLock for read, enabling barging in both modes.
545          * This is identical in effect to tryAcquireShared except for
546          * lack of calls to readerShouldBlock.
547          */
tryReadLock()548         final boolean tryReadLock() {
549             Thread current = Thread.currentThread();
550             for (;;) {
551                 int c = getState();
552                 if (exclusiveCount(c) != 0 &&
553                     getExclusiveOwnerThread() != current)
554                     return false;
555                 int r = sharedCount(c);
556                 if (r == MAX_COUNT)
557                     throw new Error("Maximum lock count exceeded");
558                 if (compareAndSetState(c, c + SHARED_UNIT)) {
559                     if (r == 0) {
560                         firstReader = current;
561                         firstReaderHoldCount = 1;
562                     } else if (firstReader == current) {
563                         firstReaderHoldCount++;
564                     } else {
565                         HoldCounter rh = cachedHoldCounter;
566                         if (rh == null || rh.tid != current.getId())
567                             cachedHoldCounter = rh = readHolds.get();
568                         else if (rh.count == 0)
569                             readHolds.set(rh);
570                         rh.count++;
571                     }
572                     return true;
573                 }
574             }
575         }
576 
isHeldExclusively()577         protected final boolean isHeldExclusively() {
578             // While we must in general read state before owner,
579             // we don't need to do so to check if current thread is owner
580             return getExclusiveOwnerThread() == Thread.currentThread();
581         }
582 
583         // Methods relayed to outer class
584 
newCondition()585         final ConditionObject newCondition() {
586             return new ConditionObject();
587         }
588 
getOwner()589         final Thread getOwner() {
590             // Must read state before owner to ensure memory consistency
591             return ((exclusiveCount(getState()) == 0) ?
592                     null :
593                     getExclusiveOwnerThread());
594         }
595 
getReadLockCount()596         final int getReadLockCount() {
597             return sharedCount(getState());
598         }
599 
isWriteLocked()600         final boolean isWriteLocked() {
601             return exclusiveCount(getState()) != 0;
602         }
603 
getWriteHoldCount()604         final int getWriteHoldCount() {
605             return isHeldExclusively() ? exclusiveCount(getState()) : 0;
606         }
607 
getReadHoldCount()608         final int getReadHoldCount() {
609             if (getReadLockCount() == 0)
610                 return 0;
611 
612             Thread current = Thread.currentThread();
613             if (firstReader == current)
614                 return firstReaderHoldCount;
615 
616             HoldCounter rh = cachedHoldCounter;
617             if (rh != null && rh.tid == current.getId())
618                 return rh.count;
619 
620             int count = readHolds.get().count;
621             if (count == 0) readHolds.remove();
622             return count;
623         }
624 
625         /**
626          * Reconstitutes the instance from a stream (that is, deserializes it).
627          */
readObject(java.io.ObjectInputStream s)628         private void readObject(java.io.ObjectInputStream s)
629             throws java.io.IOException, ClassNotFoundException {
630             s.defaultReadObject();
631             readHolds = new ThreadLocalHoldCounter();
632             setState(0); // reset to unlocked state
633         }
634 
getCount()635         final int getCount() { return getState(); }
636     }
637 
638     /**
639      * Nonfair version of Sync
640      */
641     static final class NonfairSync extends Sync {
642         private static final long serialVersionUID = -8159625535654395037L;
writerShouldBlock()643         final boolean writerShouldBlock() {
644             return false; // writers can always barge
645         }
readerShouldBlock()646         final boolean readerShouldBlock() {
647             /* As a heuristic to avoid indefinite writer starvation,
648              * block if the thread that momentarily appears to be head
649              * of queue, if one exists, is a waiting writer.  This is
650              * only a probabilistic effect since a new reader will not
651              * block if there is a waiting writer behind other enabled
652              * readers that have not yet drained from the queue.
653              */
654             return apparentlyFirstQueuedIsExclusive();
655         }
656     }
657 
658     /**
659      * Fair version of Sync
660      */
661     static final class FairSync extends Sync {
662         private static final long serialVersionUID = -2274990926593161451L;
writerShouldBlock()663         final boolean writerShouldBlock() {
664             return hasQueuedPredecessors();
665         }
readerShouldBlock()666         final boolean readerShouldBlock() {
667             return hasQueuedPredecessors();
668         }
669     }
670 
671     /**
672      * The lock returned by method {@link ReentrantReadWriteLock#readLock}.
673      */
674     public static class ReadLock implements Lock, java.io.Serializable {
675         private static final long serialVersionUID = -5992448646407690164L;
676         private final Sync sync;
677 
678         /**
679          * Constructor for use by subclasses
680          *
681          * @param lock the outer lock object
682          * @throws NullPointerException if the lock is null
683          */
ReadLock(ReentrantReadWriteLock lock)684         protected ReadLock(ReentrantReadWriteLock lock) {
685             sync = lock.sync;
686         }
687 
688         /**
689          * Acquires the read lock.
690          *
691          * <p>Acquires the read lock if the write lock is not held by
692          * another thread and returns immediately.
693          *
694          * <p>If the write lock is held by another thread then
695          * the current thread becomes disabled for thread scheduling
696          * purposes and lies dormant until the read lock has been acquired.
697          */
lock()698         public void lock() {
699             sync.acquireShared(1);
700         }
701 
702         /**
703          * Acquires the read lock unless the current thread is
704          * {@linkplain Thread#interrupt interrupted}.
705          *
706          * <p>Acquires the read lock if the write lock is not held
707          * by another thread and returns immediately.
708          *
709          * <p>If the write lock is held by another thread then the
710          * current thread becomes disabled for thread scheduling
711          * purposes and lies dormant until one of two things happens:
712          *
713          * <ul>
714          *
715          * <li>The read lock is acquired by the current thread; or
716          *
717          * <li>Some other thread {@linkplain Thread#interrupt interrupts}
718          * the current thread.
719          *
720          * </ul>
721          *
722          * <p>If the current thread:
723          *
724          * <ul>
725          *
726          * <li>has its interrupted status set on entry to this method; or
727          *
728          * <li>is {@linkplain Thread#interrupt interrupted} while
729          * acquiring the read lock,
730          *
731          * </ul>
732          *
733          * then {@link InterruptedException} is thrown and the current
734          * thread's interrupted status is cleared.
735          *
736          * <p>In this implementation, as this method is an explicit
737          * interruption point, preference is given to responding to
738          * the interrupt over normal or reentrant acquisition of the
739          * lock.
740          *
741          * @throws InterruptedException if the current thread is interrupted
742          */
lockInterruptibly()743         public void lockInterruptibly() throws InterruptedException {
744             sync.acquireSharedInterruptibly(1);
745         }
746 
747         /**
748          * Acquires the read lock only if the write lock is not held by
749          * another thread at the time of invocation.
750          *
751          * <p>Acquires the read lock if the write lock is not held by
752          * another thread and returns immediately with the value
753          * {@code true}. Even when this lock has been set to use a
754          * fair ordering policy, a call to {@code tryLock()}
755          * <em>will</em> immediately acquire the read lock if it is
756          * available, whether or not other threads are currently
757          * waiting for the read lock.  This &quot;barging&quot; behavior
758          * can be useful in certain circumstances, even though it
759          * breaks fairness. If you want to honor the fairness setting
760          * for this lock, then use {@link #tryLock(long, TimeUnit)
761          * tryLock(0, TimeUnit.SECONDS) } which is almost equivalent
762          * (it also detects interruption).
763          *
764          * <p>If the write lock is held by another thread then
765          * this method will return immediately with the value
766          * {@code false}.
767          *
768          * @return {@code true} if the read lock was acquired
769          */
tryLock()770         public boolean tryLock() {
771             return sync.tryReadLock();
772         }
773 
774         /**
775          * Acquires the read lock if the write lock is not held by
776          * another thread within the given waiting time and the
777          * current thread has not been {@linkplain Thread#interrupt
778          * interrupted}.
779          *
780          * <p>Acquires the read lock if the write lock is not held by
781          * another thread and returns immediately with the value
782          * {@code true}. If this lock has been set to use a fair
783          * ordering policy then an available lock <em>will not</em> be
784          * acquired if any other threads are waiting for the
785          * lock. This is in contrast to the {@link #tryLock()}
786          * method. If you want a timed {@code tryLock} that does
787          * permit barging on a fair lock then combine the timed and
788          * un-timed forms together:
789          *
790          *  <pre> {@code
791          * if (lock.tryLock() ||
792          *     lock.tryLock(timeout, unit)) {
793          *   ...
794          * }}</pre>
795          *
796          * <p>If the write lock is held by another thread then the
797          * current thread becomes disabled for thread scheduling
798          * purposes and lies dormant until one of three things happens:
799          *
800          * <ul>
801          *
802          * <li>The read lock is acquired by the current thread; or
803          *
804          * <li>Some other thread {@linkplain Thread#interrupt interrupts}
805          * the current thread; or
806          *
807          * <li>The specified waiting time elapses.
808          *
809          * </ul>
810          *
811          * <p>If the read lock is acquired then the value {@code true} is
812          * returned.
813          *
814          * <p>If the current thread:
815          *
816          * <ul>
817          *
818          * <li>has its interrupted status set on entry to this method; or
819          *
820          * <li>is {@linkplain Thread#interrupt interrupted} while
821          * acquiring the read lock,
822          *
823          * </ul> then {@link InterruptedException} is thrown and the
824          * current thread's interrupted status is cleared.
825          *
826          * <p>If the specified waiting time elapses then the value
827          * {@code false} is returned.  If the time is less than or
828          * equal to zero, the method will not wait at all.
829          *
830          * <p>In this implementation, as this method is an explicit
831          * interruption point, preference is given to responding to
832          * the interrupt over normal or reentrant acquisition of the
833          * lock, and over reporting the elapse of the waiting time.
834          *
835          * @param timeout the time to wait for the read lock
836          * @param unit the time unit of the timeout argument
837          * @return {@code true} if the read lock was acquired
838          * @throws InterruptedException if the current thread is interrupted
839          * @throws NullPointerException if the time unit is null
840          */
tryLock(long timeout, TimeUnit unit)841         public boolean tryLock(long timeout, TimeUnit unit)
842                 throws InterruptedException {
843             return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
844         }
845 
846         /**
847          * Attempts to release this lock.
848          *
849          * <p>If the number of readers is now zero then the lock
850          * is made available for write lock attempts.
851          */
unlock()852         public void unlock() {
853             sync.releaseShared(1);
854         }
855 
856         /**
857          * Throws {@code UnsupportedOperationException} because
858          * {@code ReadLocks} do not support conditions.
859          *
860          * @throws UnsupportedOperationException always
861          */
newCondition()862         public Condition newCondition() {
863             throw new UnsupportedOperationException();
864         }
865 
866         /**
867          * Returns a string identifying this lock, as well as its lock state.
868          * The state, in brackets, includes the String {@code "Read locks ="}
869          * followed by the number of held read locks.
870          *
871          * @return a string identifying this lock, as well as its lock state
872          */
toString()873         public String toString() {
874             int r = sync.getReadLockCount();
875             return super.toString() +
876                 "[Read locks = " + r + "]";
877         }
878     }
879 
880     /**
881      * The lock returned by method {@link ReentrantReadWriteLock#writeLock}.
882      */
883     public static class WriteLock implements Lock, java.io.Serializable {
884         private static final long serialVersionUID = -4992448646407690164L;
885         private final Sync sync;
886 
887         /**
888          * Constructor for use by subclasses
889          *
890          * @param lock the outer lock object
891          * @throws NullPointerException if the lock is null
892          */
WriteLock(ReentrantReadWriteLock lock)893         protected WriteLock(ReentrantReadWriteLock lock) {
894             sync = lock.sync;
895         }
896 
897         /**
898          * Acquires the write lock.
899          *
900          * <p>Acquires the write lock if neither the read nor write lock
901          * are held by another thread
902          * and returns immediately, setting the write lock hold count to
903          * one.
904          *
905          * <p>If the current thread already holds the write lock then the
906          * hold count is incremented by one and the method returns
907          * immediately.
908          *
909          * <p>If the lock is held by another thread then the current
910          * thread becomes disabled for thread scheduling purposes and
911          * lies dormant until the write lock has been acquired, at which
912          * time the write lock hold count is set to one.
913          */
lock()914         public void lock() {
915             sync.acquire(1);
916         }
917 
918         /**
919          * Acquires the write lock unless the current thread is
920          * {@linkplain Thread#interrupt interrupted}.
921          *
922          * <p>Acquires the write lock if neither the read nor write lock
923          * are held by another thread
924          * and returns immediately, setting the write lock hold count to
925          * one.
926          *
927          * <p>If the current thread already holds this lock then the
928          * hold count is incremented by one and the method returns
929          * immediately.
930          *
931          * <p>If the lock is held by another thread then the current
932          * thread becomes disabled for thread scheduling purposes and
933          * lies dormant until one of two things happens:
934          *
935          * <ul>
936          *
937          * <li>The write lock is acquired by the current thread; or
938          *
939          * <li>Some other thread {@linkplain Thread#interrupt interrupts}
940          * the current thread.
941          *
942          * </ul>
943          *
944          * <p>If the write lock is acquired by the current thread then the
945          * lock hold count is set to one.
946          *
947          * <p>If the current thread:
948          *
949          * <ul>
950          *
951          * <li>has its interrupted status set on entry to this method;
952          * or
953          *
954          * <li>is {@linkplain Thread#interrupt interrupted} while
955          * acquiring the write lock,
956          *
957          * </ul>
958          *
959          * then {@link InterruptedException} is thrown and the current
960          * thread's interrupted status is cleared.
961          *
962          * <p>In this implementation, as this method is an explicit
963          * interruption point, preference is given to responding to
964          * the interrupt over normal or reentrant acquisition of the
965          * lock.
966          *
967          * @throws InterruptedException if the current thread is interrupted
968          */
lockInterruptibly()969         public void lockInterruptibly() throws InterruptedException {
970             sync.acquireInterruptibly(1);
971         }
972 
973         /**
974          * Acquires the write lock only if it is not held by another thread
975          * at the time of invocation.
976          *
977          * <p>Acquires the write lock if neither the read nor write lock
978          * are held by another thread
979          * and returns immediately with the value {@code true},
980          * setting the write lock hold count to one. Even when this lock has
981          * been set to use a fair ordering policy, a call to
982          * {@code tryLock()} <em>will</em> immediately acquire the
983          * lock if it is available, whether or not other threads are
984          * currently waiting for the write lock.  This &quot;barging&quot;
985          * behavior can be useful in certain circumstances, even
986          * though it breaks fairness. If you want to honor the
987          * fairness setting for this lock, then use {@link
988          * #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) }
989          * which is almost equivalent (it also detects interruption).
990          *
991          * <p>If the current thread already holds this lock then the
992          * hold count is incremented by one and the method returns
993          * {@code true}.
994          *
995          * <p>If the lock is held by another thread then this method
996          * will return immediately with the value {@code false}.
997          *
998          * @return {@code true} if the lock was free and was acquired
999          * by the current thread, or the write lock was already held
1000          * by the current thread; and {@code false} otherwise.
1001          */
tryLock( )1002         public boolean tryLock( ) {
1003             return sync.tryWriteLock();
1004         }
1005 
1006         /**
1007          * Acquires the write lock if it is not held by another thread
1008          * within the given waiting time and the current thread has
1009          * not been {@linkplain Thread#interrupt interrupted}.
1010          *
1011          * <p>Acquires the write lock if neither the read nor write lock
1012          * are held by another thread
1013          * and returns immediately with the value {@code true},
1014          * setting the write lock hold count to one. If this lock has been
1015          * set to use a fair ordering policy then an available lock
1016          * <em>will not</em> be acquired if any other threads are
1017          * waiting for the write lock. This is in contrast to the {@link
1018          * #tryLock()} method. If you want a timed {@code tryLock}
1019          * that does permit barging on a fair lock then combine the
1020          * timed and un-timed forms together:
1021          *
1022          *  <pre> {@code
1023          * if (lock.tryLock() ||
1024          *     lock.tryLock(timeout, unit)) {
1025          *   ...
1026          * }}</pre>
1027          *
1028          * <p>If the current thread already holds this lock then the
1029          * hold count is incremented by one and the method returns
1030          * {@code true}.
1031          *
1032          * <p>If the lock is held by another thread then the current
1033          * thread becomes disabled for thread scheduling purposes and
1034          * lies dormant until one of three things happens:
1035          *
1036          * <ul>
1037          *
1038          * <li>The write lock is acquired by the current thread; or
1039          *
1040          * <li>Some other thread {@linkplain Thread#interrupt interrupts}
1041          * the current thread; or
1042          *
1043          * <li>The specified waiting time elapses
1044          *
1045          * </ul>
1046          *
1047          * <p>If the write lock is acquired then the value {@code true} is
1048          * returned and the write lock hold count is set to one.
1049          *
1050          * <p>If the current thread:
1051          *
1052          * <ul>
1053          *
1054          * <li>has its interrupted status set on entry to this method;
1055          * or
1056          *
1057          * <li>is {@linkplain Thread#interrupt interrupted} while
1058          * acquiring the write lock,
1059          *
1060          * </ul>
1061          *
1062          * then {@link InterruptedException} is thrown and the current
1063          * thread's interrupted status is cleared.
1064          *
1065          * <p>If the specified waiting time elapses then the value
1066          * {@code false} is returned.  If the time is less than or
1067          * equal to zero, the method will not wait at all.
1068          *
1069          * <p>In this implementation, as this method is an explicit
1070          * interruption point, preference is given to responding to
1071          * the interrupt over normal or reentrant acquisition of the
1072          * lock, and over reporting the elapse of the waiting time.
1073          *
1074          * @param timeout the time to wait for the write lock
1075          * @param unit the time unit of the timeout argument
1076          *
1077          * @return {@code true} if the lock was free and was acquired
1078          * by the current thread, or the write lock was already held by the
1079          * current thread; and {@code false} if the waiting time
1080          * elapsed before the lock could be acquired.
1081          *
1082          * @throws InterruptedException if the current thread is interrupted
1083          * @throws NullPointerException if the time unit is null
1084          */
tryLock(long timeout, TimeUnit unit)1085         public boolean tryLock(long timeout, TimeUnit unit)
1086                 throws InterruptedException {
1087             return sync.tryAcquireNanos(1, unit.toNanos(timeout));
1088         }
1089 
1090         /**
1091          * Attempts to release this lock.
1092          *
1093          * <p>If the current thread is the holder of this lock then
1094          * the hold count is decremented. If the hold count is now
1095          * zero then the lock is released.  If the current thread is
1096          * not the holder of this lock then {@link
1097          * IllegalMonitorStateException} is thrown.
1098          *
1099          * @throws IllegalMonitorStateException if the current thread does not
1100          * hold this lock
1101          */
unlock()1102         public void unlock() {
1103             sync.release(1);
1104         }
1105 
1106         /**
1107          * Returns a {@link Condition} instance for use with this
1108          * {@link Lock} instance.
1109          * <p>The returned {@link Condition} instance supports the same
1110          * usages as do the {@link Object} monitor methods ({@link
1111          * Object#wait() wait}, {@link Object#notify notify}, and {@link
1112          * Object#notifyAll notifyAll}) when used with the built-in
1113          * monitor lock.
1114          *
1115          * <ul>
1116          *
1117          * <li>If this write lock is not held when any {@link
1118          * Condition} method is called then an {@link
1119          * IllegalMonitorStateException} is thrown.  (Read locks are
1120          * held independently of write locks, so are not checked or
1121          * affected. However it is essentially always an error to
1122          * invoke a condition waiting method when the current thread
1123          * has also acquired read locks, since other threads that
1124          * could unblock it will not be able to acquire the write
1125          * lock.)
1126          *
1127          * <li>When the condition {@linkplain Condition#await() waiting}
1128          * methods are called the write lock is released and, before
1129          * they return, the write lock is reacquired and the lock hold
1130          * count restored to what it was when the method was called.
1131          *
1132          * <li>If a thread is {@linkplain Thread#interrupt interrupted} while
1133          * waiting then the wait will terminate, an {@link
1134          * InterruptedException} will be thrown, and the thread's
1135          * interrupted status will be cleared.
1136          *
1137          * <li> Waiting threads are signalled in FIFO order.
1138          *
1139          * <li>The ordering of lock reacquisition for threads returning
1140          * from waiting methods is the same as for threads initially
1141          * acquiring the lock, which is in the default case not specified,
1142          * but for <em>fair</em> locks favors those threads that have been
1143          * waiting the longest.
1144          *
1145          * </ul>
1146          *
1147          * @return the Condition object
1148          */
newCondition()1149         public Condition newCondition() {
1150             return sync.newCondition();
1151         }
1152 
1153         /**
1154          * Returns a string identifying this lock, as well as its lock
1155          * state.  The state, in brackets includes either the String
1156          * {@code "Unlocked"} or the String {@code "Locked by"}
1157          * followed by the {@linkplain Thread#getName name} of the owning thread.
1158          *
1159          * @return a string identifying this lock, as well as its lock state
1160          */
toString()1161         public String toString() {
1162             Thread o = sync.getOwner();
1163             return super.toString() + ((o == null) ?
1164                                        "[Unlocked]" :
1165                                        "[Locked by thread " + o.getName() + "]");
1166         }
1167 
1168         /**
1169          * Queries if this write lock is held by the current thread.
1170          * Identical in effect to {@link
1171          * ReentrantReadWriteLock#isWriteLockedByCurrentThread}.
1172          *
1173          * @return {@code true} if the current thread holds this lock and
1174          *         {@code false} otherwise
1175          * @since 1.6
1176          */
isHeldByCurrentThread()1177         public boolean isHeldByCurrentThread() {
1178             return sync.isHeldExclusively();
1179         }
1180 
1181         /**
1182          * Queries the number of holds on this write lock by the current
1183          * thread.  A thread has a hold on a lock for each lock action
1184          * that is not matched by an unlock action.  Identical in effect
1185          * to {@link ReentrantReadWriteLock#getWriteHoldCount}.
1186          *
1187          * @return the number of holds on this lock by the current thread,
1188          *         or zero if this lock is not held by the current thread
1189          * @since 1.6
1190          */
getHoldCount()1191         public int getHoldCount() {
1192             return sync.getWriteHoldCount();
1193         }
1194     }
1195 
1196     // Instrumentation and status
1197 
1198     /**
1199      * Returns {@code true} if this lock has fairness set true.
1200      *
1201      * @return {@code true} if this lock has fairness set true
1202      */
isFair()1203     public final boolean isFair() {
1204         return sync instanceof FairSync;
1205     }
1206 
1207     /**
1208      * Returns the thread that currently owns the write lock, or
1209      * {@code null} if not owned. When this method is called by a
1210      * thread that is not the owner, the return value reflects a
1211      * best-effort approximation of current lock status. For example,
1212      * the owner may be momentarily {@code null} even if there are
1213      * threads trying to acquire the lock but have not yet done so.
1214      * This method is designed to facilitate construction of
1215      * subclasses that provide more extensive lock monitoring
1216      * facilities.
1217      *
1218      * @return the owner, or {@code null} if not owned
1219      */
getOwner()1220     protected Thread getOwner() {
1221         return sync.getOwner();
1222     }
1223 
1224     /**
1225      * Queries the number of read locks held for this lock. This
1226      * method is designed for use in monitoring system state, not for
1227      * synchronization control.
1228      * @return the number of read locks held
1229      */
getReadLockCount()1230     public int getReadLockCount() {
1231         return sync.getReadLockCount();
1232     }
1233 
1234     /**
1235      * Queries if the write lock is held by any thread. This method is
1236      * designed for use in monitoring system state, not for
1237      * synchronization control.
1238      *
1239      * @return {@code true} if any thread holds the write lock and
1240      *         {@code false} otherwise
1241      */
isWriteLocked()1242     public boolean isWriteLocked() {
1243         return sync.isWriteLocked();
1244     }
1245 
1246     /**
1247      * Queries if the write lock is held by the current thread.
1248      *
1249      * @return {@code true} if the current thread holds the write lock and
1250      *         {@code false} otherwise
1251      */
isWriteLockedByCurrentThread()1252     public boolean isWriteLockedByCurrentThread() {
1253         return sync.isHeldExclusively();
1254     }
1255 
1256     /**
1257      * Queries the number of reentrant write holds on this lock by the
1258      * current thread.  A writer thread has a hold on a lock for
1259      * each lock action that is not matched by an unlock action.
1260      *
1261      * @return the number of holds on the write lock by the current thread,
1262      *         or zero if the write lock is not held by the current thread
1263      */
getWriteHoldCount()1264     public int getWriteHoldCount() {
1265         return sync.getWriteHoldCount();
1266     }
1267 
1268     /**
1269      * Queries the number of reentrant read holds on this lock by the
1270      * current thread.  A reader thread has a hold on a lock for
1271      * each lock action that is not matched by an unlock action.
1272      *
1273      * @return the number of holds on the read lock by the current thread,
1274      *         or zero if the read lock is not held by the current thread
1275      * @since 1.6
1276      */
getReadHoldCount()1277     public int getReadHoldCount() {
1278         return sync.getReadHoldCount();
1279     }
1280 
1281     /**
1282      * Returns a collection containing threads that may be waiting to
1283      * acquire the write lock.  Because the actual set of threads may
1284      * change dynamically while constructing this result, the returned
1285      * collection is only a best-effort estimate.  The elements of the
1286      * returned collection are in no particular order.  This method is
1287      * designed to facilitate construction of subclasses that provide
1288      * more extensive lock monitoring facilities.
1289      *
1290      * @return the collection of threads
1291      */
getQueuedWriterThreads()1292     protected Collection<Thread> getQueuedWriterThreads() {
1293         return sync.getExclusiveQueuedThreads();
1294     }
1295 
1296     /**
1297      * Returns a collection containing threads that may be waiting to
1298      * acquire the read lock.  Because the actual set of threads may
1299      * change dynamically while constructing this result, the returned
1300      * collection is only a best-effort estimate.  The elements of the
1301      * returned collection are in no particular order.  This method is
1302      * designed to facilitate construction of subclasses that provide
1303      * more extensive lock monitoring facilities.
1304      *
1305      * @return the collection of threads
1306      */
getQueuedReaderThreads()1307     protected Collection<Thread> getQueuedReaderThreads() {
1308         return sync.getSharedQueuedThreads();
1309     }
1310 
1311     /**
1312      * Queries whether any threads are waiting to acquire the read or
1313      * write lock. Note that because cancellations may occur at any
1314      * time, a {@code true} return does not guarantee that any other
1315      * thread will ever acquire a lock.  This method is designed
1316      * primarily for use in monitoring of the system state.
1317      *
1318      * @return {@code true} if there may be other threads waiting to
1319      *         acquire the lock
1320      */
hasQueuedThreads()1321     public final boolean hasQueuedThreads() {
1322         return sync.hasQueuedThreads();
1323     }
1324 
1325     /**
1326      * Queries whether the given thread is waiting to acquire either
1327      * the read or write lock. Note that because cancellations may
1328      * occur at any time, a {@code true} return does not guarantee
1329      * that this thread will ever acquire a lock.  This method is
1330      * designed primarily for use in monitoring of the system state.
1331      *
1332      * @param thread the thread
1333      * @return {@code true} if the given thread is queued waiting for this lock
1334      * @throws NullPointerException if the thread is null
1335      */
hasQueuedThread(Thread thread)1336     public final boolean hasQueuedThread(Thread thread) {
1337         return sync.isQueued(thread);
1338     }
1339 
1340     /**
1341      * Returns an estimate of the number of threads waiting to acquire
1342      * either the read or write lock.  The value is only an estimate
1343      * because the number of threads may change dynamically while this
1344      * method traverses internal data structures.  This method is
1345      * designed for use in monitoring of the system state, not for
1346      * synchronization control.
1347      *
1348      * @return the estimated number of threads waiting for this lock
1349      */
getQueueLength()1350     public final int getQueueLength() {
1351         return sync.getQueueLength();
1352     }
1353 
1354     /**
1355      * Returns a collection containing threads that may be waiting to
1356      * acquire either the read or write lock.  Because the actual set
1357      * of threads may change dynamically while constructing this
1358      * result, the returned collection is only a best-effort estimate.
1359      * The elements of the returned collection are in no particular
1360      * order.  This method is designed to facilitate construction of
1361      * subclasses that provide more extensive monitoring facilities.
1362      *
1363      * @return the collection of threads
1364      */
getQueuedThreads()1365     protected Collection<Thread> getQueuedThreads() {
1366         return sync.getQueuedThreads();
1367     }
1368 
1369     /**
1370      * Queries whether any threads are waiting on the given condition
1371      * associated with the write lock. Note that because timeouts and
1372      * interrupts may occur at any time, a {@code true} return does
1373      * not guarantee that a future {@code signal} will awaken any
1374      * threads.  This method is designed primarily for use in
1375      * monitoring of the system state.
1376      *
1377      * @param condition the condition
1378      * @return {@code true} if there are any waiting threads
1379      * @throws IllegalMonitorStateException if this lock is not held
1380      * @throws IllegalArgumentException if the given condition is
1381      *         not associated with this lock
1382      * @throws NullPointerException if the condition is null
1383      */
hasWaiters(Condition condition)1384     public boolean hasWaiters(Condition condition) {
1385         if (condition == null)
1386             throw new NullPointerException();
1387         if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
1388             throw new IllegalArgumentException("not owner");
1389         return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
1390     }
1391 
1392     /**
1393      * Returns an estimate of the number of threads waiting on the
1394      * given condition associated with the write lock. Note that because
1395      * timeouts and interrupts may occur at any time, the estimate
1396      * serves only as an upper bound on the actual number of waiters.
1397      * This method is designed for use in monitoring of the system
1398      * state, not for synchronization control.
1399      *
1400      * @param condition the condition
1401      * @return the estimated number of waiting threads
1402      * @throws IllegalMonitorStateException if this lock is not held
1403      * @throws IllegalArgumentException if the given condition is
1404      *         not associated with this lock
1405      * @throws NullPointerException if the condition is null
1406      */
getWaitQueueLength(Condition condition)1407     public int getWaitQueueLength(Condition condition) {
1408         if (condition == null)
1409             throw new NullPointerException();
1410         if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
1411             throw new IllegalArgumentException("not owner");
1412         return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
1413     }
1414 
1415     /**
1416      * Returns a collection containing those threads that may be
1417      * waiting on the given condition associated with the write lock.
1418      * Because the actual set of threads may change dynamically while
1419      * constructing this result, the returned collection is only a
1420      * best-effort estimate. The elements of the returned collection
1421      * are in no particular order.  This method is designed to
1422      * facilitate construction of subclasses that provide more
1423      * extensive condition monitoring facilities.
1424      *
1425      * @param condition the condition
1426      * @return the collection of threads
1427      * @throws IllegalMonitorStateException if this lock is not held
1428      * @throws IllegalArgumentException if the given condition is
1429      *         not associated with this lock
1430      * @throws NullPointerException if the condition is null
1431      */
getWaitingThreads(Condition condition)1432     protected Collection<Thread> getWaitingThreads(Condition condition) {
1433         if (condition == null)
1434             throw new NullPointerException();
1435         if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
1436             throw new IllegalArgumentException("not owner");
1437         return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
1438     }
1439 
1440     /**
1441      * Returns a string identifying this lock, as well as its lock state.
1442      * The state, in brackets, includes the String {@code "Write locks ="}
1443      * followed by the number of reentrantly held write locks, and the
1444      * String {@code "Read locks ="} followed by the number of held
1445      * read locks.
1446      *
1447      * @return a string identifying this lock, as well as its lock state
1448      */
toString()1449     public String toString() {
1450         int c = sync.getCount();
1451         int w = Sync.exclusiveCount(c);
1452         int r = Sync.sharedCount(c);
1453 
1454         return super.toString() +
1455             "[Write locks = " + w + ", Read locks = " + r + "]";
1456     }
1457 
1458 }
1459