1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/ValueSymbolTable.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 using namespace llvm;
26 
27 namespace llvm_3_2 {
28 
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)29 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
30   return V.first->getType()->isIntOrIntVectorTy();
31 }
32 
33 /// ValueEnumerator - Enumerate module-level information.
ValueEnumerator(const Module * M)34 ValueEnumerator::ValueEnumerator(const Module *M) {
35   // Enumerate the global variables.
36   for (Module::const_global_iterator I = M->global_begin(),
37          E = M->global_end(); I != E; ++I)
38     EnumerateValue(I);
39 
40   // Enumerate the functions.
41   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
42     EnumerateValue(I);
43     EnumerateAttributes(cast<Function>(I)->getAttributes());
44   }
45 
46   // Enumerate the aliases.
47   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
48        I != E; ++I)
49     EnumerateValue(I);
50 
51   // Remember what is the cutoff between globalvalue's and other constants.
52   unsigned FirstConstant = Values.size();
53 
54   // Enumerate the global variable initializers.
55   for (Module::const_global_iterator I = M->global_begin(),
56          E = M->global_end(); I != E; ++I)
57     if (I->hasInitializer())
58       EnumerateValue(I->getInitializer());
59 
60   // Enumerate the aliasees.
61   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
62        I != E; ++I)
63     EnumerateValue(I->getAliasee());
64 
65   // Insert constants and metadata that are named at module level into the slot
66   // pool so that the module symbol table can refer to them...
67   EnumerateValueSymbolTable(M->getValueSymbolTable());
68   EnumerateNamedMetadata(M);
69 
70   SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
71 
72   // Enumerate types used by function bodies and argument lists.
73   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
74 
75     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
76          I != E; ++I)
77       EnumerateType(I->getType());
78 
79     for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
80       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
81         for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
82              OI != E; ++OI) {
83           if (MDNode *MD = dyn_cast<MDNode>(*OI))
84             if (MD->isFunctionLocal() && MD->getFunction())
85               // These will get enumerated during function-incorporation.
86               continue;
87           EnumerateOperandType(*OI);
88         }
89         EnumerateType(I->getType());
90         if (const CallInst *CI = dyn_cast<CallInst>(I))
91           EnumerateAttributes(CI->getAttributes());
92         else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
93           EnumerateAttributes(II->getAttributes());
94 
95         // Enumerate metadata attached with this instruction.
96         MDs.clear();
97         I->getAllMetadataOtherThanDebugLoc(MDs);
98         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
99           EnumerateMetadata(MDs[i].second);
100 
101         if (!I->getDebugLoc().isUnknown()) {
102           MDNode *Scope, *IA;
103           I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
104           if (Scope) EnumerateMetadata(Scope);
105           if (IA) EnumerateMetadata(IA);
106         }
107       }
108   }
109 
110   // Optimize constant ordering.
111   OptimizeConstants(FirstConstant, Values.size());
112 }
113 
getInstructionID(const Instruction * Inst) const114 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
115   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
116   assert(I != InstructionMap.end() && "Instruction is not mapped!");
117   return I->second;
118 }
119 
setInstructionID(const Instruction * I)120 void ValueEnumerator::setInstructionID(const Instruction *I) {
121   InstructionMap[I] = InstructionCount++;
122 }
123 
getValueID(const Value * V) const124 unsigned ValueEnumerator::getValueID(const Value *V) const {
125   if (isa<MDNode>(V) || isa<MDString>(V)) {
126     ValueMapType::const_iterator I = MDValueMap.find(V);
127     assert(I != MDValueMap.end() && "Value not in slotcalculator!");
128     return I->second-1;
129   }
130 
131   ValueMapType::const_iterator I = ValueMap.find(V);
132   assert(I != ValueMap.end() && "Value not in slotcalculator!");
133   return I->second-1;
134 }
135 
dump() const136 void ValueEnumerator::dump() const {
137   print(dbgs(), ValueMap, "Default");
138   dbgs() << '\n';
139   print(dbgs(), MDValueMap, "MetaData");
140   dbgs() << '\n';
141 }
142 
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const143 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
144                             const char *Name) const {
145 
146   OS << "Map Name: " << Name << "\n";
147   OS << "Size: " << Map.size() << "\n";
148   for (ValueMapType::const_iterator I = Map.begin(),
149          E = Map.end(); I != E; ++I) {
150 
151     const Value *V = I->first;
152     if (V->hasName())
153       OS << "Value: " << V->getName();
154     else
155       OS << "Value: [null]\n";
156     V->dump();
157 
158     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
159     for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
160          UI != UE; ++UI) {
161       if (UI != V->use_begin())
162         OS << ",";
163       if((*UI)->hasName())
164         OS << " " << (*UI)->getName();
165       else
166         OS << " [null]";
167 
168     }
169     OS <<  "\n\n";
170   }
171 }
172 
173 // Optimize constant ordering.
174 namespace {
175   struct CstSortPredicate {
176     ValueEnumerator &VE;
CstSortPredicatellvm_3_2::__anon0ff31e890111::CstSortPredicate177     explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
operator ()llvm_3_2::__anon0ff31e890111::CstSortPredicate178     bool operator()(const std::pair<const Value*, unsigned> &LHS,
179                     const std::pair<const Value*, unsigned> &RHS) {
180       // Sort by plane.
181       if (LHS.first->getType() != RHS.first->getType())
182         return VE.getTypeID(LHS.first->getType()) <
183                VE.getTypeID(RHS.first->getType());
184       // Then by frequency.
185       return LHS.second > RHS.second;
186     }
187   };
188 }
189 
190 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)191 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
192   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
193 
194   CstSortPredicate P(*this);
195   std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
196 
197   // Ensure that integer and vector of integer constants are at the start of the
198   // constant pool.  This is important so that GEP structure indices come before
199   // gep constant exprs.
200   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
201                  isIntOrIntVectorValue);
202 
203   // Rebuild the modified portion of ValueMap.
204   for (; CstStart != CstEnd; ++CstStart)
205     ValueMap[Values[CstStart].first] = CstStart+1;
206 }
207 
208 
209 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
210 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)211 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
212   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
213        VI != VE; ++VI)
214     EnumerateValue(VI->getValue());
215 }
216 
217 /// EnumerateNamedMetadata - Insert all of the values referenced by
218 /// named metadata in the specified module.
EnumerateNamedMetadata(const Module * M)219 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
220   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
221        E = M->named_metadata_end(); I != E; ++I)
222     EnumerateNamedMDNode(I);
223 }
224 
EnumerateNamedMDNode(const NamedMDNode * MD)225 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
226   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
227     EnumerateMetadata(MD->getOperand(i));
228 }
229 
230 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
231 /// and types referenced by the given MDNode.
EnumerateMDNodeOperands(const MDNode * N)232 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
233   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
234     if (Value *V = N->getOperand(i)) {
235       if (isa<MDNode>(V) || isa<MDString>(V))
236         EnumerateMetadata(V);
237       else if (!isa<Instruction>(V) && !isa<Argument>(V))
238         EnumerateValue(V);
239     } else
240       EnumerateType(Type::getVoidTy(N->getContext()));
241   }
242 }
243 
EnumerateMetadata(const Value * MD)244 void ValueEnumerator::EnumerateMetadata(const Value *MD) {
245   assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
246 
247   // Enumerate the type of this value.
248   EnumerateType(MD->getType());
249 
250   const MDNode *N = dyn_cast<MDNode>(MD);
251 
252   // In the module-level pass, skip function-local nodes themselves, but
253   // do walk their operands.
254   if (N && N->isFunctionLocal() && N->getFunction()) {
255     EnumerateMDNodeOperands(N);
256     return;
257   }
258 
259   // Check to see if it's already in!
260   unsigned &MDValueID = MDValueMap[MD];
261   if (MDValueID) {
262     // Increment use count.
263     MDValues[MDValueID-1].second++;
264     return;
265   }
266   MDValues.push_back(std::make_pair(MD, 1U));
267   MDValueID = MDValues.size();
268 
269   // Enumerate all non-function-local operands.
270   if (N)
271     EnumerateMDNodeOperands(N);
272 }
273 
274 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
275 /// information reachable from the given MDNode.
EnumerateFunctionLocalMetadata(const MDNode * N)276 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
277   assert(N->isFunctionLocal() && N->getFunction() &&
278          "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
279 
280   // Enumerate the type of this value.
281   EnumerateType(N->getType());
282 
283   // Check to see if it's already in!
284   unsigned &MDValueID = MDValueMap[N];
285   if (MDValueID) {
286     // Increment use count.
287     MDValues[MDValueID-1].second++;
288     return;
289   }
290   MDValues.push_back(std::make_pair(N, 1U));
291   MDValueID = MDValues.size();
292 
293   // To incoroporate function-local information visit all function-local
294   // MDNodes and all function-local values they reference.
295   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
296     if (Value *V = N->getOperand(i)) {
297       if (MDNode *O = dyn_cast<MDNode>(V)) {
298         if (O->isFunctionLocal() && O->getFunction())
299           EnumerateFunctionLocalMetadata(O);
300       } else if (isa<Instruction>(V) || isa<Argument>(V))
301         EnumerateValue(V);
302     }
303 
304   // Also, collect all function-local MDNodes for easy access.
305   FunctionLocalMDs.push_back(N);
306 }
307 
EnumerateValue(const Value * V)308 void ValueEnumerator::EnumerateValue(const Value *V) {
309   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
310   assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
311          "EnumerateValue doesn't handle Metadata!");
312 
313   // Check to see if it's already in!
314   unsigned &ValueID = ValueMap[V];
315   if (ValueID) {
316     // Increment use count.
317     Values[ValueID-1].second++;
318     return;
319   }
320 
321   // Enumerate the type of this value.
322   EnumerateType(V->getType());
323 
324   if (const Constant *C = dyn_cast<Constant>(V)) {
325     if (isa<GlobalValue>(C)) {
326       // Initializers for globals are handled explicitly elsewhere.
327     } else if (C->getNumOperands()) {
328       // If a constant has operands, enumerate them.  This makes sure that if a
329       // constant has uses (for example an array of const ints), that they are
330       // inserted also.
331 
332       // We prefer to enumerate them with values before we enumerate the user
333       // itself.  This makes it more likely that we can avoid forward references
334       // in the reader.  We know that there can be no cycles in the constants
335       // graph that don't go through a global variable.
336       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
337            I != E; ++I)
338         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
339           EnumerateValue(*I);
340 
341       // Finally, add the value.  Doing this could make the ValueID reference be
342       // dangling, don't reuse it.
343       Values.push_back(std::make_pair(V, 1U));
344       ValueMap[V] = Values.size();
345       return;
346     } else if (const ConstantDataSequential *CDS =
347                dyn_cast<ConstantDataSequential>(C)) {
348       // For our legacy handling of the new ConstantDataSequential type, we
349       // need to enumerate the individual elements, as well as mark the
350       // outer constant as used.
351       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
352         EnumerateValue(CDS->getElementAsConstant(i));
353       Values.push_back(std::make_pair(V, 1U));
354       ValueMap[V] = Values.size();
355       return;
356     }
357   }
358 
359   // Add the value.
360   Values.push_back(std::make_pair(V, 1U));
361   ValueID = Values.size();
362 }
363 
364 
EnumerateType(Type * Ty)365 void ValueEnumerator::EnumerateType(Type *Ty) {
366   unsigned *TypeID = &TypeMap[Ty];
367 
368   // We've already seen this type.
369   if (*TypeID)
370     return;
371 
372   // If it is a non-anonymous struct, mark the type as being visited so that we
373   // don't recursively visit it.  This is safe because we allow forward
374   // references of these in the bitcode reader.
375   if (StructType *STy = dyn_cast<StructType>(Ty))
376     if (!STy->isLiteral())
377       *TypeID = ~0U;
378 
379   // Enumerate all of the subtypes before we enumerate this type.  This ensures
380   // that the type will be enumerated in an order that can be directly built.
381   for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
382        I != E; ++I)
383     EnumerateType(*I);
384 
385   // Refresh the TypeID pointer in case the table rehashed.
386   TypeID = &TypeMap[Ty];
387 
388   // Check to see if we got the pointer another way.  This can happen when
389   // enumerating recursive types that hit the base case deeper than they start.
390   //
391   // If this is actually a struct that we are treating as forward ref'able,
392   // then emit the definition now that all of its contents are available.
393   if (*TypeID && *TypeID != ~0U)
394     return;
395 
396   // Add this type now that its contents are all happily enumerated.
397   Types.push_back(Ty);
398 
399   *TypeID = Types.size();
400 }
401 
402 // Enumerate the types for the specified value.  If the value is a constant,
403 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)404 void ValueEnumerator::EnumerateOperandType(const Value *V) {
405   EnumerateType(V->getType());
406 
407   if (const Constant *C = dyn_cast<Constant>(V)) {
408     // If this constant is already enumerated, ignore it, we know its type must
409     // be enumerated.
410     if (ValueMap.count(V)) return;
411 
412     // This constant may have operands, make sure to enumerate the types in
413     // them.
414     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
415       const Value *Op = C->getOperand(i);
416 
417       // Don't enumerate basic blocks here, this happens as operands to
418       // blockaddress.
419       if (isa<BasicBlock>(Op)) continue;
420 
421       EnumerateOperandType(Op);
422     }
423 
424     if (const MDNode *N = dyn_cast<MDNode>(V)) {
425       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
426         if (Value *Elem = N->getOperand(i))
427           EnumerateOperandType(Elem);
428     }
429   } else if (isa<MDString>(V) || isa<MDNode>(V))
430     EnumerateMetadata(V);
431 }
432 
EnumerateAttributes(AttributeSet PAL)433 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
434   if (PAL.isEmpty()) return;  // null is always 0.
435 
436   // Do a lookup.
437   unsigned &Entry = AttributeMap[PAL];
438   if (Entry == 0) {
439     // Never saw this before, add it.
440     Attribute.push_back(PAL);
441     Entry = Attribute.size();
442   }
443 
444   // Do lookups for all attribute groups.
445   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
446     AttributeSet AS = PAL.getSlotAttributes(i);
447     unsigned &Entry = AttributeGroupMap[AS];
448     if (Entry == 0) {
449       AttributeGroups.push_back(AS);
450       Entry = AttributeGroups.size();
451     }
452   }
453 }
454 
incorporateFunction(const Function & F)455 void ValueEnumerator::incorporateFunction(const Function &F) {
456   InstructionCount = 0;
457   NumModuleValues = Values.size();
458   NumModuleMDValues = MDValues.size();
459 
460   // Adding function arguments to the value table.
461   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
462        I != E; ++I)
463     EnumerateValue(I);
464 
465   FirstFuncConstantID = Values.size();
466 
467   // Add all function-level constants to the value table.
468   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
469     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
470       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
471            OI != E; ++OI) {
472         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
473             isa<InlineAsm>(*OI))
474           EnumerateValue(*OI);
475       }
476     BasicBlocks.push_back(BB);
477     ValueMap[BB] = BasicBlocks.size();
478   }
479 
480   // Optimize the constant layout.
481   OptimizeConstants(FirstFuncConstantID, Values.size());
482 
483   // Add the function's parameter attributes so they are available for use in
484   // the function's instruction.
485   EnumerateAttributes(F.getAttributes());
486 
487   FirstInstID = Values.size();
488 
489   SmallVector<MDNode *, 8> FnLocalMDVector;
490   // Add all of the instructions.
491   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
492     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
493       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
494            OI != E; ++OI) {
495         if (MDNode *MD = dyn_cast<MDNode>(*OI))
496           if (MD->isFunctionLocal() && MD->getFunction())
497             // Enumerate metadata after the instructions they might refer to.
498             FnLocalMDVector.push_back(MD);
499       }
500 
501       SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
502       I->getAllMetadataOtherThanDebugLoc(MDs);
503       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
504         MDNode *N = MDs[i].second;
505         if (N->isFunctionLocal() && N->getFunction())
506           FnLocalMDVector.push_back(N);
507       }
508 
509       if (!I->getType()->isVoidTy())
510         EnumerateValue(I);
511     }
512   }
513 
514   // Add all of the function-local metadata.
515   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
516     EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
517 }
518 
purgeFunction()519 void ValueEnumerator::purgeFunction() {
520   /// Remove purged values from the ValueMap.
521   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
522     ValueMap.erase(Values[i].first);
523   for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
524     MDValueMap.erase(MDValues[i].first);
525   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
526     ValueMap.erase(BasicBlocks[i]);
527 
528   Values.resize(NumModuleValues);
529   MDValues.resize(NumModuleMDValues);
530   BasicBlocks.clear();
531   FunctionLocalMDs.clear();
532 }
533 
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)534 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
535                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
536   unsigned Counter = 0;
537   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
538     IDMap[BB] = ++Counter;
539 }
540 
541 /// getGlobalBasicBlockID - This returns the function-specific ID for the
542 /// specified basic block.  This is relatively expensive information, so it
543 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const544 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
545   unsigned &Idx = GlobalBasicBlockIDs[BB];
546   if (Idx != 0)
547     return Idx-1;
548 
549   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
550   return getGlobalBasicBlockID(BB);
551 }
552 
553 }  // end llvm_3_2 namespace
554