1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 /*
7 ** Leap second handling from Bradley White.
8 ** POSIX-style TZ environment variable handling from Guy Harris.
9 */
10
11 /*LINTLIBRARY*/
12
13 #include "private.h"
14 #include "tzfile.h"
15 #include "fcntl.h"
16
17 #ifndef TZ_ABBR_MAX_LEN
18 #define TZ_ABBR_MAX_LEN 16
19 #endif /* !defined TZ_ABBR_MAX_LEN */
20
21 #ifndef TZ_ABBR_CHAR_SET
22 #define TZ_ABBR_CHAR_SET \
23 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
24 #endif /* !defined TZ_ABBR_CHAR_SET */
25
26 #ifndef TZ_ABBR_ERR_CHAR
27 #define TZ_ABBR_ERR_CHAR '_'
28 #endif /* !defined TZ_ABBR_ERR_CHAR */
29
30 /*
31 ** SunOS 4.1.1 headers lack O_BINARY.
32 */
33
34 #ifdef O_BINARY
35 #define OPEN_MODE (O_RDONLY | O_BINARY)
36 #endif /* defined O_BINARY */
37 #ifndef O_BINARY
38 #define OPEN_MODE O_RDONLY
39 #endif /* !defined O_BINARY */
40
41 #if 0
42 # define XLOG(xx) printf xx , fflush(stdout)
43 #else
44 # define XLOG(x) do{}while (0)
45 #endif
46
47 /* BEGIN android-added: thread-safety. */
48 #include <pthread.h>
49 static pthread_mutex_t _tzMutex = PTHREAD_MUTEX_INITIALIZER;
_tzLock(void)50 static inline void _tzLock(void) { pthread_mutex_lock(&_tzMutex); }
_tzUnlock(void)51 static inline void _tzUnlock(void) { pthread_mutex_unlock(&_tzMutex); }
52 /* END android-added */
53
54 #ifndef WILDABBR
55 /*
56 ** Someone might make incorrect use of a time zone abbreviation:
57 ** 1. They might reference tzname[0] before calling tzset (explicitly
58 ** or implicitly).
59 ** 2. They might reference tzname[1] before calling tzset (explicitly
60 ** or implicitly).
61 ** 3. They might reference tzname[1] after setting to a time zone
62 ** in which Daylight Saving Time is never observed.
63 ** 4. They might reference tzname[0] after setting to a time zone
64 ** in which Standard Time is never observed.
65 ** 5. They might reference tm.TM_ZONE after calling offtime.
66 ** What's best to do in the above cases is open to debate;
67 ** for now, we just set things up so that in any of the five cases
68 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
69 ** string "tzname[0] used before set", and similarly for the other cases.
70 ** And another: initialize tzname[0] to "ERA", with an explanation in the
71 ** manual page of what this "time zone abbreviation" means (doing this so
72 ** that tzname[0] has the "normal" length of three characters).
73 */
74 #define WILDABBR " "
75 #endif /* !defined WILDABBR */
76
77 static const char wildabbr[] = WILDABBR;
78
79 static const char gmt[] = "GMT";
80
81 /*
82 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
83 ** We default to US rules as of 1999-08-17.
84 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
85 ** implementation dependent; for historical reasons, US rules are a
86 ** common default.
87 */
88 #ifndef TZDEFRULESTRING
89 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
90 #endif /* !defined TZDEFDST */
91
92 struct ttinfo { /* time type information */
93 int_fast32_t tt_gmtoff; /* UT offset in seconds */
94 int tt_isdst; /* used to set tm_isdst */
95 int tt_abbrind; /* abbreviation list index */
96 int tt_ttisstd; /* TRUE if transition is std time */
97 int tt_ttisgmt; /* TRUE if transition is UT */
98 };
99
100 struct lsinfo { /* leap second information */
101 time_t ls_trans; /* transition time */
102 int_fast64_t ls_corr; /* correction to apply */
103 };
104
105 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
106
107 #ifdef TZNAME_MAX
108 #define MY_TZNAME_MAX TZNAME_MAX
109 #endif /* defined TZNAME_MAX */
110 #ifndef TZNAME_MAX
111 #define MY_TZNAME_MAX 255
112 #endif /* !defined TZNAME_MAX */
113
114 struct state {
115 int leapcnt;
116 int timecnt;
117 int typecnt;
118 int charcnt;
119 int goback;
120 int goahead;
121 time_t ats[TZ_MAX_TIMES];
122 unsigned char types[TZ_MAX_TIMES];
123 struct ttinfo ttis[TZ_MAX_TYPES];
124 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
125 (2 * (MY_TZNAME_MAX + 1)))];
126 struct lsinfo lsis[TZ_MAX_LEAPS];
127 int defaulttype; /* for early times or if no transitions */
128 };
129
130 struct rule {
131 int r_type; /* type of rule; see below */
132 int r_day; /* day number of rule */
133 int r_week; /* week number of rule */
134 int r_mon; /* month number of rule */
135 int_fast32_t r_time; /* transition time of rule */
136 };
137
138 #define JULIAN_DAY 0 /* Jn = Julian day */
139 #define DAY_OF_YEAR 1 /* n = day of year */
140 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
141
142 /*
143 ** Prototypes for static functions.
144 */
145
146 /* NOTE: all internal functions assume that _tzLock() was already called */
147
148 static int __bionic_open_tzdata(const char*, int*);
149 static int_fast32_t detzcode(const char * codep);
150 static int_fast64_t detzcode64(const char * codep);
151 static int differ_by_repeat(time_t t1, time_t t0);
152 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
153 static const char * getqzname(const char * strp, const int delim)
154 ATTRIBUTE_PURE;
155 static const char * getnum(const char * strp, int * nump, int min,
156 int max);
157 static const char * getsecs(const char * strp, int_fast32_t * secsp);
158 static const char * getoffset(const char * strp, int_fast32_t * offsetp);
159 static const char * getrule(const char * strp, struct rule * rulep);
160 static void gmtload(struct state * sp);
161 static struct tm * gmtsub(const time_t * timep, int_fast32_t offset,
162 struct tm * tmp, struct state * sp); // android-changed: added sp.
163 static struct tm * localsub(const time_t * timep, int_fast32_t offset,
164 struct tm * tmp, struct state * sp); // android-changed: added sp.
165 static int increment_overflow(int * number, int delta);
166 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
167 static int increment_overflow32(int_fast32_t * number, int delta);
168 static int increment_overflow_time(time_t *t, int_fast32_t delta);
169 static int normalize_overflow32(int_fast32_t * tensptr,
170 int * unitsptr, int base);
171 static int normalize_overflow(int * tensptr, int * unitsptr,
172 int base);
173 static void settzname(void);
174 static time_t time1(struct tm * tmp,
175 struct tm * (*funcp)(const time_t *,
176 int_fast32_t, struct tm *, struct state *), // android-changed: added state*.
177 int_fast32_t, struct state * sp); // android-changed: added sp.
178 static time_t time2(struct tm * tmp,
179 struct tm * (*funcp)(const time_t *,
180 int_fast32_t, struct tm*, struct state *), // android-changed: added state*.
181 int_fast32_t offset, int * okayp, struct state * sp); // android-changed: added sp.
182 static time_t time2sub(struct tm *tmp,
183 struct tm * (*funcp) (const time_t *,
184 int_fast32_t, struct tm*, struct state *), // android-changed: added state*.
185 int_fast32_t offset, int * okayp, int do_norm_secs, struct state * sp); // android-change: added sp.
186 static struct tm * timesub(const time_t * timep, int_fast32_t offset,
187 const struct state * sp, struct tm * tmp);
188 static int tmcomp(const struct tm * atmp,
189 const struct tm * btmp);
190 static int_fast32_t transtime(int year, const struct rule * rulep,
191 int_fast32_t offset)
192 ATTRIBUTE_PURE;
193 static int typesequiv(const struct state * sp, int a, int b);
194 static int tzload(const char * name, struct state * sp,
195 int doextend);
196 static int tzparse(const char * name, struct state * sp,
197 int lastditch);
198
199 #ifdef ALL_STATE
200 static struct state * lclptr;
201 static struct state * gmtptr;
202 #endif /* defined ALL_STATE */
203
204 #ifndef ALL_STATE
205 static struct state lclmem;
206 static struct state gmtmem;
207 #define lclptr (&lclmem)
208 #define gmtptr (&gmtmem)
209 #endif /* State Farm */
210
211 #ifndef TZ_STRLEN_MAX
212 #define TZ_STRLEN_MAX 255
213 #endif /* !defined TZ_STRLEN_MAX */
214
215 static char lcl_TZname[TZ_STRLEN_MAX + 1];
216 static int lcl_is_set;
217 static int gmt_is_set;
218
219 char * tzname[2] = {
220 (char *) wildabbr,
221 (char *) wildabbr
222 };
223
224 /*
225 ** Section 4.12.3 of X3.159-1989 requires that
226 ** Except for the strftime function, these functions [asctime,
227 ** ctime, gmtime, localtime] return values in one of two static
228 ** objects: a broken-down time structure and an array of char.
229 ** Thanks to Paul Eggert for noting this.
230 */
231
232 static struct tm tmGlobal;
233
234 #ifdef USG_COMPAT
235 long timezone = 0;
236 int daylight = 0;
237 #endif /* defined USG_COMPAT */
238
239 #ifdef ALTZONE
240 long altzone = 0;
241 #endif /* defined ALTZONE */
242
243 static int_fast32_t
detzcode(const char * const codep)244 detzcode(const char *const codep)
245 {
246 register int_fast32_t result;
247 register int i;
248
249 result = (codep[0] & 0x80) ? -1 : 0;
250 for (i = 0; i < 4; ++i)
251 result = (result << 8) | (codep[i] & 0xff);
252 return result;
253 }
254
255 static int_fast64_t
detzcode64(const char * const codep)256 detzcode64(const char *const codep)
257 {
258 register int_fast64_t result;
259 register int i;
260
261 result = (codep[0] & 0x80) ? -1 : 0;
262 for (i = 0; i < 8; ++i)
263 result = (result << 8) | (codep[i] & 0xff);
264 return result;
265 }
266
267 static void
settzname(void)268 settzname(void)
269 {
270 register struct state * const sp = lclptr;
271 register int i;
272
273 tzname[0] = tzname[1] = (char *) wildabbr;
274 #ifdef USG_COMPAT
275 daylight = 0;
276 timezone = 0;
277 #endif /* defined USG_COMPAT */
278 #ifdef ALTZONE
279 altzone = 0;
280 #endif /* defined ALTZONE */
281 if (sp == NULL) {
282 tzname[0] = tzname[1] = (char *) gmt;
283 return;
284 }
285 /*
286 ** And to get the latest zone names into tzname. . .
287 */
288 for (i = 0; i < sp->typecnt; ++i) {
289 register const struct ttinfo * const ttisp = &sp->ttis[i];
290
291 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
292 }
293 for (i = 0; i < sp->timecnt; ++i) {
294 register const struct ttinfo * const ttisp =
295 &sp->ttis[
296 sp->types[i]];
297
298 tzname[ttisp->tt_isdst] =
299 &sp->chars[ttisp->tt_abbrind];
300 #ifdef USG_COMPAT
301 if (ttisp->tt_isdst)
302 daylight = 1;
303 if (!ttisp->tt_isdst)
304 timezone = -(ttisp->tt_gmtoff);
305 #endif /* defined USG_COMPAT */
306 #ifdef ALTZONE
307 if (ttisp->tt_isdst)
308 altzone = -(ttisp->tt_gmtoff);
309 #endif /* defined ALTZONE */
310 }
311 /*
312 ** Finally, scrub the abbreviations.
313 ** First, replace bogus characters.
314 */
315 for (i = 0; i < sp->charcnt; ++i)
316 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
317 sp->chars[i] = TZ_ABBR_ERR_CHAR;
318 /*
319 ** Second, truncate long abbreviations.
320 */
321 for (i = 0; i < sp->typecnt; ++i) {
322 register const struct ttinfo * const ttisp = &sp->ttis[i];
323 register char * cp = &sp->chars[ttisp->tt_abbrind];
324
325 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
326 strcmp(cp, GRANDPARENTED) != 0)
327 *(cp + TZ_ABBR_MAX_LEN) = '\0';
328 }
329 }
330
331 static int
differ_by_repeat(const time_t t1 __unused,const time_t t0 __unused)332 differ_by_repeat(const time_t t1 __unused, const time_t t0 __unused)
333 {
334 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
335 return 0;
336 #if defined(__LP64__) // 32-bit Android only has a signed 32-bit time_t; 64-bit Android is fixed.
337 return t1 - t0 == SECSPERREPEAT;
338 #endif
339 }
340
341 static int
tzload(register const char * name,register struct state * const sp,register const int doextend)342 tzload(register const char* name, register struct state* const sp,
343 register const int doextend)
344 {
345 register const char * p;
346 register int i;
347 register int fid;
348 register int stored;
349 register int nread;
350 typedef union {
351 struct tzhead tzhead;
352 char buf[2 * sizeof(struct tzhead) +
353 2 * sizeof *sp +
354 4 * TZ_MAX_TIMES];
355 } u_t;
356 union local_storage {
357 /*
358 ** Section 4.9.1 of the C standard says that
359 ** "FILENAME_MAX expands to an integral constant expression
360 ** that is the size needed for an array of char large enough
361 ** to hold the longest file name string that the implementation
362 ** guarantees can be opened."
363 */
364 //char fullname[FILENAME_MAX + 1];
365
366 /* The main part of the storage for this function. */
367 struct {
368 u_t u;
369 struct state st;
370 } u;
371 };
372 //register char *fullname;
373 register u_t *up;
374 register union local_storage *lsp;
375 #ifdef ALL_STATE
376 lsp = malloc(sizeof *lsp);
377 if (!lsp)
378 return -1;
379 #else /* !defined ALL_STATE */
380 union local_storage ls;
381 lsp = &ls;
382 #endif /* !defined ALL_STATE */
383 //fullname = lsp->fullname;
384 up = &lsp->u.u;
385
386 sp->goback = sp->goahead = FALSE;
387
388 if (! name) {
389 name = TZDEFAULT;
390 if (! name)
391 goto oops;
392 }
393
394 int toread;
395 fid = __bionic_open_tzdata(name, &toread);
396 if (fid < 0)
397 goto oops;
398
399 nread = read(fid, up->buf, sizeof up->buf);
400 if (close(fid) < 0 || nread <= 0)
401 goto oops;
402 for (stored = 4; stored <= 8; stored *= 2) {
403 int ttisstdcnt;
404 int ttisgmtcnt;
405 int timecnt;
406
407 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
408 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
409 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
410 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
411 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
412 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
413 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
414 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
415 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
416 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
417 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
418 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
419 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
420 goto oops;
421 if (nread - (p - up->buf) <
422 sp->timecnt * stored + /* ats */
423 sp->timecnt + /* types */
424 sp->typecnt * 6 + /* ttinfos */
425 sp->charcnt + /* chars */
426 sp->leapcnt * (stored + 4) + /* lsinfos */
427 ttisstdcnt + /* ttisstds */
428 ttisgmtcnt) /* ttisgmts */
429 goto oops;
430 timecnt = 0;
431 for (i = 0; i < sp->timecnt; ++i) {
432 int_fast64_t at
433 = stored == 4 ? detzcode(p) : detzcode64(p);
434 sp->types[i] = ((TYPE_SIGNED(time_t)
435 ? time_t_min <= at
436 : 0 <= at)
437 && at <= time_t_max);
438 if (sp->types[i]) {
439 if (i && !timecnt && at != time_t_min) {
440 /*
441 ** Keep the earlier record, but tweak
442 ** it so that it starts with the
443 ** minimum time_t value.
444 */
445 sp->types[i - 1] = 1;
446 sp->ats[timecnt++] = time_t_min;
447 }
448 sp->ats[timecnt++] = at;
449 }
450 p += stored;
451 }
452 timecnt = 0;
453 for (i = 0; i < sp->timecnt; ++i) {
454 unsigned char typ = *p++;
455 if (sp->typecnt <= typ)
456 goto oops;
457 if (sp->types[i])
458 sp->types[timecnt++] = typ;
459 }
460 sp->timecnt = timecnt;
461 for (i = 0; i < sp->typecnt; ++i) {
462 register struct ttinfo * ttisp;
463
464 ttisp = &sp->ttis[i];
465 ttisp->tt_gmtoff = detzcode(p);
466 p += 4;
467 ttisp->tt_isdst = (unsigned char) *p++;
468 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
469 goto oops;
470 ttisp->tt_abbrind = (unsigned char) *p++;
471 if (ttisp->tt_abbrind < 0 ||
472 ttisp->tt_abbrind > sp->charcnt)
473 goto oops;
474 }
475 for (i = 0; i < sp->charcnt; ++i)
476 sp->chars[i] = *p++;
477 sp->chars[i] = '\0'; /* ensure '\0' at end */
478 for (i = 0; i < sp->leapcnt; ++i) {
479 register struct lsinfo * lsisp;
480
481 lsisp = &sp->lsis[i];
482 lsisp->ls_trans = (stored == 4) ?
483 detzcode(p) : detzcode64(p);
484 p += stored;
485 lsisp->ls_corr = detzcode(p);
486 p += 4;
487 }
488 for (i = 0; i < sp->typecnt; ++i) {
489 register struct ttinfo * ttisp;
490
491 ttisp = &sp->ttis[i];
492 if (ttisstdcnt == 0)
493 ttisp->tt_ttisstd = FALSE;
494 else {
495 ttisp->tt_ttisstd = *p++;
496 if (ttisp->tt_ttisstd != TRUE &&
497 ttisp->tt_ttisstd != FALSE)
498 goto oops;
499 }
500 }
501 for (i = 0; i < sp->typecnt; ++i) {
502 register struct ttinfo * ttisp;
503
504 ttisp = &sp->ttis[i];
505 if (ttisgmtcnt == 0)
506 ttisp->tt_ttisgmt = FALSE;
507 else {
508 ttisp->tt_ttisgmt = *p++;
509 if (ttisp->tt_ttisgmt != TRUE &&
510 ttisp->tt_ttisgmt != FALSE)
511 goto oops;
512 }
513 }
514 /*
515 ** If this is an old file, we're done.
516 */
517 if (up->tzhead.tzh_version[0] == '\0')
518 break;
519 nread -= p - up->buf;
520 for (i = 0; i < nread; ++i)
521 up->buf[i] = p[i];
522 /*
523 ** If this is a signed narrow time_t system, we're done.
524 */
525 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
526 break;
527 }
528 if (doextend && nread > 2 &&
529 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
530 sp->typecnt + 2 <= TZ_MAX_TYPES) {
531 struct state *ts = &lsp->u.st;
532 register int result;
533
534 up->buf[nread - 1] = '\0';
535 result = tzparse(&up->buf[1], ts, FALSE);
536 if (result == 0 && ts->typecnt == 2 &&
537 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
538 for (i = 0; i < 2; ++i)
539 ts->ttis[i].tt_abbrind +=
540 sp->charcnt;
541 for (i = 0; i < ts->charcnt; ++i)
542 sp->chars[sp->charcnt++] =
543 ts->chars[i];
544 i = 0;
545 while (i < ts->timecnt &&
546 ts->ats[i] <=
547 sp->ats[sp->timecnt - 1])
548 ++i;
549 while (i < ts->timecnt &&
550 sp->timecnt < TZ_MAX_TIMES) {
551 sp->ats[sp->timecnt] =
552 ts->ats[i];
553 sp->types[sp->timecnt] =
554 sp->typecnt +
555 ts->types[i];
556 ++sp->timecnt;
557 ++i;
558 }
559 sp->ttis[sp->typecnt++] = ts->ttis[0];
560 sp->ttis[sp->typecnt++] = ts->ttis[1];
561 }
562 }
563 if (sp->timecnt > 1) {
564 for (i = 1; i < sp->timecnt; ++i)
565 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
566 differ_by_repeat(sp->ats[i], sp->ats[0])) {
567 sp->goback = TRUE;
568 break;
569 }
570 for (i = sp->timecnt - 2; i >= 0; --i)
571 if (typesequiv(sp, sp->types[sp->timecnt - 1],
572 sp->types[i]) &&
573 differ_by_repeat(sp->ats[sp->timecnt - 1],
574 sp->ats[i])) {
575 sp->goahead = TRUE;
576 break;
577 }
578 }
579 /*
580 ** If type 0 is is unused in transitions,
581 ** it's the type to use for early times.
582 */
583 for (i = 0; i < sp->typecnt; ++i)
584 if (sp->types[i] == 0)
585 break;
586 i = (i >= sp->typecnt) ? 0 : -1;
587 /*
588 ** Absent the above,
589 ** if there are transition times
590 ** and the first transition is to a daylight time
591 ** find the standard type less than and closest to
592 ** the type of the first transition.
593 */
594 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
595 i = sp->types[0];
596 while (--i >= 0)
597 if (!sp->ttis[i].tt_isdst)
598 break;
599 }
600 /*
601 ** If no result yet, find the first standard type.
602 ** If there is none, punt to type zero.
603 */
604 if (i < 0) {
605 i = 0;
606 while (sp->ttis[i].tt_isdst)
607 if (++i >= sp->typecnt) {
608 i = 0;
609 break;
610 }
611 }
612 sp->defaulttype = i;
613 #ifdef ALL_STATE
614 free(up);
615 #endif /* defined ALL_STATE */
616 return 0;
617 oops:
618 #ifdef ALL_STATE
619 free(up);
620 #endif /* defined ALL_STATE */
621 return -1;
622 }
623
624 static int
typesequiv(const struct state * const sp,const int a,const int b)625 typesequiv(const struct state *const sp, const int a, const int b)
626 {
627 register int result;
628
629 if (sp == NULL ||
630 a < 0 || a >= sp->typecnt ||
631 b < 0 || b >= sp->typecnt)
632 result = FALSE;
633 else {
634 register const struct ttinfo * ap = &sp->ttis[a];
635 register const struct ttinfo * bp = &sp->ttis[b];
636 result = ap->tt_gmtoff == bp->tt_gmtoff &&
637 ap->tt_isdst == bp->tt_isdst &&
638 ap->tt_ttisstd == bp->tt_ttisstd &&
639 ap->tt_ttisgmt == bp->tt_ttisgmt &&
640 strcmp(&sp->chars[ap->tt_abbrind],
641 &sp->chars[bp->tt_abbrind]) == 0;
642 }
643 return result;
644 }
645
646 static const int mon_lengths[2][MONSPERYEAR] = {
647 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
648 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
649 };
650
651 static const int year_lengths[2] = {
652 DAYSPERNYEAR, DAYSPERLYEAR
653 };
654
655 /*
656 ** Given a pointer into a time zone string, scan until a character that is not
657 ** a valid character in a zone name is found. Return a pointer to that
658 ** character.
659 */
660
661 static const char *
getzname(register const char * strp)662 getzname(register const char * strp)
663 {
664 register char c;
665
666 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
667 c != '+')
668 ++strp;
669 return strp;
670 }
671
672 /*
673 ** Given a pointer into an extended time zone string, scan until the ending
674 ** delimiter of the zone name is located. Return a pointer to the delimiter.
675 **
676 ** As with getzname above, the legal character set is actually quite
677 ** restricted, with other characters producing undefined results.
678 ** We don't do any checking here; checking is done later in common-case code.
679 */
680
681 static const char *
getqzname(register const char * strp,const int delim)682 getqzname(register const char *strp, const int delim)
683 {
684 register int c;
685
686 while ((c = *strp) != '\0' && c != delim)
687 ++strp;
688 return strp;
689 }
690
691 /*
692 ** Given a pointer into a time zone string, extract a number from that string.
693 ** Check that the number is within a specified range; if it is not, return
694 ** NULL.
695 ** Otherwise, return a pointer to the first character not part of the number.
696 */
697
698 static const char *
getnum(register const char * strp,int * const nump,const int min,const int max)699 getnum(register const char * strp, int * const nump, const int min, const int max)
700 {
701 register char c;
702 register int num;
703
704 if (strp == NULL || !is_digit(c = *strp))
705 return NULL;
706 num = 0;
707 do {
708 num = num * 10 + (c - '0');
709 if (num > max)
710 return NULL; /* illegal value */
711 c = *++strp;
712 } while (is_digit(c));
713 if (num < min)
714 return NULL; /* illegal value */
715 *nump = num;
716 return strp;
717 }
718
719 /*
720 ** Given a pointer into a time zone string, extract a number of seconds,
721 ** in hh[:mm[:ss]] form, from the string.
722 ** If any error occurs, return NULL.
723 ** Otherwise, return a pointer to the first character not part of the number
724 ** of seconds.
725 */
726
727 static const char *
getsecs(register const char * strp,int_fast32_t * const secsp)728 getsecs(register const char *strp, int_fast32_t *const secsp)
729 {
730 int num;
731
732 /*
733 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
734 ** "M10.4.6/26", which does not conform to Posix,
735 ** but which specifies the equivalent of
736 ** "02:00 on the first Sunday on or after 23 Oct".
737 */
738 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
739 if (strp == NULL)
740 return NULL;
741 *secsp = num * (int_fast32_t) SECSPERHOUR;
742 if (*strp == ':') {
743 ++strp;
744 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
745 if (strp == NULL)
746 return NULL;
747 *secsp += num * SECSPERMIN;
748 if (*strp == ':') {
749 ++strp;
750 /* 'SECSPERMIN' allows for leap seconds. */
751 strp = getnum(strp, &num, 0, SECSPERMIN);
752 if (strp == NULL)
753 return NULL;
754 *secsp += num;
755 }
756 }
757 return strp;
758 }
759
760 /*
761 ** Given a pointer into a time zone string, extract an offset, in
762 ** [+-]hh[:mm[:ss]] form, from the string.
763 ** If any error occurs, return NULL.
764 ** Otherwise, return a pointer to the first character not part of the time.
765 */
766
767 static const char *
getoffset(register const char * strp,int_fast32_t * const offsetp)768 getoffset(register const char *strp, int_fast32_t *const offsetp)
769 {
770 register int neg = 0;
771
772 if (*strp == '-') {
773 neg = 1;
774 ++strp;
775 } else if (*strp == '+')
776 ++strp;
777 strp = getsecs(strp, offsetp);
778 if (strp == NULL)
779 return NULL; /* illegal time */
780 if (neg)
781 *offsetp = -*offsetp;
782 return strp;
783 }
784
785 /*
786 ** Given a pointer into a time zone string, extract a rule in the form
787 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
788 ** If a valid rule is not found, return NULL.
789 ** Otherwise, return a pointer to the first character not part of the rule.
790 */
791
792 static const char *
getrule(const char * strp,register struct rule * const rulep)793 getrule(const char * strp, register struct rule * const rulep)
794 {
795 if (*strp == 'J') {
796 /*
797 ** Julian day.
798 */
799 rulep->r_type = JULIAN_DAY;
800 ++strp;
801 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
802 } else if (*strp == 'M') {
803 /*
804 ** Month, week, day.
805 */
806 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
807 ++strp;
808 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
809 if (strp == NULL)
810 return NULL;
811 if (*strp++ != '.')
812 return NULL;
813 strp = getnum(strp, &rulep->r_week, 1, 5);
814 if (strp == NULL)
815 return NULL;
816 if (*strp++ != '.')
817 return NULL;
818 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
819 } else if (is_digit(*strp)) {
820 /*
821 ** Day of year.
822 */
823 rulep->r_type = DAY_OF_YEAR;
824 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
825 } else return NULL; /* invalid format */
826 if (strp == NULL)
827 return NULL;
828 if (*strp == '/') {
829 /*
830 ** Time specified.
831 */
832 ++strp;
833 strp = getoffset(strp, &rulep->r_time);
834 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
835 return strp;
836 }
837
838 /*
839 ** Given a year, a rule, and the offset from UT at the time that rule takes
840 ** effect, calculate the year-relative time that rule takes effect.
841 */
842
843 static int_fast32_t
transtime(const int year,register const struct rule * const rulep,const int_fast32_t offset)844 transtime(const int year, register const struct rule *const rulep,
845 const int_fast32_t offset)
846 {
847 register int leapyear;
848 register int_fast32_t value;
849 register int i;
850 int d, m1, yy0, yy1, yy2, dow;
851
852 INITIALIZE(value);
853 leapyear = isleap(year);
854 switch (rulep->r_type) {
855
856 case JULIAN_DAY:
857 /*
858 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
859 ** years.
860 ** In non-leap years, or if the day number is 59 or less, just
861 ** add SECSPERDAY times the day number-1 to the time of
862 ** January 1, midnight, to get the day.
863 */
864 value = (rulep->r_day - 1) * SECSPERDAY;
865 if (leapyear && rulep->r_day >= 60)
866 value += SECSPERDAY;
867 break;
868
869 case DAY_OF_YEAR:
870 /*
871 ** n - day of year.
872 ** Just add SECSPERDAY times the day number to the time of
873 ** January 1, midnight, to get the day.
874 */
875 value = rulep->r_day * SECSPERDAY;
876 break;
877
878 case MONTH_NTH_DAY_OF_WEEK:
879 /*
880 ** Mm.n.d - nth "dth day" of month m.
881 */
882
883 /*
884 ** Use Zeller's Congruence to get day-of-week of first day of
885 ** month.
886 */
887 m1 = (rulep->r_mon + 9) % 12 + 1;
888 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
889 yy1 = yy0 / 100;
890 yy2 = yy0 % 100;
891 dow = ((26 * m1 - 2) / 10 +
892 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
893 if (dow < 0)
894 dow += DAYSPERWEEK;
895
896 /*
897 ** "dow" is the day-of-week of the first day of the month. Get
898 ** the day-of-month (zero-origin) of the first "dow" day of the
899 ** month.
900 */
901 d = rulep->r_day - dow;
902 if (d < 0)
903 d += DAYSPERWEEK;
904 for (i = 1; i < rulep->r_week; ++i) {
905 if (d + DAYSPERWEEK >=
906 mon_lengths[leapyear][rulep->r_mon - 1])
907 break;
908 d += DAYSPERWEEK;
909 }
910
911 /*
912 ** "d" is the day-of-month (zero-origin) of the day we want.
913 */
914 value = d * SECSPERDAY;
915 for (i = 0; i < rulep->r_mon - 1; ++i)
916 value += mon_lengths[leapyear][i] * SECSPERDAY;
917 break;
918 }
919
920 /*
921 ** "value" is the year-relative time of 00:00:00 UT on the day in
922 ** question. To get the year-relative time of the specified local
923 ** time on that day, add the transition time and the current offset
924 ** from UT.
925 */
926 return value + rulep->r_time + offset;
927 }
928
929 /*
930 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
931 ** appropriate.
932 */
933
934 static int
tzparse(const char * name,register struct state * const sp,const int lastditch)935 tzparse(const char * name, register struct state * const sp,
936 const int lastditch)
937 {
938 const char * stdname;
939 const char * dstname;
940 size_t stdlen;
941 size_t dstlen;
942 int_fast32_t stdoffset;
943 int_fast32_t dstoffset;
944 register char * cp;
945 register int load_result;
946 static struct ttinfo zttinfo;
947
948 stdname = name;
949 if (lastditch) {
950 stdlen = strlen(name); /* length of standard zone name */
951 name += stdlen;
952 if (stdlen >= sizeof sp->chars)
953 stdlen = (sizeof sp->chars) - 1;
954 stdoffset = 0;
955 } else {
956 if (*name == '<') {
957 name++;
958 stdname = name;
959 name = getqzname(name, '>');
960 if (*name != '>')
961 return (-1);
962 stdlen = name - stdname;
963 name++;
964 } else {
965 name = getzname(name);
966 stdlen = name - stdname;
967 }
968 if (*name == '\0')
969 return -1;
970 name = getoffset(name, &stdoffset);
971 if (name == NULL)
972 return -1;
973 }
974 load_result = tzload(TZDEFRULES, sp, FALSE);
975 if (load_result != 0)
976 sp->leapcnt = 0; /* so, we're off a little */
977 if (*name != '\0') {
978 if (*name == '<') {
979 dstname = ++name;
980 name = getqzname(name, '>');
981 if (*name != '>')
982 return -1;
983 dstlen = name - dstname;
984 name++;
985 } else {
986 dstname = name;
987 name = getzname(name);
988 dstlen = name - dstname; /* length of DST zone name */
989 }
990 if (*name != '\0' && *name != ',' && *name != ';') {
991 name = getoffset(name, &dstoffset);
992 if (name == NULL)
993 return -1;
994 } else dstoffset = stdoffset - SECSPERHOUR;
995 if (*name == '\0' && load_result != 0)
996 name = TZDEFRULESTRING;
997 if (*name == ',' || *name == ';') {
998 struct rule start;
999 struct rule end;
1000 register int year;
1001 register int yearlim;
1002 register int timecnt;
1003 time_t janfirst;
1004
1005 ++name;
1006 if ((name = getrule(name, &start)) == NULL)
1007 return -1;
1008 if (*name++ != ',')
1009 return -1;
1010 if ((name = getrule(name, &end)) == NULL)
1011 return -1;
1012 if (*name != '\0')
1013 return -1;
1014 sp->typecnt = 2; /* standard time and DST */
1015 /*
1016 ** Two transitions per year, from EPOCH_YEAR forward.
1017 */
1018 sp->ttis[0] = sp->ttis[1] = zttinfo;
1019 sp->ttis[0].tt_gmtoff = -dstoffset;
1020 sp->ttis[0].tt_isdst = 1;
1021 sp->ttis[0].tt_abbrind = stdlen + 1;
1022 sp->ttis[1].tt_gmtoff = -stdoffset;
1023 sp->ttis[1].tt_isdst = 0;
1024 sp->ttis[1].tt_abbrind = 0;
1025 sp->defaulttype = 0;
1026 timecnt = 0;
1027 janfirst = 0;
1028 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1029 for (year = EPOCH_YEAR; year < yearlim; year++) {
1030 int_fast32_t
1031 starttime = transtime(year, &start, stdoffset),
1032 endtime = transtime(year, &end, dstoffset);
1033 int_fast32_t
1034 yearsecs = (year_lengths[isleap(year)]
1035 * SECSPERDAY);
1036 int reversed = endtime < starttime;
1037 if (reversed) {
1038 int_fast32_t swap = starttime;
1039 starttime = endtime;
1040 endtime = swap;
1041 }
1042 if (reversed
1043 || (starttime < endtime
1044 && (endtime - starttime
1045 < (yearsecs
1046 + (stdoffset - dstoffset))))) {
1047 if (TZ_MAX_TIMES - 2 < timecnt)
1048 break;
1049 yearlim = year + YEARSPERREPEAT + 1;
1050 sp->ats[timecnt] = janfirst;
1051 if (increment_overflow_time
1052 (&sp->ats[timecnt], starttime))
1053 break;
1054 sp->types[timecnt++] = reversed;
1055 sp->ats[timecnt] = janfirst;
1056 if (increment_overflow_time
1057 (&sp->ats[timecnt], endtime))
1058 break;
1059 sp->types[timecnt++] = !reversed;
1060 }
1061 if (increment_overflow_time(&janfirst, yearsecs))
1062 break;
1063 }
1064 sp->timecnt = timecnt;
1065 if (!timecnt)
1066 sp->typecnt = 1; /* Perpetual DST. */
1067 } else {
1068 register int_fast32_t theirstdoffset;
1069 register int_fast32_t theirdstoffset;
1070 register int_fast32_t theiroffset;
1071 register int isdst;
1072 register int i;
1073 register int j;
1074
1075 if (*name != '\0')
1076 return -1;
1077 /*
1078 ** Initial values of theirstdoffset and theirdstoffset.
1079 */
1080 theirstdoffset = 0;
1081 for (i = 0; i < sp->timecnt; ++i) {
1082 j = sp->types[i];
1083 if (!sp->ttis[j].tt_isdst) {
1084 theirstdoffset =
1085 -sp->ttis[j].tt_gmtoff;
1086 break;
1087 }
1088 }
1089 theirdstoffset = 0;
1090 for (i = 0; i < sp->timecnt; ++i) {
1091 j = sp->types[i];
1092 if (sp->ttis[j].tt_isdst) {
1093 theirdstoffset =
1094 -sp->ttis[j].tt_gmtoff;
1095 break;
1096 }
1097 }
1098 /*
1099 ** Initially we're assumed to be in standard time.
1100 */
1101 isdst = FALSE;
1102 theiroffset = theirstdoffset;
1103 /*
1104 ** Now juggle transition times and types
1105 ** tracking offsets as you do.
1106 */
1107 for (i = 0; i < sp->timecnt; ++i) {
1108 j = sp->types[i];
1109 sp->types[i] = sp->ttis[j].tt_isdst;
1110 if (sp->ttis[j].tt_ttisgmt) {
1111 /* No adjustment to transition time */
1112 } else {
1113 /*
1114 ** If summer time is in effect, and the
1115 ** transition time was not specified as
1116 ** standard time, add the summer time
1117 ** offset to the transition time;
1118 ** otherwise, add the standard time
1119 ** offset to the transition time.
1120 */
1121 /*
1122 ** Transitions from DST to DDST
1123 ** will effectively disappear since
1124 ** POSIX provides for only one DST
1125 ** offset.
1126 */
1127 if (isdst && !sp->ttis[j].tt_ttisstd) {
1128 sp->ats[i] += dstoffset -
1129 theirdstoffset;
1130 } else {
1131 sp->ats[i] += stdoffset -
1132 theirstdoffset;
1133 }
1134 }
1135 theiroffset = -sp->ttis[j].tt_gmtoff;
1136 if (sp->ttis[j].tt_isdst)
1137 theirdstoffset = theiroffset;
1138 else theirstdoffset = theiroffset;
1139 }
1140 /*
1141 ** Finally, fill in ttis.
1142 */
1143 sp->ttis[0] = sp->ttis[1] = zttinfo;
1144 sp->ttis[0].tt_gmtoff = -stdoffset;
1145 sp->ttis[0].tt_isdst = FALSE;
1146 sp->ttis[0].tt_abbrind = 0;
1147 sp->ttis[1].tt_gmtoff = -dstoffset;
1148 sp->ttis[1].tt_isdst = TRUE;
1149 sp->ttis[1].tt_abbrind = stdlen + 1;
1150 sp->typecnt = 2;
1151 sp->defaulttype = 0;
1152 }
1153 } else {
1154 dstlen = 0;
1155 sp->typecnt = 1; /* only standard time */
1156 sp->timecnt = 0;
1157 sp->ttis[0] = zttinfo;
1158 sp->ttis[0].tt_gmtoff = -stdoffset;
1159 sp->ttis[0].tt_isdst = 0;
1160 sp->ttis[0].tt_abbrind = 0;
1161 sp->defaulttype = 0;
1162 }
1163 sp->charcnt = stdlen + 1;
1164 if (dstlen != 0)
1165 sp->charcnt += dstlen + 1;
1166 if ((size_t) sp->charcnt > sizeof sp->chars)
1167 return -1;
1168 cp = sp->chars;
1169 (void) strncpy(cp, stdname, stdlen);
1170 cp += stdlen;
1171 *cp++ = '\0';
1172 if (dstlen != 0) {
1173 (void) strncpy(cp, dstname, dstlen);
1174 *(cp + dstlen) = '\0';
1175 }
1176 return 0;
1177 }
1178
1179 static void
gmtload(struct state * const sp)1180 gmtload(struct state * const sp)
1181 {
1182 if (tzload(gmt, sp, TRUE) != 0)
1183 (void) tzparse(gmt, sp, TRUE);
1184 }
1185
1186 #ifndef STD_INSPIRED
1187 /*
1188 ** A non-static declaration of tzsetwall in a system header file
1189 ** may cause a warning about this upcoming static declaration...
1190 */
1191 static
1192 #endif /* !defined STD_INSPIRED */
1193 void
tzsetwall(void)1194 tzsetwall(void)
1195 {
1196 if (lcl_is_set < 0)
1197 return;
1198 lcl_is_set = -1;
1199
1200 #ifdef ALL_STATE
1201 if (lclptr == NULL) {
1202 lclptr = malloc(sizeof *lclptr);
1203 if (lclptr == NULL) {
1204 settzname(); /* all we can do */
1205 return;
1206 }
1207 }
1208 #endif /* defined ALL_STATE */
1209 if (tzload(NULL, lclptr, TRUE) != 0)
1210 gmtload(lclptr);
1211 settzname();
1212 }
1213
1214 #include <sys/system_properties.h> // For __system_property_get.
1215
1216 static void
tzset_locked(void)1217 tzset_locked(void)
1218 {
1219 register const char * name;
1220
1221 name = getenv("TZ");
1222
1223 // try the "persist.sys.timezone" system property first
1224 static char buf[PROP_VALUE_MAX];
1225 if (name == NULL && __system_property_get("persist.sys.timezone", buf) > 0) {
1226 name = buf;
1227 }
1228
1229 if (name == NULL) {
1230 tzsetwall();
1231 return;
1232 }
1233
1234 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1235 return;
1236 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1237 if (lcl_is_set)
1238 (void) strcpy(lcl_TZname, name);
1239
1240 #ifdef ALL_STATE
1241 if (lclptr == NULL) {
1242 lclptr = malloc(sizeof *lclptr);
1243 if (lclptr == NULL) {
1244 settzname(); /* all we can do */
1245 return;
1246 }
1247 }
1248 #endif /* defined ALL_STATE */
1249 if (*name == '\0') {
1250 /*
1251 ** User wants it fast rather than right.
1252 */
1253 lclptr->leapcnt = 0; /* so, we're off a little */
1254 lclptr->timecnt = 0;
1255 lclptr->typecnt = 0;
1256 lclptr->ttis[0].tt_isdst = 0;
1257 lclptr->ttis[0].tt_gmtoff = 0;
1258 lclptr->ttis[0].tt_abbrind = 0;
1259 (void) strcpy(lclptr->chars, gmt);
1260 } else if (tzload(name, lclptr, TRUE) != 0)
1261 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1262 (void) gmtload(lclptr);
1263 settzname();
1264 }
1265
1266 void
tzset(void)1267 tzset(void)
1268 {
1269 _tzLock();
1270 tzset_locked();
1271 _tzUnlock();
1272 }
1273
1274 /*
1275 ** The easy way to behave "as if no library function calls" localtime
1276 ** is to not call it--so we drop its guts into "localsub", which can be
1277 ** freely called. (And no, the PANS doesn't require the above behavior--
1278 ** but it *is* desirable.)
1279 **
1280 ** The unused offset argument is for the benefit of mktime variants.
1281 */
1282
1283 /*ARGSUSED*/
1284 static struct tm *
localsub(const time_t * const timep,const int_fast32_t offset,struct tm * const tmp,struct state * sp)1285 localsub(const time_t * const timep, const int_fast32_t offset,
1286 struct tm * const tmp, struct state * sp) // android-changed: added sp.
1287 {
1288 register const struct ttinfo * ttisp;
1289 register int i;
1290 register struct tm * result;
1291 const time_t t = *timep;
1292
1293 // BEGIN android-changed: support user-supplied sp.
1294 if (sp == NULL) {
1295 sp = lclptr;
1296 }
1297 // END android-changed
1298 if (sp == NULL)
1299 return gmtsub(timep, offset, tmp, sp); // android-changed: added sp.
1300 if ((sp->goback && t < sp->ats[0]) ||
1301 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1302 time_t newt = t;
1303 register time_t seconds;
1304 register time_t years;
1305
1306 if (t < sp->ats[0])
1307 seconds = sp->ats[0] - t;
1308 else seconds = t - sp->ats[sp->timecnt - 1];
1309 --seconds;
1310 years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
1311 seconds = years * AVGSECSPERYEAR;
1312 if (t < sp->ats[0])
1313 newt += seconds;
1314 else newt -= seconds;
1315 if (newt < sp->ats[0] ||
1316 newt > sp->ats[sp->timecnt - 1])
1317 return NULL; /* "cannot happen" */
1318 result = localsub(&newt, offset, tmp, sp); // android-changed: added sp.
1319 if (result == tmp) {
1320 register time_t newy;
1321
1322 newy = tmp->tm_year;
1323 if (t < sp->ats[0])
1324 newy -= years;
1325 else newy += years;
1326 tmp->tm_year = newy;
1327 if (tmp->tm_year != newy)
1328 return NULL;
1329 }
1330 return result;
1331 }
1332 if (sp->timecnt == 0 || t < sp->ats[0]) {
1333 i = sp->defaulttype;
1334 } else {
1335 register int lo = 1;
1336 register int hi = sp->timecnt;
1337
1338 while (lo < hi) {
1339 register int mid = (lo + hi) >> 1;
1340
1341 if (t < sp->ats[mid])
1342 hi = mid;
1343 else lo = mid + 1;
1344 }
1345 i = (int) sp->types[lo - 1];
1346 }
1347 ttisp = &sp->ttis[i];
1348 /*
1349 ** To get (wrong) behavior that's compatible with System V Release 2.0
1350 ** you'd replace the statement below with
1351 ** t += ttisp->tt_gmtoff;
1352 ** timesub(&t, 0L, sp, tmp);
1353 */
1354 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1355 tmp->tm_isdst = ttisp->tt_isdst;
1356 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1357 #ifdef TM_ZONE
1358 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1359 #endif /* defined TM_ZONE */
1360 return result;
1361 }
1362
1363 struct tm *
localtime(const time_t * const timep)1364 localtime(const time_t * const timep)
1365 {
1366 return localtime_r(timep, &tmGlobal);
1367 }
1368
1369 /*
1370 ** Re-entrant version of localtime.
1371 */
1372
1373 struct tm *
localtime_r(const time_t * const timep,struct tm * tmp)1374 localtime_r(const time_t * const timep, struct tm * tmp)
1375 {
1376 struct tm* result;
1377
1378 _tzLock();
1379 tzset_locked();
1380 result = localsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
1381 _tzUnlock();
1382
1383 return result;
1384 }
1385
1386 /*
1387 ** gmtsub is to gmtime as localsub is to localtime.
1388 */
1389
1390 static struct tm *
gmtsub(const time_t * const timep,const int_fast32_t offset,struct tm * const tmp,struct state * sp __unused)1391 gmtsub(const time_t * const timep, const int_fast32_t offset,
1392 struct tm *const tmp, struct state * sp __unused) // android-changed: added sp.
1393 {
1394 register struct tm * result;
1395
1396 if (!gmt_is_set) {
1397 #ifdef ALL_STATE
1398 gmtptr = malloc(sizeof *gmtptr);
1399 gmt_is_set = gmtptr != NULL;
1400 #else
1401 gmt_is_set = TRUE;
1402 #endif /* defined ALL_STATE */
1403 if (gmt_is_set)
1404 gmtload(gmtptr);
1405 }
1406 result = timesub(timep, offset, gmtptr, tmp);
1407 #ifdef TM_ZONE
1408 /*
1409 ** Could get fancy here and deliver something such as
1410 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1411 ** but this is no time for a treasure hunt.
1412 */
1413 tmp->TM_ZONE = offset ? wildabbr : gmtptr ? gmtptr->chars : gmt;
1414 #endif /* defined TM_ZONE */
1415 return result;
1416 }
1417
1418 struct tm *
gmtime(const time_t * const timep)1419 gmtime(const time_t * const timep)
1420 {
1421 return gmtime_r(timep, &tmGlobal);
1422 }
1423
1424 /*
1425 * Re-entrant version of gmtime.
1426 */
1427
1428 struct tm *
gmtime_r(const time_t * const timep,struct tm * tmp)1429 gmtime_r(const time_t * const timep, struct tm * tmp)
1430 {
1431 struct tm* result;
1432
1433 _tzLock();
1434 result = gmtsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
1435 _tzUnlock();
1436
1437 return result;
1438 }
1439
1440 #ifdef STD_INSPIRED
1441
1442 struct tm *
offtime(const time_t * const timep,const long offset)1443 offtime(const time_t *const timep, const long offset)
1444 {
1445 return gmtsub(timep, offset, &tmGlobal, NULL); // android-changed: extra parameter.
1446 }
1447
1448 #endif /* defined STD_INSPIRED */
1449
1450 /*
1451 ** Return the number of leap years through the end of the given year
1452 ** where, to make the math easy, the answer for year zero is defined as zero.
1453 */
1454
1455 static int
leaps_thru_end_of(register const int y)1456 leaps_thru_end_of(register const int y)
1457 {
1458 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1459 -(leaps_thru_end_of(-(y + 1)) + 1);
1460 }
1461
1462 static struct tm *
timesub(const time_t * const timep,const int_fast32_t offset,register const struct state * const sp,register struct tm * const tmp)1463 timesub(const time_t *const timep, const int_fast32_t offset,
1464 register const struct state *const sp,
1465 register struct tm *const tmp)
1466 {
1467 register const struct lsinfo * lp;
1468 register time_t tdays;
1469 register int idays; /* unsigned would be so 2003 */
1470 register int_fast64_t rem;
1471 int y;
1472 register const int * ip;
1473 register int_fast64_t corr;
1474 register int hit;
1475 register int i;
1476
1477 corr = 0;
1478 hit = 0;
1479 i = (sp == NULL) ? 0 : sp->leapcnt;
1480 while (--i >= 0) {
1481 lp = &sp->lsis[i];
1482 if (*timep >= lp->ls_trans) {
1483 if (*timep == lp->ls_trans) {
1484 hit = ((i == 0 && lp->ls_corr > 0) ||
1485 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1486 if (hit)
1487 while (i > 0 &&
1488 sp->lsis[i].ls_trans ==
1489 sp->lsis[i - 1].ls_trans + 1 &&
1490 sp->lsis[i].ls_corr ==
1491 sp->lsis[i - 1].ls_corr + 1) {
1492 ++hit;
1493 --i;
1494 }
1495 }
1496 corr = lp->ls_corr;
1497 break;
1498 }
1499 }
1500 y = EPOCH_YEAR;
1501 tdays = *timep / SECSPERDAY;
1502 rem = *timep - tdays * SECSPERDAY;
1503 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1504 int newy;
1505 register time_t tdelta;
1506 register int idelta;
1507 register int leapdays;
1508
1509 tdelta = tdays / DAYSPERLYEAR;
1510 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1511 && tdelta <= INT_MAX))
1512 return NULL;
1513 idelta = tdelta;
1514 if (idelta == 0)
1515 idelta = (tdays < 0) ? -1 : 1;
1516 newy = y;
1517 if (increment_overflow(&newy, idelta))
1518 return NULL;
1519 leapdays = leaps_thru_end_of(newy - 1) -
1520 leaps_thru_end_of(y - 1);
1521 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1522 tdays -= leapdays;
1523 y = newy;
1524 }
1525 {
1526 register int_fast32_t seconds;
1527
1528 seconds = tdays * SECSPERDAY;
1529 tdays = seconds / SECSPERDAY;
1530 rem += seconds - tdays * SECSPERDAY;
1531 }
1532 /*
1533 ** Given the range, we can now fearlessly cast...
1534 */
1535 idays = tdays;
1536 rem += offset - corr;
1537 while (rem < 0) {
1538 rem += SECSPERDAY;
1539 --idays;
1540 }
1541 while (rem >= SECSPERDAY) {
1542 rem -= SECSPERDAY;
1543 ++idays;
1544 }
1545 while (idays < 0) {
1546 if (increment_overflow(&y, -1))
1547 return NULL;
1548 idays += year_lengths[isleap(y)];
1549 }
1550 while (idays >= year_lengths[isleap(y)]) {
1551 idays -= year_lengths[isleap(y)];
1552 if (increment_overflow(&y, 1))
1553 return NULL;
1554 }
1555 tmp->tm_year = y;
1556 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1557 return NULL;
1558 tmp->tm_yday = idays;
1559 /*
1560 ** The "extra" mods below avoid overflow problems.
1561 */
1562 tmp->tm_wday = EPOCH_WDAY +
1563 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1564 (DAYSPERNYEAR % DAYSPERWEEK) +
1565 leaps_thru_end_of(y - 1) -
1566 leaps_thru_end_of(EPOCH_YEAR - 1) +
1567 idays;
1568 tmp->tm_wday %= DAYSPERWEEK;
1569 if (tmp->tm_wday < 0)
1570 tmp->tm_wday += DAYSPERWEEK;
1571 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1572 rem %= SECSPERHOUR;
1573 tmp->tm_min = (int) (rem / SECSPERMIN);
1574 /*
1575 ** A positive leap second requires a special
1576 ** representation. This uses "... ??:59:60" et seq.
1577 */
1578 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1579 ip = mon_lengths[isleap(y)];
1580 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1581 idays -= ip[tmp->tm_mon];
1582 tmp->tm_mday = (int) (idays + 1);
1583 tmp->tm_isdst = 0;
1584 #ifdef TM_GMTOFF
1585 tmp->TM_GMTOFF = offset;
1586 #endif /* defined TM_GMTOFF */
1587 return tmp;
1588 }
1589
1590 char *
ctime(const time_t * const timep)1591 ctime(const time_t * const timep)
1592 {
1593 /*
1594 ** Section 4.12.3.2 of X3.159-1989 requires that
1595 ** The ctime function converts the calendar time pointed to by timer
1596 ** to local time in the form of a string. It is equivalent to
1597 ** asctime(localtime(timer))
1598 */
1599 return asctime(localtime(timep));
1600 }
1601
1602 char *
ctime_r(const time_t * const timep,char * buf)1603 ctime_r(const time_t * const timep, char * buf)
1604 {
1605 struct tm mytm;
1606
1607 return asctime_r(localtime_r(timep, &mytm), buf);
1608 }
1609
1610 /*
1611 ** Adapted from code provided by Robert Elz, who writes:
1612 ** The "best" way to do mktime I think is based on an idea of Bob
1613 ** Kridle's (so its said...) from a long time ago.
1614 ** It does a binary search of the time_t space. Since time_t's are
1615 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1616 ** would still be very reasonable).
1617 */
1618
1619 #ifndef WRONG
1620 #define WRONG (-1)
1621 #endif /* !defined WRONG */
1622
1623 /*
1624 ** Normalize logic courtesy Paul Eggert.
1625 */
1626
1627 static int
increment_overflow(int * const ip,int j)1628 increment_overflow(int *const ip, int j)
1629 {
1630 register int const i = *ip;
1631
1632 /*
1633 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1634 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1635 ** If i < 0 there can only be overflow if i + j < INT_MIN
1636 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1637 */
1638 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1639 return TRUE;
1640 *ip += j;
1641 return FALSE;
1642 }
1643
1644 static int
increment_overflow32(int_fast32_t * const lp,int const m)1645 increment_overflow32(int_fast32_t *const lp, int const m)
1646 {
1647 register int_fast32_t const l = *lp;
1648
1649 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1650 return TRUE;
1651 *lp += m;
1652 return FALSE;
1653 }
1654
1655 static int
increment_overflow_time(time_t * tp,int_fast32_t j)1656 increment_overflow_time(time_t *tp, int_fast32_t j)
1657 {
1658 /*
1659 ** This is like
1660 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1661 ** except that it does the right thing even if *tp + j would overflow.
1662 */
1663 if (! (j < 0
1664 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1665 : *tp <= time_t_max - j))
1666 return TRUE;
1667 *tp += j;
1668 return FALSE;
1669 }
1670
1671 static int
normalize_overflow(int * const tensptr,int * const unitsptr,const int base)1672 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1673 {
1674 register int tensdelta;
1675
1676 tensdelta = (*unitsptr >= 0) ?
1677 (*unitsptr / base) :
1678 (-1 - (-1 - *unitsptr) / base);
1679 *unitsptr -= tensdelta * base;
1680 return increment_overflow(tensptr, tensdelta);
1681 }
1682
1683 static int
normalize_overflow32(int_fast32_t * const tensptr,int * const unitsptr,const int base)1684 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1685 const int base)
1686 {
1687 register int tensdelta;
1688
1689 tensdelta = (*unitsptr >= 0) ?
1690 (*unitsptr / base) :
1691 (-1 - (-1 - *unitsptr) / base);
1692 *unitsptr -= tensdelta * base;
1693 return increment_overflow32(tensptr, tensdelta);
1694 }
1695
1696 static int
tmcomp(register const struct tm * const atmp,register const struct tm * const btmp)1697 tmcomp(register const struct tm * const atmp,
1698 register const struct tm * const btmp)
1699 {
1700 register int result;
1701
1702 if (atmp->tm_year != btmp->tm_year)
1703 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1704 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1705 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1706 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1707 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1708 result = atmp->tm_sec - btmp->tm_sec;
1709 return result;
1710 }
1711
1712 static time_t
time2sub(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *,struct state *),const int_fast32_t offset,int * const okayp,const int do_norm_secs,struct state * sp)1713 time2sub(struct tm * const tmp,
1714 struct tm *(*const funcp)(const time_t*, int_fast32_t, struct tm*, struct state*),
1715 const int_fast32_t offset,
1716 int * const okayp,
1717 const int do_norm_secs, struct state * sp) // android-changed: added sp
1718 {
1719 register int dir;
1720 register int i, j;
1721 register int saved_seconds;
1722 register int_fast32_t li;
1723 register time_t lo;
1724 register time_t hi;
1725 int_fast32_t y;
1726 time_t newt;
1727 time_t t;
1728 struct tm yourtm, mytm;
1729
1730 *okayp = FALSE;
1731 yourtm = *tmp;
1732 if (do_norm_secs) {
1733 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1734 SECSPERMIN))
1735 return WRONG;
1736 }
1737 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1738 return WRONG;
1739 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1740 return WRONG;
1741 y = yourtm.tm_year;
1742 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1743 return WRONG;
1744 /*
1745 ** Turn y into an actual year number for now.
1746 ** It is converted back to an offset from TM_YEAR_BASE later.
1747 */
1748 if (increment_overflow32(&y, TM_YEAR_BASE))
1749 return WRONG;
1750 while (yourtm.tm_mday <= 0) {
1751 if (increment_overflow32(&y, -1))
1752 return WRONG;
1753 li = y + (1 < yourtm.tm_mon);
1754 yourtm.tm_mday += year_lengths[isleap(li)];
1755 }
1756 while (yourtm.tm_mday > DAYSPERLYEAR) {
1757 li = y + (1 < yourtm.tm_mon);
1758 yourtm.tm_mday -= year_lengths[isleap(li)];
1759 if (increment_overflow32(&y, 1))
1760 return WRONG;
1761 }
1762 for ( ; ; ) {
1763 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1764 if (yourtm.tm_mday <= i)
1765 break;
1766 yourtm.tm_mday -= i;
1767 if (++yourtm.tm_mon >= MONSPERYEAR) {
1768 yourtm.tm_mon = 0;
1769 if (increment_overflow32(&y, 1))
1770 return WRONG;
1771 }
1772 }
1773 if (increment_overflow32(&y, -TM_YEAR_BASE))
1774 return WRONG;
1775 yourtm.tm_year = y;
1776 if (yourtm.tm_year != y)
1777 return WRONG;
1778 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1779 saved_seconds = 0;
1780 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1781 /*
1782 ** We can't set tm_sec to 0, because that might push the
1783 ** time below the minimum representable time.
1784 ** Set tm_sec to 59 instead.
1785 ** This assumes that the minimum representable time is
1786 ** not in the same minute that a leap second was deleted from,
1787 ** which is a safer assumption than using 58 would be.
1788 */
1789 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1790 return WRONG;
1791 saved_seconds = yourtm.tm_sec;
1792 yourtm.tm_sec = SECSPERMIN - 1;
1793 } else {
1794 saved_seconds = yourtm.tm_sec;
1795 yourtm.tm_sec = 0;
1796 }
1797 /*
1798 ** Do a binary search (this works whatever time_t's type is).
1799 */
1800 if (!TYPE_SIGNED(time_t)) {
1801 lo = 0;
1802 hi = lo - 1;
1803 } else {
1804 lo = 1;
1805 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1806 lo *= 2;
1807 hi = -(lo + 1);
1808 }
1809 for ( ; ; ) {
1810 t = lo / 2 + hi / 2;
1811 if (t < lo)
1812 t = lo;
1813 else if (t > hi)
1814 t = hi;
1815 if ((*funcp)(&t, offset, &mytm, sp) == NULL) { // android-changed: added sp.
1816 /*
1817 ** Assume that t is too extreme to be represented in
1818 ** a struct tm; arrange things so that it is less
1819 ** extreme on the next pass.
1820 */
1821 dir = (t > 0) ? 1 : -1;
1822 } else dir = tmcomp(&mytm, &yourtm);
1823 if (dir != 0) {
1824 if (t == lo) {
1825 if (t == time_t_max)
1826 return WRONG;
1827 ++t;
1828 ++lo;
1829 } else if (t == hi) {
1830 if (t == time_t_min)
1831 return WRONG;
1832 --t;
1833 --hi;
1834 }
1835 if (lo > hi)
1836 return WRONG;
1837 if (dir > 0)
1838 hi = t;
1839 else lo = t;
1840 continue;
1841 }
1842 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1843 break;
1844 /*
1845 ** Right time, wrong type.
1846 ** Hunt for right time, right type.
1847 ** It's okay to guess wrong since the guess
1848 ** gets checked.
1849 */
1850 // BEGIN android-changed: support user-supplied sp
1851 if (sp == NULL) {
1852 sp = (struct state *)
1853 ((funcp == localsub) ? lclptr : gmtptr);
1854 }
1855 // END android-changed
1856 if (sp == NULL)
1857 return WRONG;
1858 for (i = sp->typecnt - 1; i >= 0; --i) {
1859 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1860 continue;
1861 for (j = sp->typecnt - 1; j >= 0; --j) {
1862 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1863 continue;
1864 newt = t + sp->ttis[j].tt_gmtoff -
1865 sp->ttis[i].tt_gmtoff;
1866 if ((*funcp)(&newt, offset, &mytm, sp) == NULL) // android-changed: added sp.
1867 continue;
1868 if (tmcomp(&mytm, &yourtm) != 0)
1869 continue;
1870 if (mytm.tm_isdst != yourtm.tm_isdst)
1871 continue;
1872 /*
1873 ** We have a match.
1874 */
1875 t = newt;
1876 goto label;
1877 }
1878 }
1879 return WRONG;
1880 }
1881 label:
1882 newt = t + saved_seconds;
1883 if ((newt < t) != (saved_seconds < 0))
1884 return WRONG;
1885 t = newt;
1886 if ((*funcp)(&t, offset, tmp, sp)) // android-changed: added sp.
1887 *okayp = TRUE;
1888 return t;
1889 }
1890
1891 static time_t
time2(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *,struct state *),const int_fast32_t offset,int * const okayp,struct state * sp)1892 time2(struct tm * const tmp,
1893 struct tm * (*const funcp)(const time_t *, int_fast32_t, struct tm *, struct state *), // android-changed: added sp.
1894 const int_fast32_t offset,
1895 int *const okayp, struct state* sp) // android-changed: added sp.
1896 {
1897 time_t t;
1898
1899 /*
1900 ** First try without normalization of seconds
1901 ** (in case tm_sec contains a value associated with a leap second).
1902 ** If that fails, try with normalization of seconds.
1903 */
1904 t = time2sub(tmp, funcp, offset, okayp, FALSE, sp);
1905 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp);
1906 }
1907
1908 static time_t
time1(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *,struct state *),const int_fast32_t offset,struct state * sp)1909 time1(struct tm * const tmp,
1910 struct tm * (* const funcp) (const time_t *, int_fast32_t, struct tm *, struct state *), // android-changed: added sp.
1911 const int_fast32_t offset, struct state * sp) // android-changed: added sp.
1912 {
1913 register time_t t;
1914 register int samei, otheri;
1915 register int sameind, otherind;
1916 register int i;
1917 register int nseen;
1918 char seen[TZ_MAX_TYPES];
1919 unsigned char types[TZ_MAX_TYPES];
1920 int okay;
1921
1922 if (tmp == NULL) {
1923 errno = EINVAL;
1924 return WRONG;
1925 }
1926 if (tmp->tm_isdst > 1)
1927 tmp->tm_isdst = 1;
1928 t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
1929 if (okay)
1930 return t;
1931 if (tmp->tm_isdst < 0)
1932 #ifdef PCTS
1933 /*
1934 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
1935 */
1936 tmp->tm_isdst = 0; /* reset to std and try again */
1937 #else
1938 return t;
1939 #endif /* !defined PCTS */
1940 /*
1941 ** We're supposed to assume that somebody took a time of one type
1942 ** and did some math on it that yielded a "struct tm" that's bad.
1943 ** We try to divine the type they started from and adjust to the
1944 ** type they need.
1945 */
1946 // BEGIN android-changed: support user-supplied sp.
1947 if (sp == NULL) {
1948 sp = (struct state *) ((funcp == localsub) ? lclptr : gmtptr);
1949 }
1950 // BEGIN android-changed
1951 if (sp == NULL)
1952 return WRONG;
1953 for (i = 0; i < sp->typecnt; ++i)
1954 seen[i] = FALSE;
1955 nseen = 0;
1956 for (i = sp->timecnt - 1; i >= 0; --i)
1957 if (!seen[sp->types[i]]) {
1958 seen[sp->types[i]] = TRUE;
1959 types[nseen++] = sp->types[i];
1960 }
1961 for (sameind = 0; sameind < nseen; ++sameind) {
1962 samei = types[sameind];
1963 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1964 continue;
1965 for (otherind = 0; otherind < nseen; ++otherind) {
1966 otheri = types[otherind];
1967 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1968 continue;
1969 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1970 sp->ttis[samei].tt_gmtoff;
1971 tmp->tm_isdst = !tmp->tm_isdst;
1972 t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
1973 if (okay)
1974 return t;
1975 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1976 sp->ttis[samei].tt_gmtoff;
1977 tmp->tm_isdst = !tmp->tm_isdst;
1978 }
1979 }
1980 return WRONG;
1981 }
1982
1983 time_t
mktime(struct tm * const tmp)1984 mktime(struct tm * const tmp)
1985 {
1986 _tzLock();
1987 tzset_locked();
1988 time_t result = time1(tmp, localsub, 0L, NULL); // android-changed: extra parameter.
1989 _tzUnlock();
1990 return result;
1991 }
1992
1993 #ifdef STD_INSPIRED
1994
1995 time_t
timelocal(struct tm * const tmp)1996 timelocal(struct tm * const tmp)
1997 {
1998 if (tmp != NULL)
1999 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2000 return mktime(tmp);
2001 }
2002
2003 time_t
timegm(struct tm * const tmp)2004 timegm(struct tm * const tmp)
2005 {
2006 time_t result;
2007
2008 if (tmp != NULL)
2009 tmp->tm_isdst = 0;
2010 _tzLock();
2011 result = time1(tmp, gmtsub, 0L, NULL); // android-changed: extra parameter.
2012 _tzUnlock();
2013
2014 return result;
2015 }
2016
2017 time_t
timeoff(struct tm * const tmp,const long offset)2018 timeoff(struct tm *const tmp, const long offset)
2019 {
2020 if (tmp != NULL)
2021 tmp->tm_isdst = 0;
2022 return time1(tmp, gmtsub, offset, NULL); // android-changed: extra parameter.
2023 }
2024
2025 #endif /* defined STD_INSPIRED */
2026
2027 #ifdef CMUCS
2028
2029 /*
2030 ** The following is supplied for compatibility with
2031 ** previous versions of the CMUCS runtime library.
2032 */
2033
2034 long
gtime(struct tm * const tmp)2035 gtime(struct tm * const tmp)
2036 {
2037 const time_t t = mktime(tmp);
2038
2039 if (t == WRONG)
2040 return -1;
2041 return t;
2042 }
2043
2044 #endif /* defined CMUCS */
2045
2046 /*
2047 ** XXX--is the below the right way to conditionalize??
2048 */
2049
2050 #ifdef STD_INSPIRED
2051
2052 /*
2053 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2054 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2055 ** is not the case if we are accounting for leap seconds.
2056 ** So, we provide the following conversion routines for use
2057 ** when exchanging timestamps with POSIX conforming systems.
2058 */
2059
2060 static int_fast64_t
leapcorr(time_t * timep)2061 leapcorr(time_t * timep)
2062 {
2063 register struct state * sp;
2064 register struct lsinfo * lp;
2065 register int i;
2066
2067 sp = lclptr;
2068 i = sp->leapcnt;
2069 while (--i >= 0) {
2070 lp = &sp->lsis[i];
2071 if (*timep >= lp->ls_trans)
2072 return lp->ls_corr;
2073 }
2074 return 0;
2075 }
2076
2077 time_t
time2posix(time_t t)2078 time2posix(time_t t)
2079 {
2080 tzset();
2081 return t - leapcorr(&t);
2082 }
2083
2084 time_t
posix2time(time_t t)2085 posix2time(time_t t)
2086 {
2087 time_t x;
2088 time_t y;
2089
2090 tzset();
2091 /*
2092 ** For a positive leap second hit, the result
2093 ** is not unique. For a negative leap second
2094 ** hit, the corresponding time doesn't exist,
2095 ** so we return an adjacent second.
2096 */
2097 x = t + leapcorr(&t);
2098 y = x - leapcorr(&x);
2099 if (y < t) {
2100 do {
2101 x++;
2102 y = x - leapcorr(&x);
2103 } while (y < t);
2104 if (t != y)
2105 return x - 1;
2106 } else if (y > t) {
2107 do {
2108 --x;
2109 y = x - leapcorr(&x);
2110 } while (y > t);
2111 if (t != y)
2112 return x + 1;
2113 }
2114 return x;
2115 }
2116
2117 #endif /* defined STD_INSPIRED */
2118
2119 // BEGIN android-added
2120
2121 #include <assert.h>
2122 #include <stdint.h>
2123 #include <arpa/inet.h> // For ntohl(3).
2124
__bionic_open_tzdata_path(const char * path_prefix_variable,const char * path_suffix,const char * olson_id,int * data_size)2125 static int __bionic_open_tzdata_path(const char* path_prefix_variable, const char* path_suffix,
2126 const char* olson_id, int* data_size) {
2127 const char* path_prefix = getenv(path_prefix_variable);
2128 if (path_prefix == NULL) {
2129 fprintf(stderr, "%s: %s not set!\n", __FUNCTION__, path_prefix_variable);
2130 return -1;
2131 }
2132 size_t path_length = strlen(path_prefix) + 1 + strlen(path_suffix) + 1;
2133 char* path = malloc(path_length);
2134 if (path == NULL) {
2135 fprintf(stderr, "%s: couldn't allocate %zu-byte path\n", __FUNCTION__, path_length);
2136 return -1;
2137 }
2138 snprintf(path, path_length, "%s/%s", path_prefix, path_suffix);
2139 int fd = TEMP_FAILURE_RETRY(open(path, OPEN_MODE));
2140 if (fd == -1) {
2141 XLOG(("%s: could not open \"%s\": %s\n", __FUNCTION__, path, strerror(errno)));
2142 free(path);
2143 return -2; // Distinguish failure to find any data from failure to find a specific id.
2144 }
2145
2146 // byte[12] tzdata_version -- "tzdata2012f\0"
2147 // int index_offset
2148 // int data_offset
2149 // int zonetab_offset
2150 struct bionic_tzdata_header {
2151 char tzdata_version[12];
2152 int32_t index_offset;
2153 int32_t data_offset;
2154 int32_t zonetab_offset;
2155 } header;
2156 memset(&header, 0, sizeof(header));
2157 ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, &header, sizeof(header)));
2158 if (bytes_read != sizeof(header)) {
2159 fprintf(stderr, "%s: could not read header of \"%s\": %s\n",
2160 __FUNCTION__, path, (bytes_read == -1) ? strerror(errno) : "short read");
2161 free(path);
2162 close(fd);
2163 return -1;
2164 }
2165
2166 if (strncmp(header.tzdata_version, "tzdata", 6) != 0 || header.tzdata_version[11] != 0) {
2167 fprintf(stderr, "%s: bad magic in \"%s\": \"%.6s\"\n",
2168 __FUNCTION__, path, header.tzdata_version);
2169 free(path);
2170 close(fd);
2171 return -1;
2172 }
2173
2174 #if 0
2175 fprintf(stderr, "version: %s\n", header.tzdata_version);
2176 fprintf(stderr, "index_offset = %d\n", ntohl(header.index_offset));
2177 fprintf(stderr, "data_offset = %d\n", ntohl(header.data_offset));
2178 fprintf(stderr, "zonetab_offset = %d\n", ntohl(header.zonetab_offset));
2179 #endif
2180
2181 if (TEMP_FAILURE_RETRY(lseek(fd, ntohl(header.index_offset), SEEK_SET)) == -1) {
2182 fprintf(stderr, "%s: couldn't seek to index in \"%s\": %s\n",
2183 __FUNCTION__, path, strerror(errno));
2184 free(path);
2185 close(fd);
2186 return -1;
2187 }
2188
2189 off_t specific_zone_offset = -1;
2190 ssize_t index_size = ntohl(header.data_offset) - ntohl(header.index_offset);
2191 char* index = malloc(index_size);
2192 if (index == NULL) {
2193 fprintf(stderr, "%s: couldn't allocate %zd-byte index for \"%s\"\n",
2194 __FUNCTION__, index_size, path);
2195 free(path);
2196 close(fd);
2197 return -1;
2198 }
2199 if (TEMP_FAILURE_RETRY(read(fd, index, index_size)) != index_size) {
2200 fprintf(stderr, "%s: could not read index of \"%s\": %s\n",
2201 __FUNCTION__, path, (bytes_read == -1) ? strerror(errno) : "short read");
2202 free(path);
2203 free(index);
2204 close(fd);
2205 return -1;
2206 }
2207
2208 static const size_t NAME_LENGTH = 40;
2209 struct index_entry_t {
2210 char buf[NAME_LENGTH];
2211 int32_t start;
2212 int32_t length;
2213 int32_t unused; // Was raw GMT offset; always 0 since tzdata2014f (L).
2214 };
2215
2216 size_t id_count = (ntohl(header.data_offset) - ntohl(header.index_offset)) / sizeof(struct index_entry_t);
2217 struct index_entry_t* entry = (struct index_entry_t*) index;
2218 for (size_t i = 0; i < id_count; ++i) {
2219 char this_id[NAME_LENGTH + 1];
2220 memcpy(this_id, entry->buf, NAME_LENGTH);
2221 this_id[NAME_LENGTH] = '\0';
2222
2223 if (strcmp(this_id, olson_id) == 0) {
2224 specific_zone_offset = ntohl(entry->start) + ntohl(header.data_offset);
2225 *data_size = ntohl(entry->length);
2226 break;
2227 }
2228
2229 ++entry;
2230 }
2231 free(index);
2232
2233 if (specific_zone_offset == -1) {
2234 XLOG(("%s: couldn't find zone \"%s\"\n", __FUNCTION__, olson_id));
2235 free(path);
2236 close(fd);
2237 return -1;
2238 }
2239
2240 if (TEMP_FAILURE_RETRY(lseek(fd, specific_zone_offset, SEEK_SET)) == -1) {
2241 fprintf(stderr, "%s: could not seek to %ld in \"%s\": %s\n",
2242 __FUNCTION__, specific_zone_offset, path, strerror(errno));
2243 free(path);
2244 close(fd);
2245 return -1;
2246 }
2247
2248 // TODO: check that there's TZ_MAGIC at this offset, so we can fall back to the other file if not.
2249
2250 free(path);
2251 return fd;
2252 }
2253
__bionic_open_tzdata(const char * olson_id,int * data_size)2254 static int __bionic_open_tzdata(const char* olson_id, int* data_size) {
2255 int fd = __bionic_open_tzdata_path("ANDROID_ROOT", "/usr/share/zoneinfo/tzdata", olson_id, data_size);
2256 if (fd == -2) {
2257 // The first thing that 'recovery' does is try to format the current time. It doesn't have
2258 // any tzdata available, so we must not abort here --- doing so breaks the recovery image!
2259 fprintf(stderr, "%s: couldn't find any tzdata when looking for %s!\n", __FUNCTION__, olson_id);
2260 }
2261 return fd;
2262 }
2263
2264 // Caches the most recent timezone (http://b/8270865).
__bionic_tzload_cached(const char * name,struct state * const sp,const int doextend)2265 static int __bionic_tzload_cached(const char* name, struct state* const sp, const int doextend) {
2266 _tzLock();
2267
2268 // Our single-item cache.
2269 static char* g_cached_time_zone_name;
2270 static struct state g_cached_time_zone;
2271
2272 // Do we already have this timezone cached?
2273 if (g_cached_time_zone_name != NULL && strcmp(name, g_cached_time_zone_name) == 0) {
2274 *sp = g_cached_time_zone;
2275 _tzUnlock();
2276 return 0;
2277 }
2278
2279 // Can we load it?
2280 int rc = tzload(name, sp, doextend);
2281 if (rc == 0) {
2282 // Update the cache.
2283 free(g_cached_time_zone_name);
2284 g_cached_time_zone_name = strdup(name);
2285 g_cached_time_zone = *sp;
2286 }
2287
2288 _tzUnlock();
2289 return rc;
2290 }
2291
2292 // Non-standard API: mktime(3) but with an explicit timezone parameter.
2293 // This can't actually be hidden/removed until we fix MtpUtils.cpp
mktime_tz(struct tm * const tmp,const char * tz)2294 __attribute__((visibility("default"))) time_t mktime_tz(struct tm* const tmp, const char* tz) {
2295 struct state* st = malloc(sizeof(*st));
2296 time_t return_value;
2297
2298 if (st == NULL)
2299 return 0;
2300 if (__bionic_tzload_cached(tz, st, TRUE) != 0) {
2301 // TODO: not sure what's best here, but for now, we fall back to gmt.
2302 gmtload(st);
2303 }
2304
2305 return_value = time1(tmp, localsub, 0L, st);
2306 free(st);
2307 return return_value;
2308 }
2309
2310 // END android-added
2311