1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdlib.h> // qsort()
13
14 #include "./vp9_rtcd.h"
15 #include "./vpx_scale_rtcd.h"
16
17 #include "vpx_mem/vpx_mem.h"
18 #include "vpx_ports/mem_ops.h"
19 #include "vpx_scale/vpx_scale.h"
20
21 #include "vp9/common/vp9_alloccommon.h"
22 #include "vp9/common/vp9_common.h"
23 #include "vp9/common/vp9_entropy.h"
24 #include "vp9/common/vp9_entropymode.h"
25 #include "vp9/common/vp9_idct.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_quant_common.h"
28 #include "vp9/common/vp9_reconintra.h"
29 #include "vp9/common/vp9_reconinter.h"
30 #include "vp9/common/vp9_seg_common.h"
31 #include "vp9/common/vp9_tile_common.h"
32
33 #include "vp9/decoder/vp9_decodeframe.h"
34 #include "vp9/decoder/vp9_detokenize.h"
35 #include "vp9/decoder/vp9_decodemv.h"
36 #include "vp9/decoder/vp9_decoder.h"
37 #include "vp9/decoder/vp9_dsubexp.h"
38 #include "vp9/decoder/vp9_dthread.h"
39 #include "vp9/decoder/vp9_read_bit_buffer.h"
40 #include "vp9/decoder/vp9_reader.h"
41 #include "vp9/decoder/vp9_thread.h"
42
43 #include "trace_conf.h"
44
is_compound_reference_allowed(const VP9_COMMON * cm)45 static int is_compound_reference_allowed(const VP9_COMMON *cm) {
46 int i;
47 for (i = 1; i < REFS_PER_FRAME; ++i)
48 if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
49 return 1;
50
51 return 0;
52 }
53
setup_compound_reference_mode(VP9_COMMON * cm)54 static void setup_compound_reference_mode(VP9_COMMON *cm) {
55 if (cm->ref_frame_sign_bias[LAST_FRAME] ==
56 cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
57 cm->comp_fixed_ref = ALTREF_FRAME;
58 cm->comp_var_ref[0] = LAST_FRAME;
59 cm->comp_var_ref[1] = GOLDEN_FRAME;
60 } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
61 cm->ref_frame_sign_bias[ALTREF_FRAME]) {
62 cm->comp_fixed_ref = GOLDEN_FRAME;
63 cm->comp_var_ref[0] = LAST_FRAME;
64 cm->comp_var_ref[1] = ALTREF_FRAME;
65 } else {
66 cm->comp_fixed_ref = LAST_FRAME;
67 cm->comp_var_ref[0] = GOLDEN_FRAME;
68 cm->comp_var_ref[1] = ALTREF_FRAME;
69 }
70 }
71
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)72 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
73 return len != 0 && len <= (size_t)(end - start);
74 }
75
decode_unsigned_max(struct vp9_read_bit_buffer * rb,int max)76 static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) {
77 const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max));
78 return data > max ? max : data;
79 }
80
read_tx_mode(vp9_reader * r)81 static TX_MODE read_tx_mode(vp9_reader *r) {
82 TX_MODE tx_mode = vp9_read_literal(r, 2);
83 if (tx_mode == ALLOW_32X32)
84 tx_mode += vp9_read_bit(r);
85 return tx_mode;
86 }
87
read_tx_mode_probs(struct tx_probs * tx_probs,vp9_reader * r)88 static void read_tx_mode_probs(struct tx_probs *tx_probs, vp9_reader *r) {
89 int i, j;
90
91 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
92 for (j = 0; j < TX_SIZES - 3; ++j)
93 vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
94
95 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
96 for (j = 0; j < TX_SIZES - 2; ++j)
97 vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
98
99 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
100 for (j = 0; j < TX_SIZES - 1; ++j)
101 vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
102 }
103
read_switchable_interp_probs(FRAME_CONTEXT * fc,vp9_reader * r)104 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
105 int i, j;
106 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
107 for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
108 vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
109 }
110
read_inter_mode_probs(FRAME_CONTEXT * fc,vp9_reader * r)111 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
112 int i, j;
113 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
114 for (j = 0; j < INTER_MODES - 1; ++j)
115 vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
116 }
117
read_frame_reference_mode(const VP9_COMMON * cm,vp9_reader * r)118 static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
119 vp9_reader *r) {
120 if (is_compound_reference_allowed(cm)) {
121 return vp9_read_bit(r) ? (vp9_read_bit(r) ? REFERENCE_MODE_SELECT
122 : COMPOUND_REFERENCE)
123 : SINGLE_REFERENCE;
124 } else {
125 return SINGLE_REFERENCE;
126 }
127 }
128
read_frame_reference_mode_probs(VP9_COMMON * cm,vp9_reader * r)129 static void read_frame_reference_mode_probs(VP9_COMMON *cm, vp9_reader *r) {
130 FRAME_CONTEXT *const fc = &cm->fc;
131 int i;
132
133 if (cm->reference_mode == REFERENCE_MODE_SELECT)
134 for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
135 vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
136
137 if (cm->reference_mode != COMPOUND_REFERENCE)
138 for (i = 0; i < REF_CONTEXTS; ++i) {
139 vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
140 vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
141 }
142
143 if (cm->reference_mode != SINGLE_REFERENCE)
144 for (i = 0; i < REF_CONTEXTS; ++i)
145 vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
146 }
147
update_mv_probs(vp9_prob * p,int n,vp9_reader * r)148 static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) {
149 int i;
150 for (i = 0; i < n; ++i)
151 if (vp9_read(r, MV_UPDATE_PROB))
152 p[i] = (vp9_read_literal(r, 7) << 1) | 1;
153 }
154
read_mv_probs(nmv_context * ctx,int allow_hp,vp9_reader * r)155 static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) {
156 int i, j;
157
158 update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
159
160 for (i = 0; i < 2; ++i) {
161 nmv_component *const comp_ctx = &ctx->comps[i];
162 update_mv_probs(&comp_ctx->sign, 1, r);
163 update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
164 update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
165 update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
166 }
167
168 for (i = 0; i < 2; ++i) {
169 nmv_component *const comp_ctx = &ctx->comps[i];
170 for (j = 0; j < CLASS0_SIZE; ++j)
171 update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
172 update_mv_probs(comp_ctx->fp, 3, r);
173 }
174
175 if (allow_hp) {
176 for (i = 0; i < 2; ++i) {
177 nmv_component *const comp_ctx = &ctx->comps[i];
178 update_mv_probs(&comp_ctx->class0_hp, 1, r);
179 update_mv_probs(&comp_ctx->hp, 1, r);
180 }
181 }
182 }
183
setup_plane_dequants(VP9_COMMON * cm,MACROBLOCKD * xd,int q_index)184 static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) {
185 int i;
186 xd->plane[0].dequant = cm->y_dequant[q_index];
187
188 for (i = 1; i < MAX_MB_PLANE; i++)
189 xd->plane[i].dequant = cm->uv_dequant[q_index];
190 }
191
inverse_transform_block(MACROBLOCKD * xd,int plane,int block,TX_SIZE tx_size,uint8_t * dst,int stride,int eob)192 static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block,
193 TX_SIZE tx_size, uint8_t *dst, int stride,
194 int eob) {
195 struct macroblockd_plane *const pd = &xd->plane[plane];
196 if (eob > 0) {
197 TX_TYPE tx_type = DCT_DCT;
198 const PLANE_TYPE plane_type = pd->plane_type;
199 int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
200 switch (tx_size) {
201 case TX_4X4:
202 tx_type = get_tx_type_4x4(plane_type, xd, block);
203 if (tx_type == DCT_DCT)
204 xd->itxm_add(dqcoeff, dst, stride, eob);
205 else
206 vp9_iht4x4_16_add(dqcoeff, dst, stride, tx_type);
207 break;
208 case TX_8X8:
209 tx_type = get_tx_type(plane_type, xd);
210 vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
211 break;
212 case TX_16X16:
213 tx_type = get_tx_type(plane_type, xd);
214 vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
215 break;
216 case TX_32X32:
217 tx_type = DCT_DCT;
218 vp9_idct32x32_add(dqcoeff, dst, stride, eob);
219 break;
220 default:
221 assert(0 && "Invalid transform size");
222 }
223
224 if (eob == 1) {
225 vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0]));
226 } else {
227 if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
228 vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
229 else if (tx_size == TX_32X32 && eob <= 34)
230 vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
231 else
232 vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
233 }
234 }
235 }
236
237 struct intra_args {
238 VP9_COMMON *cm;
239 MACROBLOCKD *xd;
240 vp9_reader *r;
241 };
242
predict_and_reconstruct_intra_block(int plane,int block,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)243 static void predict_and_reconstruct_intra_block(int plane, int block,
244 BLOCK_SIZE plane_bsize,
245 TX_SIZE tx_size, void *arg) {
246 struct intra_args *const args = (struct intra_args *)arg;
247 VP9_COMMON *const cm = args->cm;
248 MACROBLOCKD *const xd = args->xd;
249 struct macroblockd_plane *const pd = &xd->plane[plane];
250 MODE_INFO *const mi = xd->mi[0];
251 const MB_PREDICTION_MODE mode = (plane == 0) ? get_y_mode(mi, block)
252 : mi->mbmi.uv_mode;
253 int x, y;
254 uint8_t *dst;
255 txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
256 dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x];
257
258 vp9_predict_intra_block(xd, block >> (tx_size << 1),
259 b_width_log2(plane_bsize), tx_size, mode,
260 dst, pd->dst.stride, dst, pd->dst.stride,
261 x, y, plane);
262
263 if (!mi->mbmi.skip) {
264 const int eob = vp9_decode_block_tokens(cm, xd, plane, block,
265 plane_bsize, x, y, tx_size,
266 args->r);
267 inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride,
268 eob);
269 }
270 }
271
272 struct inter_args {
273 VP9_COMMON *cm;
274 MACROBLOCKD *xd;
275 vp9_reader *r;
276 int *eobtotal;
277 };
278
reconstruct_inter_block(int plane,int block,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)279 static void reconstruct_inter_block(int plane, int block,
280 BLOCK_SIZE plane_bsize,
281 TX_SIZE tx_size, void *arg) {
282 struct inter_args *args = (struct inter_args *)arg;
283 VP9_COMMON *const cm = args->cm;
284 MACROBLOCKD *const xd = args->xd;
285 struct macroblockd_plane *const pd = &xd->plane[plane];
286 int x, y, eob;
287 txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
288 eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y,
289 tx_size, args->r);
290 inverse_transform_block(xd, plane, block, tx_size,
291 &pd->dst.buf[4 * y * pd->dst.stride + 4 * x],
292 pd->dst.stride, eob);
293 *args->eobtotal += eob;
294 }
295
set_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,const TileInfo * const tile,BLOCK_SIZE bsize,int mi_row,int mi_col)296 static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
297 const TileInfo *const tile,
298 BLOCK_SIZE bsize, int mi_row, int mi_col) {
299 const int bw = num_8x8_blocks_wide_lookup[bsize];
300 const int bh = num_8x8_blocks_high_lookup[bsize];
301 const int x_mis = MIN(bw, cm->mi_cols - mi_col);
302 const int y_mis = MIN(bh, cm->mi_rows - mi_row);
303 const int offset = mi_row * cm->mi_stride + mi_col;
304 int x, y;
305
306 xd->mi = cm->mi_grid_visible + offset;
307 xd->mi[0] = &cm->mi[offset];
308 xd->mi[0]->mbmi.sb_type = bsize;
309 for (y = 0; y < y_mis; ++y)
310 for (x = !y; x < x_mis; ++x)
311 xd->mi[y * cm->mi_stride + x] = xd->mi[0];
312
313 set_skip_context(xd, mi_row, mi_col);
314
315 // Distance of Mb to the various image edges. These are specified to 8th pel
316 // as they are always compared to values that are in 1/8th pel units
317 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
318
319 vp9_setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col);
320 return &xd->mi[0]->mbmi;
321 }
322
set_ref(VP9_COMMON * const cm,MACROBLOCKD * const xd,int idx,int mi_row,int mi_col)323 static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
324 int idx, int mi_row, int mi_col) {
325 MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
326 RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
327 xd->block_refs[idx] = ref_buffer;
328 if (!vp9_is_valid_scale(&ref_buffer->sf))
329 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
330 "Invalid scale factors");
331 vp9_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
332 &ref_buffer->sf);
333 xd->corrupted |= ref_buffer->buf->corrupted;
334 }
335
decode_block(VP9_COMMON * const cm,MACROBLOCKD * const xd,const TileInfo * const tile,int mi_row,int mi_col,vp9_reader * r,BLOCK_SIZE bsize)336 static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
337 const TileInfo *const tile,
338 int mi_row, int mi_col,
339 vp9_reader *r, BLOCK_SIZE bsize) {
340 const int less8x8 = bsize < BLOCK_8X8;
341 MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
342 vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r);
343
344 if (less8x8)
345 bsize = BLOCK_8X8;
346
347 if (mbmi->skip) {
348 reset_skip_context(xd, bsize);
349 } else {
350 if (cm->seg.enabled)
351 setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id,
352 cm->base_qindex));
353 }
354
355 if (!is_inter_block(mbmi)) {
356 struct intra_args arg = { cm, xd, r };
357 vp9_foreach_transformed_block(xd, bsize,
358 predict_and_reconstruct_intra_block, &arg);
359 } else {
360 // Setup
361 set_ref(cm, xd, 0, mi_row, mi_col);
362 if (has_second_ref(mbmi))
363 set_ref(cm, xd, 1, mi_row, mi_col);
364
365 // Prediction
366 vp9_dec_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
367
368 // Reconstruction
369 if (!mbmi->skip) {
370 int eobtotal = 0;
371 struct inter_args arg = { cm, xd, r, &eobtotal };
372 vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
373 if (!less8x8 && eobtotal == 0)
374 mbmi->skip = 1; // skip loopfilter
375 }
376 }
377
378 xd->corrupted |= vp9_reader_has_error(r);
379 }
380
read_partition(VP9_COMMON * cm,MACROBLOCKD * xd,int hbs,int mi_row,int mi_col,BLOCK_SIZE bsize,vp9_reader * r)381 static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
382 int mi_row, int mi_col, BLOCK_SIZE bsize,
383 vp9_reader *r) {
384 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
385 const vp9_prob *const probs = get_partition_probs(cm, ctx);
386 const int has_rows = (mi_row + hbs) < cm->mi_rows;
387 const int has_cols = (mi_col + hbs) < cm->mi_cols;
388 PARTITION_TYPE p;
389
390 if (has_rows && has_cols)
391 p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs);
392 else if (!has_rows && has_cols)
393 p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
394 else if (has_rows && !has_cols)
395 p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
396 else
397 p = PARTITION_SPLIT;
398
399 if (!cm->frame_parallel_decoding_mode)
400 ++cm->counts.partition[ctx][p];
401
402 return p;
403 }
404
decode_partition(VP9_COMMON * const cm,MACROBLOCKD * const xd,const TileInfo * const tile,int mi_row,int mi_col,vp9_reader * r,BLOCK_SIZE bsize)405 static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
406 const TileInfo *const tile,
407 int mi_row, int mi_col,
408 vp9_reader* r, BLOCK_SIZE bsize) {
409 const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
410 PARTITION_TYPE partition;
411 BLOCK_SIZE subsize;
412
413 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
414 return;
415
416 partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
417 subsize = get_subsize(bsize, partition);
418 if (subsize < BLOCK_8X8) {
419 decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
420 } else {
421 switch (partition) {
422 case PARTITION_NONE:
423 decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
424 break;
425 case PARTITION_HORZ:
426 decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
427 if (mi_row + hbs < cm->mi_rows)
428 decode_block(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
429 break;
430 case PARTITION_VERT:
431 decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
432 if (mi_col + hbs < cm->mi_cols)
433 decode_block(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
434 break;
435 case PARTITION_SPLIT:
436 decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize);
437 decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
438 decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
439 decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize);
440 break;
441 default:
442 assert(0 && "Invalid partition type");
443 }
444 }
445
446 // update partition context
447 if (bsize >= BLOCK_8X8 &&
448 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
449 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
450 }
451
setup_token_decoder(const uint8_t * data,const uint8_t * data_end,size_t read_size,struct vpx_internal_error_info * error_info,vp9_reader * r)452 static void setup_token_decoder(const uint8_t *data,
453 const uint8_t *data_end,
454 size_t read_size,
455 struct vpx_internal_error_info *error_info,
456 vp9_reader *r) {
457 // Validate the calculated partition length. If the buffer
458 // described by the partition can't be fully read, then restrict
459 // it to the portion that can be (for EC mode) or throw an error.
460 if (!read_is_valid(data, read_size, data_end))
461 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
462 "Truncated packet or corrupt tile length");
463
464 if (vp9_reader_init(r, data, read_size))
465 vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
466 "Failed to allocate bool decoder %d", 1);
467 }
468
read_coef_probs_common(vp9_coeff_probs_model * coef_probs,vp9_reader * r)469 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
470 vp9_reader *r) {
471 int i, j, k, l, m;
472
473 if (vp9_read_bit(r))
474 for (i = 0; i < PLANE_TYPES; ++i)
475 for (j = 0; j < REF_TYPES; ++j)
476 for (k = 0; k < COEF_BANDS; ++k)
477 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
478 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
479 vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
480 }
481
read_coef_probs(FRAME_CONTEXT * fc,TX_MODE tx_mode,vp9_reader * r)482 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
483 vp9_reader *r) {
484 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
485 TX_SIZE tx_size;
486 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
487 read_coef_probs_common(fc->coef_probs[tx_size], r);
488 }
489
setup_segmentation(struct segmentation * seg,struct vp9_read_bit_buffer * rb)490 static void setup_segmentation(struct segmentation *seg,
491 struct vp9_read_bit_buffer *rb) {
492 int i, j;
493
494 seg->update_map = 0;
495 seg->update_data = 0;
496
497 seg->enabled = vp9_rb_read_bit(rb);
498 if (!seg->enabled)
499 return;
500
501 // Segmentation map update
502 seg->update_map = vp9_rb_read_bit(rb);
503 if (seg->update_map) {
504 for (i = 0; i < SEG_TREE_PROBS; i++)
505 seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
506 : MAX_PROB;
507
508 seg->temporal_update = vp9_rb_read_bit(rb);
509 if (seg->temporal_update) {
510 for (i = 0; i < PREDICTION_PROBS; i++)
511 seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
512 : MAX_PROB;
513 } else {
514 for (i = 0; i < PREDICTION_PROBS; i++)
515 seg->pred_probs[i] = MAX_PROB;
516 }
517 }
518
519 // Segmentation data update
520 seg->update_data = vp9_rb_read_bit(rb);
521 if (seg->update_data) {
522 seg->abs_delta = vp9_rb_read_bit(rb);
523
524 vp9_clearall_segfeatures(seg);
525
526 for (i = 0; i < MAX_SEGMENTS; i++) {
527 for (j = 0; j < SEG_LVL_MAX; j++) {
528 int data = 0;
529 const int feature_enabled = vp9_rb_read_bit(rb);
530 if (feature_enabled) {
531 vp9_enable_segfeature(seg, i, j);
532 data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
533 if (vp9_is_segfeature_signed(j))
534 data = vp9_rb_read_bit(rb) ? -data : data;
535 }
536 vp9_set_segdata(seg, i, j, data);
537 }
538 }
539 }
540 }
541
setup_loopfilter(struct loopfilter * lf,struct vp9_read_bit_buffer * rb)542 static void setup_loopfilter(struct loopfilter *lf,
543 struct vp9_read_bit_buffer *rb) {
544 lf->filter_level = vp9_rb_read_literal(rb, 6);
545 lf->sharpness_level = vp9_rb_read_literal(rb, 3);
546
547 // Read in loop filter deltas applied at the MB level based on mode or ref
548 // frame.
549 lf->mode_ref_delta_update = 0;
550
551 lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb);
552 if (lf->mode_ref_delta_enabled) {
553 lf->mode_ref_delta_update = vp9_rb_read_bit(rb);
554 if (lf->mode_ref_delta_update) {
555 int i;
556
557 for (i = 0; i < MAX_REF_LF_DELTAS; i++)
558 if (vp9_rb_read_bit(rb))
559 lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
560
561 for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
562 if (vp9_rb_read_bit(rb))
563 lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
564 }
565 }
566 }
567
read_delta_q(struct vp9_read_bit_buffer * rb,int * delta_q)568 static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) {
569 const int old = *delta_q;
570 *delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0;
571 return old != *delta_q;
572 }
573
setup_quantization(VP9_COMMON * const cm,MACROBLOCKD * const xd,struct vp9_read_bit_buffer * rb)574 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
575 struct vp9_read_bit_buffer *rb) {
576 int update = 0;
577
578 cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS);
579 update |= read_delta_q(rb, &cm->y_dc_delta_q);
580 update |= read_delta_q(rb, &cm->uv_dc_delta_q);
581 update |= read_delta_q(rb, &cm->uv_ac_delta_q);
582 if (update)
583 vp9_init_dequantizer(cm);
584
585 xd->lossless = cm->base_qindex == 0 &&
586 cm->y_dc_delta_q == 0 &&
587 cm->uv_dc_delta_q == 0 &&
588 cm->uv_ac_delta_q == 0;
589
590 xd->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
591 }
592
read_interp_filter(struct vp9_read_bit_buffer * rb)593 static INTERP_FILTER read_interp_filter(struct vp9_read_bit_buffer *rb) {
594 const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH,
595 EIGHTTAP,
596 EIGHTTAP_SHARP,
597 BILINEAR };
598 return vp9_rb_read_bit(rb) ? SWITCHABLE
599 : literal_to_filter[vp9_rb_read_literal(rb, 2)];
600 }
601
read_frame_size(struct vp9_read_bit_buffer * rb,int * width,int * height)602 static void read_frame_size(struct vp9_read_bit_buffer *rb,
603 int *width, int *height) {
604 const int w = vp9_rb_read_literal(rb, 16) + 1;
605 const int h = vp9_rb_read_literal(rb, 16) + 1;
606 *width = w;
607 *height = h;
608 }
609
setup_display_size(VP9_COMMON * cm,struct vp9_read_bit_buffer * rb)610 static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
611 cm->display_width = cm->width;
612 cm->display_height = cm->height;
613 if (vp9_rb_read_bit(rb))
614 read_frame_size(rb, &cm->display_width, &cm->display_height);
615 }
616
apply_frame_size(VP9_COMMON * cm,int width,int height)617 static void apply_frame_size(VP9_COMMON *cm, int width, int height) {
618 if (cm->width != width || cm->height != height) {
619 // Change in frame size.
620 // TODO(agrange) Don't test width/height, check overall size.
621 if (width > cm->width || height > cm->height) {
622 // Rescale frame buffers only if they're not big enough already.
623 if (vp9_resize_frame_buffers(cm, width, height))
624 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
625 "Failed to allocate frame buffers");
626 }
627
628 cm->width = width;
629 cm->height = height;
630
631 vp9_update_frame_size(cm);
632 }
633
634 if (vp9_realloc_frame_buffer(
635 get_frame_new_buffer(cm), cm->width, cm->height,
636 cm->subsampling_x, cm->subsampling_y, VP9_DEC_BORDER_IN_PIXELS,
637 &cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb,
638 cm->cb_priv)) {
639 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
640 "Failed to allocate frame buffer");
641 }
642 }
643
setup_frame_size(VP9_COMMON * cm,struct vp9_read_bit_buffer * rb)644 static void setup_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
645 int width, height;
646 read_frame_size(rb, &width, &height);
647 apply_frame_size(cm, width, height);
648 setup_display_size(cm, rb);
649 }
650
setup_frame_size_with_refs(VP9_COMMON * cm,struct vp9_read_bit_buffer * rb)651 static void setup_frame_size_with_refs(VP9_COMMON *cm,
652 struct vp9_read_bit_buffer *rb) {
653 int width, height;
654 int found = 0, i;
655 for (i = 0; i < REFS_PER_FRAME; ++i) {
656 if (vp9_rb_read_bit(rb)) {
657 YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
658 width = buf->y_crop_width;
659 height = buf->y_crop_height;
660 found = 1;
661 break;
662 }
663 }
664
665 if (!found)
666 read_frame_size(rb, &width, &height);
667
668 if (width <= 0 || height <= 0)
669 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
670 "Referenced frame with invalid size");
671
672 apply_frame_size(cm, width, height);
673 setup_display_size(cm, rb);
674 }
675
decode_tile(VP9D_COMP * pbi,const TileInfo * const tile,vp9_reader * r)676 static void decode_tile(VP9D_COMP *pbi, const TileInfo *const tile,
677 vp9_reader *r) {
678 const int num_threads = pbi->oxcf.max_threads;
679 VP9_COMMON *const cm = &pbi->common;
680 int mi_row, mi_col;
681 MACROBLOCKD *xd = &pbi->mb;
682
683 if (pbi->do_loopfilter_inline) {
684 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
685 lf_data->frame_buffer = get_frame_new_buffer(cm);
686 lf_data->cm = cm;
687 lf_data->xd = pbi->mb;
688 lf_data->stop = 0;
689 lf_data->y_only = 0;
690 vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
691 }
692
693 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
694 mi_row += MI_BLOCK_SIZE) {
695 // For a SB there are 2 left contexts, each pertaining to a MB row within
696 vp9_zero(xd->left_context);
697 vp9_zero(xd->left_seg_context);
698 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
699 mi_col += MI_BLOCK_SIZE) {
700 decode_partition(cm, xd, tile, mi_row, mi_col, r, BLOCK_64X64);
701 }
702
703 if (pbi->do_loopfilter_inline) {
704 const int lf_start = mi_row - MI_BLOCK_SIZE;
705 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
706
707 // delay the loopfilter by 1 macroblock row.
708 if (lf_start < 0) continue;
709
710 // decoding has completed: finish up the loop filter in this thread.
711 if (mi_row + MI_BLOCK_SIZE >= tile->mi_row_end) continue;
712
713 vp9_worker_sync(&pbi->lf_worker);
714 lf_data->start = lf_start;
715 lf_data->stop = mi_row;
716 if (num_threads > 1) {
717 vp9_worker_launch(&pbi->lf_worker);
718 } else {
719 vp9_worker_execute(&pbi->lf_worker);
720 }
721 }
722 }
723
724 if (pbi->do_loopfilter_inline) {
725 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
726
727 vp9_worker_sync(&pbi->lf_worker);
728 lf_data->start = lf_data->stop;
729 lf_data->stop = cm->mi_rows;
730 vp9_worker_execute(&pbi->lf_worker);
731 }
732 }
733
setup_tile_info(VP9_COMMON * cm,struct vp9_read_bit_buffer * rb)734 static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
735 int min_log2_tile_cols, max_log2_tile_cols, max_ones;
736 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
737
738 // columns
739 max_ones = max_log2_tile_cols - min_log2_tile_cols;
740 cm->log2_tile_cols = min_log2_tile_cols;
741 while (max_ones-- && vp9_rb_read_bit(rb))
742 cm->log2_tile_cols++;
743
744 // rows
745 cm->log2_tile_rows = vp9_rb_read_bit(rb);
746 if (cm->log2_tile_rows)
747 cm->log2_tile_rows += vp9_rb_read_bit(rb);
748 }
749
750 // Reads the next tile returning its size and adjusting '*data' accordingly
751 // based on 'is_last'.
get_tile(const uint8_t * const data_end,int is_last,struct vpx_internal_error_info * error_info,const uint8_t ** data)752 static size_t get_tile(const uint8_t *const data_end,
753 int is_last,
754 struct vpx_internal_error_info *error_info,
755 const uint8_t **data) {
756 size_t size;
757
758 if (!is_last) {
759 if (!read_is_valid(*data, 4, data_end))
760 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
761 "Truncated packet or corrupt tile length");
762
763 size = mem_get_be32(*data);
764 *data += 4;
765
766 if (size > (size_t)(data_end - *data))
767 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
768 "Truncated packet or corrupt tile size");
769 } else {
770 size = data_end - *data;
771 }
772 return size;
773 }
774
775 typedef struct TileBuffer {
776 const uint8_t *data;
777 size_t size;
778 int col; // only used with multi-threaded decoding
779 } TileBuffer;
780
decode_tiles(VP9D_COMP * pbi,const uint8_t * data,const uint8_t * data_end)781 static const uint8_t *decode_tiles(VP9D_COMP *pbi,
782 const uint8_t *data,
783 const uint8_t *data_end) {
784 VP9_COMMON *const cm = &pbi->common;
785 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
786 const int tile_cols = 1 << cm->log2_tile_cols;
787 const int tile_rows = 1 << cm->log2_tile_rows;
788 TileBuffer tile_buffers[4][1 << 6];
789 int tile_row, tile_col;
790 const uint8_t *end = NULL;
791 vp9_reader r;
792
793 assert(tile_rows <= 4);
794 assert(tile_cols <= (1 << 6));
795
796 // Note: this memset assumes above_context[0], [1] and [2]
797 // are allocated as part of the same buffer.
798 vpx_memset(cm->above_context, 0,
799 sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
800
801 vpx_memset(cm->above_seg_context, 0,
802 sizeof(*cm->above_seg_context) * aligned_cols);
803
804 // Load tile data into tile_buffers
805 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
806 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
807 const int last_tile = tile_row == tile_rows - 1 &&
808 tile_col == tile_cols - 1;
809 const size_t size = get_tile(data_end, last_tile, &cm->error, &data);
810 TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
811 buf->data = data;
812 buf->size = size;
813 data += size;
814 }
815 }
816
817 // Decode tiles using data from tile_buffers
818 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
819 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
820 const int col = pbi->oxcf.inv_tile_order ? tile_cols - tile_col - 1
821 : tile_col;
822 const int last_tile = tile_row == tile_rows - 1 &&
823 col == tile_cols - 1;
824 const TileBuffer *const buf = &tile_buffers[tile_row][col];
825 TileInfo tile;
826
827 vp9_tile_init(&tile, cm, tile_row, col);
828 setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &r);
829 decode_tile(pbi, &tile, &r);
830
831 if (last_tile)
832 end = vp9_reader_find_end(&r);
833 }
834 }
835
836 return end;
837 }
838
tile_worker_hook(void * arg1,void * arg2)839 static int tile_worker_hook(void *arg1, void *arg2) {
840 TileWorkerData *const tile_data = (TileWorkerData*)arg1;
841 const TileInfo *const tile = (TileInfo*)arg2;
842 int mi_row, mi_col;
843
844 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
845 mi_row += MI_BLOCK_SIZE) {
846 vp9_zero(tile_data->xd.left_context);
847 vp9_zero(tile_data->xd.left_seg_context);
848 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
849 mi_col += MI_BLOCK_SIZE) {
850 decode_partition(tile_data->cm, &tile_data->xd, tile,
851 mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64);
852 }
853 }
854 return !tile_data->xd.corrupted;
855 }
856
857 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)858 static int compare_tile_buffers(const void *a, const void *b) {
859 const TileBuffer *const buf1 = (const TileBuffer*)a;
860 const TileBuffer *const buf2 = (const TileBuffer*)b;
861 if (buf1->size < buf2->size) {
862 return 1;
863 } else if (buf1->size == buf2->size) {
864 return 0;
865 } else {
866 return -1;
867 }
868 }
869
decode_tiles_mt(VP9D_COMP * pbi,const uint8_t * data,const uint8_t * data_end)870 static const uint8_t *decode_tiles_mt(VP9D_COMP *pbi,
871 const uint8_t *data,
872 const uint8_t *data_end) {
873 VP9_COMMON *const cm = &pbi->common;
874 const uint8_t *bit_reader_end = NULL;
875 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
876 const int tile_cols = 1 << cm->log2_tile_cols;
877 const int tile_rows = 1 << cm->log2_tile_rows;
878 const int num_workers = MIN(pbi->oxcf.max_threads & ~1, tile_cols);
879 TileBuffer tile_buffers[1 << 6];
880 int n;
881 int final_worker = -1;
882
883 assert(tile_cols <= (1 << 6));
884 assert(tile_rows == 1);
885 (void)tile_rows;
886
887 if (num_workers > pbi->num_tile_workers) {
888 int i;
889 CHECK_MEM_ERROR(cm, pbi->tile_workers,
890 vpx_realloc(pbi->tile_workers,
891 num_workers * sizeof(*pbi->tile_workers)));
892 for (i = pbi->num_tile_workers; i < num_workers; ++i) {
893 VP9Worker *const worker = &pbi->tile_workers[i];
894 ++pbi->num_tile_workers;
895
896 vp9_worker_init(worker);
897 CHECK_MEM_ERROR(cm, worker->data1,
898 vpx_memalign(32, sizeof(TileWorkerData)));
899 CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo)));
900 if (i < num_workers - 1 && !vp9_worker_reset(worker)) {
901 vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
902 "Tile decoder thread creation failed");
903 }
904 }
905 }
906
907 // Reset tile decoding hook
908 for (n = 0; n < pbi->num_tile_workers; ++n) {
909 pbi->tile_workers[n].hook = (VP9WorkerHook)tile_worker_hook;
910 }
911
912 // Note: this memset assumes above_context[0], [1] and [2]
913 // are allocated as part of the same buffer.
914 vpx_memset(cm->above_context, 0,
915 sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
916 vpx_memset(cm->above_seg_context, 0,
917 sizeof(*cm->above_seg_context) * aligned_mi_cols);
918
919 // Load tile data into tile_buffers
920 for (n = 0; n < tile_cols; ++n) {
921 const size_t size =
922 get_tile(data_end, n == tile_cols - 1, &cm->error, &data);
923 TileBuffer *const buf = &tile_buffers[n];
924 buf->data = data;
925 buf->size = size;
926 buf->col = n;
927 data += size;
928 }
929
930 // Sort the buffers based on size in descending order.
931 qsort(tile_buffers, tile_cols, sizeof(tile_buffers[0]), compare_tile_buffers);
932
933 // Rearrange the tile buffers such that per-tile group the largest, and
934 // presumably the most difficult, tile will be decoded in the main thread.
935 // This should help minimize the number of instances where the main thread is
936 // waiting for a worker to complete.
937 {
938 int group_start = 0;
939 while (group_start < tile_cols) {
940 const TileBuffer largest = tile_buffers[group_start];
941 const int group_end = MIN(group_start + num_workers, tile_cols) - 1;
942 memmove(tile_buffers + group_start, tile_buffers + group_start + 1,
943 (group_end - group_start) * sizeof(tile_buffers[0]));
944 tile_buffers[group_end] = largest;
945 group_start = group_end + 1;
946 }
947 }
948
949 n = 0;
950 while (n < tile_cols) {
951 int i;
952 for (i = 0; i < num_workers && n < tile_cols; ++i) {
953 VP9Worker *const worker = &pbi->tile_workers[i];
954 TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
955 TileInfo *const tile = (TileInfo*)worker->data2;
956 TileBuffer *const buf = &tile_buffers[n];
957
958 tile_data->cm = cm;
959 tile_data->xd = pbi->mb;
960 tile_data->xd.corrupted = 0;
961 vp9_tile_init(tile, tile_data->cm, 0, buf->col);
962 setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
963 &tile_data->bit_reader);
964 init_macroblockd(cm, &tile_data->xd);
965 vp9_zero(tile_data->xd.dqcoeff);
966
967 worker->had_error = 0;
968 if (i == num_workers - 1 || n == tile_cols - 1) {
969 vp9_worker_execute(worker);
970 } else {
971 vp9_worker_launch(worker);
972 }
973
974 if (buf->col == tile_cols - 1) {
975 final_worker = i;
976 }
977
978 ++n;
979 }
980
981 for (; i > 0; --i) {
982 VP9Worker *const worker = &pbi->tile_workers[i - 1];
983 pbi->mb.corrupted |= !vp9_worker_sync(worker);
984 }
985 if (final_worker > -1) {
986 TileWorkerData *const tile_data =
987 (TileWorkerData*)pbi->tile_workers[final_worker].data1;
988 bit_reader_end = vp9_reader_find_end(&tile_data->bit_reader);
989 final_worker = -1;
990 }
991 }
992
993 return bit_reader_end;
994 }
995
check_sync_code(VP9_COMMON * cm,struct vp9_read_bit_buffer * rb)996 static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
997 if (vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_0 ||
998 vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_1 ||
999 vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_2) {
1000 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1001 "Invalid frame sync code");
1002 }
1003 }
1004
error_handler(void * data)1005 static void error_handler(void *data) {
1006 VP9_COMMON *const cm = (VP9_COMMON *)data;
1007 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
1008 }
1009
1010 #define RESERVED \
1011 if (vp9_rb_read_bit(rb)) \
1012 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \
1013 "Reserved bit must be unset")
1014
read_uncompressed_header(VP9D_COMP * pbi,struct vp9_read_bit_buffer * rb)1015 static size_t read_uncompressed_header(VP9D_COMP *pbi,
1016 struct vp9_read_bit_buffer *rb) {
1017 VP9_COMMON *const cm = &pbi->common;
1018 size_t sz;
1019 int i;
1020
1021 cm->last_frame_type = cm->frame_type;
1022
1023 if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
1024 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1025 "Invalid frame marker");
1026
1027 cm->version = vp9_rb_read_bit(rb);
1028 RESERVED;
1029
1030 cm->show_existing_frame = vp9_rb_read_bit(rb);
1031 if (cm->show_existing_frame) {
1032 // Show an existing frame directly.
1033 const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
1034
1035 if (cm->frame_bufs[frame_to_show].ref_count < 1)
1036 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1037 "Buffer %d does not contain a decoded frame",
1038 frame_to_show);
1039
1040 ref_cnt_fb(cm->frame_bufs, &cm->new_fb_idx, frame_to_show);
1041 pbi->refresh_frame_flags = 0;
1042 cm->lf.filter_level = 0;
1043 cm->show_frame = 1;
1044 return 0;
1045 }
1046
1047 cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb);
1048 cm->show_frame = vp9_rb_read_bit(rb);
1049 cm->error_resilient_mode = vp9_rb_read_bit(rb);
1050
1051 if (cm->frame_type == KEY_FRAME) {
1052 check_sync_code(cm, rb);
1053
1054 cm->color_space = (COLOR_SPACE)vp9_rb_read_literal(rb, 3);
1055 if (cm->color_space != SRGB) {
1056 vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range
1057 if (cm->version == 1) {
1058 cm->subsampling_x = vp9_rb_read_bit(rb);
1059 cm->subsampling_y = vp9_rb_read_bit(rb);
1060 vp9_rb_read_bit(rb); // has extra plane
1061 } else {
1062 cm->subsampling_y = cm->subsampling_x = 1;
1063 }
1064 } else {
1065 if (cm->version == 1) {
1066 cm->subsampling_y = cm->subsampling_x = 0;
1067 vp9_rb_read_bit(rb); // has extra plane
1068 } else {
1069 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1070 "RGB not supported in profile 0");
1071 }
1072 }
1073
1074 pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
1075
1076 for (i = 0; i < REFS_PER_FRAME; ++i) {
1077 cm->frame_refs[i].idx = cm->new_fb_idx;
1078 cm->frame_refs[i].buf = get_frame_new_buffer(cm);
1079 }
1080
1081 setup_frame_size(cm, rb);
1082 } else {
1083 cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb);
1084
1085 cm->reset_frame_context = cm->error_resilient_mode ?
1086 0 : vp9_rb_read_literal(rb, 2);
1087
1088 if (cm->intra_only) {
1089 check_sync_code(cm, rb);
1090
1091 pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
1092 setup_frame_size(cm, rb);
1093 } else {
1094 pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
1095
1096 for (i = 0; i < REFS_PER_FRAME; ++i) {
1097 const int ref = vp9_rb_read_literal(rb, REF_FRAMES_LOG2);
1098 const int idx = cm->ref_frame_map[ref];
1099 cm->frame_refs[i].idx = idx;
1100 cm->frame_refs[i].buf = &cm->frame_bufs[idx].buf;
1101 cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb);
1102 }
1103
1104 setup_frame_size_with_refs(cm, rb);
1105
1106 cm->allow_high_precision_mv = vp9_rb_read_bit(rb);
1107 cm->interp_filter = read_interp_filter(rb);
1108
1109 for (i = 0; i < REFS_PER_FRAME; ++i) {
1110 RefBuffer *const ref_buf = &cm->frame_refs[i];
1111 vp9_setup_scale_factors_for_frame(&ref_buf->sf,
1112 ref_buf->buf->y_crop_width,
1113 ref_buf->buf->y_crop_height,
1114 cm->width, cm->height);
1115 if (vp9_is_scaled(&ref_buf->sf))
1116 vp9_extend_frame_borders(ref_buf->buf);
1117 }
1118 }
1119 }
1120
1121 if (!cm->error_resilient_mode) {
1122 cm->coding_use_prev_mi = 1;
1123 cm->refresh_frame_context = vp9_rb_read_bit(rb);
1124 cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb);
1125 } else {
1126 cm->coding_use_prev_mi = 0;
1127 cm->refresh_frame_context = 0;
1128 cm->frame_parallel_decoding_mode = 1;
1129 }
1130
1131 // This flag will be overridden by the call to vp9_setup_past_independence
1132 // below, forcing the use of context 0 for those frame types.
1133 cm->frame_context_idx = vp9_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
1134
1135 if (frame_is_intra_only(cm) || cm->error_resilient_mode)
1136 vp9_setup_past_independence(cm);
1137
1138 setup_loopfilter(&cm->lf, rb);
1139 setup_quantization(cm, &pbi->mb, rb);
1140 setup_segmentation(&cm->seg, rb);
1141
1142 setup_tile_info(cm, rb);
1143 sz = vp9_rb_read_literal(rb, 16);
1144
1145 if (sz == 0)
1146 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1147 "Invalid header size");
1148
1149 return sz;
1150 }
1151
read_compressed_header(VP9D_COMP * pbi,const uint8_t * data,size_t partition_size)1152 static int read_compressed_header(VP9D_COMP *pbi, const uint8_t *data,
1153 size_t partition_size) {
1154 VP9_COMMON *const cm = &pbi->common;
1155 MACROBLOCKD *const xd = &pbi->mb;
1156 FRAME_CONTEXT *const fc = &cm->fc;
1157 vp9_reader r;
1158 int k;
1159
1160 if (vp9_reader_init(&r, data, partition_size))
1161 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1162 "Failed to allocate bool decoder 0");
1163
1164 cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
1165 if (cm->tx_mode == TX_MODE_SELECT)
1166 read_tx_mode_probs(&fc->tx_probs, &r);
1167 read_coef_probs(fc, cm->tx_mode, &r);
1168
1169 for (k = 0; k < SKIP_CONTEXTS; ++k)
1170 vp9_diff_update_prob(&r, &fc->skip_probs[k]);
1171
1172 if (!frame_is_intra_only(cm)) {
1173 nmv_context *const nmvc = &fc->nmvc;
1174 int i, j;
1175
1176 read_inter_mode_probs(fc, &r);
1177
1178 if (cm->interp_filter == SWITCHABLE)
1179 read_switchable_interp_probs(fc, &r);
1180
1181 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1182 vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
1183
1184 cm->reference_mode = read_frame_reference_mode(cm, &r);
1185 if (cm->reference_mode != SINGLE_REFERENCE)
1186 setup_compound_reference_mode(cm);
1187 read_frame_reference_mode_probs(cm, &r);
1188
1189 for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
1190 for (i = 0; i < INTRA_MODES - 1; ++i)
1191 vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
1192
1193 for (j = 0; j < PARTITION_CONTEXTS; ++j)
1194 for (i = 0; i < PARTITION_TYPES - 1; ++i)
1195 vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
1196
1197 read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
1198 }
1199
1200 return vp9_reader_has_error(&r);
1201 }
1202
vp9_init_dequantizer(VP9_COMMON * cm)1203 void vp9_init_dequantizer(VP9_COMMON *cm) {
1204 int q;
1205
1206 for (q = 0; q < QINDEX_RANGE; q++) {
1207 cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q);
1208 cm->y_dequant[q][1] = vp9_ac_quant(q, 0);
1209
1210 cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q);
1211 cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q);
1212 }
1213 }
1214
1215 #ifdef NDEBUG
1216 #define debug_check_frame_counts(cm) (void)0
1217 #else // !NDEBUG
1218 // Counts should only be incremented when frame_parallel_decoding_mode and
1219 // error_resilient_mode are disabled.
debug_check_frame_counts(const VP9_COMMON * const cm)1220 static void debug_check_frame_counts(const VP9_COMMON *const cm) {
1221 FRAME_COUNTS zero_counts;
1222 vp9_zero(zero_counts);
1223 assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode);
1224 assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
1225 sizeof(cm->counts.y_mode)));
1226 assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
1227 sizeof(cm->counts.uv_mode)));
1228 assert(!memcmp(cm->counts.partition, zero_counts.partition,
1229 sizeof(cm->counts.partition)));
1230 assert(!memcmp(cm->counts.coef, zero_counts.coef,
1231 sizeof(cm->counts.coef)));
1232 assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
1233 sizeof(cm->counts.eob_branch)));
1234 assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
1235 sizeof(cm->counts.switchable_interp)));
1236 assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
1237 sizeof(cm->counts.inter_mode)));
1238 assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
1239 sizeof(cm->counts.intra_inter)));
1240 assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
1241 sizeof(cm->counts.comp_inter)));
1242 assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
1243 sizeof(cm->counts.single_ref)));
1244 assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
1245 sizeof(cm->counts.comp_ref)));
1246 assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
1247 assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
1248 assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
1249 }
1250 #endif // NDEBUG
1251
vp9_decode_frame(VP9D_COMP * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end)1252 int vp9_decode_frame(VP9D_COMP *pbi,
1253 const uint8_t *data, const uint8_t *data_end,
1254 const uint8_t **p_data_end) {
1255 VP9_COMMON *const cm = &pbi->common;
1256 MACROBLOCKD *const xd = &pbi->mb;
1257
1258 struct vp9_read_bit_buffer rb = { data, data_end, 0, cm, error_handler };
1259 const size_t first_partition_size = read_uncompressed_header(pbi, &rb);
1260 const int keyframe = cm->frame_type == KEY_FRAME;
1261 const int tile_rows = 1 << cm->log2_tile_rows;
1262 const int tile_cols = 1 << cm->log2_tile_cols;
1263 YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
1264 xd->cur_buf = new_fb;
1265
1266 if (!first_partition_size) {
1267 // showing a frame directly
1268 *p_data_end = data + 1;
1269 return 0;
1270 }
1271
1272 if (!pbi->decoded_key_frame && !keyframe)
1273 return -1;
1274
1275 data += vp9_rb_bytes_read(&rb);
1276 if (!read_is_valid(data, first_partition_size, data_end))
1277 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1278 "Truncated packet or corrupt header length");
1279
1280 pbi->do_loopfilter_inline =
1281 (cm->log2_tile_rows | cm->log2_tile_cols) == 0 && cm->lf.filter_level;
1282 if (pbi->do_loopfilter_inline && pbi->lf_worker.data1 == NULL) {
1283 CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
1284 vpx_memalign(32, sizeof(LFWorkerData)));
1285 pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker;
1286 if (pbi->oxcf.max_threads > 1 && !vp9_worker_reset(&pbi->lf_worker)) {
1287 vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1288 "Loop filter thread creation failed");
1289 }
1290 }
1291
1292 init_macroblockd(cm, &pbi->mb);
1293
1294 if (cm->coding_use_prev_mi)
1295 set_prev_mi(cm);
1296 else
1297 cm->prev_mi = NULL;
1298
1299 setup_plane_dequants(cm, xd, cm->base_qindex);
1300 vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
1301
1302 cm->fc = cm->frame_contexts[cm->frame_context_idx];
1303 vp9_zero(cm->counts);
1304 vp9_zero(xd->dqcoeff);
1305
1306 xd->corrupted = 0;
1307 new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
1308
1309 // TODO(jzern): remove frame_parallel_decoding_mode restriction for
1310 // single-frame tile decoding.
1311 if (pbi->oxcf.max_threads > 1 && tile_rows == 1 && tile_cols > 1 &&
1312 cm->frame_parallel_decoding_mode) {
1313 *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
1314 } else {
1315 *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
1316 }
1317
1318 new_fb->corrupted |= xd->corrupted;
1319
1320 if (!pbi->decoded_key_frame) {
1321 if (keyframe && !new_fb->corrupted)
1322 pbi->decoded_key_frame = 1;
1323 else
1324 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1325 "A stream must start with a complete key frame");
1326 }
1327
1328 if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
1329 vp9_adapt_coef_probs(cm);
1330
1331 if (!frame_is_intra_only(cm)) {
1332 vp9_adapt_mode_probs(cm);
1333 vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
1334 }
1335 } else {
1336 debug_check_frame_counts(cm);
1337 }
1338
1339 if (cm->refresh_frame_context)
1340 cm->frame_contexts[cm->frame_context_idx] = cm->fc;
1341
1342 return 0;
1343 }
1344