1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 #define LOG_TAG "AudioHAL:AudioStreamOut"
19 
20 #include <utils/Log.h>
21 
22 #include "AudioHardwareOutput.h"
23 #include "AudioStreamOut.h"
24 
25 // Set to 1 to print timestamp data in CSV format.
26 #ifndef HAL_PRINT_TIMESTAMP_CSV
27 #define HAL_PRINT_TIMESTAMP_CSV 0
28 #endif
29 
30 //#define VERY_VERBOSE_LOGGING
31 #ifdef VERY_VERBOSE_LOGGING
32 #define ALOGVV ALOGV
33 #else
34 #define ALOGVV(a...) do { } while(0)
35 #endif
36 
37 namespace android {
38 
AudioStreamOut(AudioHardwareOutput & owner,bool mcOut)39 AudioStreamOut::AudioStreamOut(AudioHardwareOutput& owner, bool mcOut)
40     : mFramesPresented(0)
41     , mFramesRendered(0)
42     , mFramesWrittenRemainder(0)
43     , mOwnerHAL(owner)
44     , mFramesWritten(0)
45     , mTgtDevices(0)
46     , mAudioFlingerTgtDevices(0)
47     , mIsMCOutput(mcOut)
48     , mIsEncoded(false)
49     , mInStandby(false)
50     , mSPDIFEncoder(this)
51 {
52     assert(mLocalClock.initCheck());
53 
54     mPhysOutputs.setCapacity(3);
55 
56     // Set some reasonable defaults for these.  All of this should be eventually
57     // be overwritten by a specific audio flinger configuration, but it does not
58     // hurt to have something here by default.
59     mInputSampleRate = 48000;
60     mInputChanMask = AUDIO_CHANNEL_OUT_STEREO;
61     mInputFormat = AUDIO_FORMAT_PCM_16_BIT;
62     mInputNominalChunksInFlight = 4;
63     updateInputNums();
64 
65     mThrottleValid = false;
66 
67     memset(&mUSecToLocalTime, 0, sizeof(mUSecToLocalTime));
68     mUSecToLocalTime.a_to_b_numer = mLocalClock.getLocalFreq();
69     mUSecToLocalTime.a_to_b_denom = 1000000;
70     LinearTransform::reduce(&mUSecToLocalTime.a_to_b_numer,
71                             &mUSecToLocalTime.a_to_b_denom);
72 }
73 
~AudioStreamOut()74 AudioStreamOut::~AudioStreamOut()
75 {
76     releaseAllOutputs();
77 }
78 
set(audio_format_t * pFormat,uint32_t * pChannels,uint32_t * pRate)79 status_t AudioStreamOut::set(
80         audio_format_t *pFormat,
81         uint32_t *pChannels,
82         uint32_t *pRate)
83 {
84     Mutex::Autolock _l(mLock);
85     audio_format_t lFormat   = pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT;
86     uint32_t       lChannels = pChannels ? *pChannels : 0;
87     uint32_t       lRate     = pRate ? *pRate : 0;
88 
89     // fix up defaults
90     if (lFormat == AUDIO_FORMAT_DEFAULT) lFormat = format();
91     if (lChannels == 0)                  lChannels = chanMask();
92     if (lRate == 0)                      lRate = sampleRate();
93 
94     if (pFormat)   *pFormat   = lFormat;
95     if (pChannels) *pChannels = lChannels;
96     if (pRate)     *pRate     = lRate;
97 
98     mIsEncoded = !audio_is_linear_pcm(lFormat);
99 
100     if (!mIsMCOutput && !mIsEncoded) {
101         // If this is the primary stream out, then demand our defaults.
102         if ((lFormat   != format()) ||
103             (lChannels != chanMask()) ||
104             (lRate     != sampleRate()))
105             return BAD_VALUE;
106     } else {
107         // Else check to see if our HDMI sink supports this format before proceeding.
108         if (!mOwnerHAL.getHDMIAudioCaps().supportsFormat(lFormat,
109                                                      lRate,
110                                                      audio_channel_count_from_out_mask(lChannels)))
111             return BAD_VALUE;
112     }
113 
114     mInputFormat = lFormat;
115     mInputChanMask = lChannels;
116     mInputSampleRate = lRate;
117     ALOGI("AudioStreamOut::set: lRate = %u, mIsEncoded = %d\n", lRate, mIsEncoded);
118     updateInputNums();
119 
120     return NO_ERROR;
121 }
122 
setTgtDevices(uint32_t tgtDevices)123 void AudioStreamOut::setTgtDevices(uint32_t tgtDevices)
124 {
125     Mutex::Autolock _l(mRoutingLock);
126     if (mTgtDevices != tgtDevices) {
127         mTgtDevices = tgtDevices;
128     }
129 }
130 
standby()131 status_t AudioStreamOut::standby()
132 {
133     mFramesRendered = 0;
134     releaseAllOutputs();
135     mOwnerHAL.standbyStatusUpdate(true, mIsMCOutput);
136     mInStandby = true;
137 
138     return NO_ERROR;
139 }
140 
releaseAllOutputs()141 void AudioStreamOut::releaseAllOutputs() {
142     Mutex::Autolock _l(mRoutingLock);
143 
144     ALOGI("releaseAllOutputs: releasing %d mPhysOutputs", mPhysOutputs.size());
145     AudioOutputList::iterator I;
146     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I)
147         mOwnerHAL.releaseOutput(*this, *I);
148 
149     mPhysOutputs.clear();
150 }
151 
updateInputNums()152 void AudioStreamOut::updateInputNums()
153 {
154     assert(mLocalClock.initCheck());
155 
156     // mInputBufSize determines how many audio frames AudioFlinger is going to
157     // mix at a time.  We also use the mInputBufSize to determine the ALSA
158     // period_size, the number of of samples which need to play out (at most)
159     // before low level ALSA driver code is required to wake up upper levels of
160     // SW to fill a new buffer.  As it turns out, ALSA is going to apply some
161     // rules and modify the period_size which we pass to it.  One of the things
162     // ALSA seems to do is attempt to round the period_size up to a value which
163     // will make the period an integral number of 0.5 mSec.  This round-up
164     // behavior can cause the low levels of ALSA to consume more data per period
165     // than the AudioFlinger mixer has been told to produce.  If there are only
166     // two buffers in flight at any given point in time, this can lead to a
167     // situation where the pipeline ends up slipping an extra buffer and
168     // underflowing.  There are two approaches to mitigate this, both of which
169     // are implemented in this HAL...
170     //
171     // 1) Try as hard as possible to make certain that the buffer size we choose
172     //    results in a period_size which is not going to get rounded up by ALSA.
173     //    This means that we want a buffer size which at the chosen sample rate
174     //    and frame size will be an integral multiple of 1/2 mSec.
175     // 2) Increate the number of chunks we keep in flight.  If the system slips
176     //    a single period, its only really a problem if there is no data left in
177     //    the pipeline waiting to be played out.  The mixer should going to mix
178     //    as fast as possible until the buffer has been topped off.  By
179     //    decreasing the buffer size and increasing the number of buffers in
180     //    flight, we increase the number of interrups and mix events per second,
181     //    but buy ourselves some insurance against the negative side effects of
182     //    slipping one buffer in the schedule.  We end up using 4 buffers at
183     //    10mSec, making the total audio latency somewhere between 40 and 50
184     //    mSec, depending on when a sample begins playback relative to
185     //    AudioFlinger's mixing schedule.
186     //
187     mInputChanCount = audio_channel_count_from_out_mask(mInputChanMask);
188 
189     // Picking a chunk duration 10mSec should satisfy #1 for both major families
190     // of audio sample rates (the 44.1K and 48K families).  In the case of 44.1
191     // (or higher) we will end up with a multiple of 441 frames of audio per
192     // chunk, while for 48K, we will have a multiple of 480 frames of audio per
193     // chunk.  This will not work well for lower sample rates in the 44.1 family
194     // (22.05K and 11.025K); it is unlikely that we will ever be configured to
195     // deliver those rates, and if we ever do, we will need to rely on having
196     // extra chunks in flight to deal with the jitter problem described above.
197     mInputChunkFrames = outputSampleRate() / 100;
198 
199     // FIXME: Currently, audio flinger demands an input buffer size which is a
200     // multiple of 16 audio frames.  Right now, there is no good way to
201     // reconcile this with ALSA round-up behavior described above when the
202     // desired sample rate is a member of the 44.1 family.  For now, we just
203     // round up to the nearest multiple of 16 frames and roll the dice, but
204     // someday it would be good to fix one or the other halves of the problem
205     // (either ALSA or AudioFlinger)
206     mInputChunkFrames = (mInputChunkFrames + 0xF) & ~0xF;
207 
208     ALOGD("AudioStreamOut::updateInputNums: chunk size %u from output rate %u\n",
209         mInputChunkFrames, outputSampleRate());
210 
211     // Buffer size is just the frame size multiplied by the number of
212     // frames per chunk.
213     mInputBufSize = mInputChunkFrames * getBytesPerOutputFrame();
214 
215     // The nominal latency is just the duration of a chunk * the number of
216     // chunks we nominally keep in flight at any given point in time.
217     mInputNominalLatencyUSec = static_cast<uint32_t>(((
218                     static_cast<uint64_t>(mInputChunkFrames)
219                     * 1000000 * mInputNominalChunksInFlight)
220                     / mInputSampleRate));
221 
222     memset(&mLocalTimeToFrames, 0, sizeof(mLocalTimeToFrames));
223     mLocalTimeToFrames.a_to_b_numer = mInputSampleRate;
224     mLocalTimeToFrames.a_to_b_denom = mLocalClock.getLocalFreq();
225     LinearTransform::reduce(
226             &mLocalTimeToFrames.a_to_b_numer,
227             &mLocalTimeToFrames.a_to_b_denom);
228 }
229 
finishedWriteOp(size_t framesWritten,bool needThrottle)230 void AudioStreamOut::finishedWriteOp(size_t framesWritten,
231                                      bool needThrottle)
232 {
233     assert(mLocalClock.initCheck());
234 
235     int64_t now = mLocalClock.getLocalTime();
236 
237     if (!mThrottleValid || !needThrottle) {
238         mThrottleValid = true;
239         mWriteStartLT  = now;
240         mFramesWritten = 0;
241     }
242 
243     size_t framesWrittenAppRate;
244     uint32_t multiplier = getRateMultiplier();
245     if (multiplier != 1) {
246         // Accumulate round-off error from previous call.
247         framesWritten += mFramesWrittenRemainder;
248         // Scale from device sample rate to application rate.
249         framesWrittenAppRate = framesWritten / multiplier;
250         ALOGV("finishedWriteOp() framesWrittenAppRate = %d = %d / %d\n",
251             framesWrittenAppRate, framesWritten, multiplier);
252         // Save remainder for next time to prevent error accumulation.
253         mFramesWrittenRemainder = framesWritten - (framesWrittenAppRate * multiplier);
254     } else {
255         framesWrittenAppRate = framesWritten;
256     }
257 
258     mFramesWritten += framesWrittenAppRate;
259     mFramesPresented += framesWrittenAppRate;
260     mFramesRendered += framesWrittenAppRate;
261 
262     if (needThrottle) {
263         int64_t deltaLT;
264         mLocalTimeToFrames.doReverseTransform(mFramesWritten, &deltaLT);
265         deltaLT += mWriteStartLT;
266         deltaLT -= now;
267 
268         int64_t deltaUSec;
269         mUSecToLocalTime.doReverseTransform(deltaLT, &deltaUSec);
270 
271         if (deltaUSec > 0) {
272             useconds_t sleep_time;
273 
274             // We should never be a full second ahead of schedule; sanity check
275             // our throttle time and cap the max sleep time at 1 second.
276             if (deltaUSec > 1000000) {
277                 ALOGW("throttle time clipped! deltaLT = %lld deltaUSec = %lld",
278                     deltaLT, deltaUSec);
279                 sleep_time = 1000000;
280             } else {
281                 sleep_time = static_cast<useconds_t>(deltaUSec);
282             }
283             usleep(sleep_time);
284         }
285     }
286 }
287 
288 static const String8 keyRouting(AudioParameter::keyRouting);
289 static const String8 keySupSampleRates("sup_sampling_rates");
290 static const String8 keySupFormats("sup_formats");
291 static const String8 keySupChannels("sup_channels");
setParameters(__unused struct audio_stream * stream,const char * kvpairs)292 status_t AudioStreamOut::setParameters(__unused struct audio_stream *stream, const char *kvpairs)
293 {
294     AudioParameter param = AudioParameter(String8(kvpairs));
295     String8 key = String8(AudioParameter::keyRouting);
296     int tmpInt;
297 
298     if (param.getInt(key, tmpInt) == NO_ERROR) {
299         // The audio HAL handles routing to physical devices entirely
300         // internally and mostly ignores what audio flinger tells it to do.  JiC
301         // there is something (now or in the future) in audio flinger which
302         // cares about the routing value in a call to getParameters, we hang on
303         // to the last routing value set by audio flinger so we can at least be
304         // consistent when we lie to the upper levels about doing what they told
305         // us to do.
306         mAudioFlingerTgtDevices = static_cast<uint32_t>(tmpInt);
307     }
308 
309     return NO_ERROR;
310 }
311 
getParameters(const char * k)312 char* AudioStreamOut::getParameters(const char* k)
313 {
314     AudioParameter param = AudioParameter(String8(k));
315     String8 value;
316 
317     if (param.get(keyRouting, value) == NO_ERROR) {
318         param.addInt(keyRouting, (int)mAudioFlingerTgtDevices);
319     }
320 
321     HDMIAudioCaps& hdmiCaps = mOwnerHAL.getHDMIAudioCaps();
322 
323     if (param.get(keySupSampleRates, value) == NO_ERROR) {
324         if (mIsMCOutput) {
325             hdmiCaps.getRatesForAF(value);
326             param.add(keySupSampleRates, value);
327         } else {
328             param.add(keySupSampleRates, String8("48000"));
329         }
330     }
331 
332     if (param.get(keySupFormats, value) == NO_ERROR) {
333         if (mIsMCOutput) {
334             hdmiCaps.getFmtsForAF(value);
335             param.add(keySupFormats, value);
336         } else {
337             param.add(keySupFormats, String8("AUDIO_FORMAT_PCM_16_BIT"));
338         }
339     }
340 
341     if (param.get(keySupChannels, value) == NO_ERROR) {
342         if (mIsMCOutput) {
343             hdmiCaps.getChannelMasksForAF(value);
344             param.add(keySupChannels, value);
345         } else {
346             param.add(keySupChannels, String8("AUDIO_CHANNEL_OUT_STEREO"));
347         }
348     }
349 
350     return strdup(param.toString().string());
351 }
352 
getRateMultiplier() const353 uint32_t AudioStreamOut::getRateMultiplier() const
354 {
355     return (mIsEncoded) ? mSPDIFEncoder.getRateMultiplier() : 1;
356 }
357 
outputSampleRate() const358 uint32_t AudioStreamOut::outputSampleRate() const
359 {
360     return mInputSampleRate * getRateMultiplier();
361 }
362 
getBytesPerOutputFrame()363 int AudioStreamOut::getBytesPerOutputFrame()
364 {
365     return (mIsEncoded) ? mSPDIFEncoder.getBytesPerOutputFrame()
366         : (mInputChanCount * sizeof(int16_t));
367 }
368 
latency() const369 uint32_t AudioStreamOut::latency() const {
370     uint32_t uSecLatency = mInputNominalLatencyUSec;
371     uint32_t vcompDelay = mOwnerHAL.getVideoDelayCompUsec();
372 
373     if (uSecLatency < vcompDelay)
374         return 0;
375 
376     return ((uSecLatency - vcompDelay) / 1000);
377 }
378 
379 // Used to implement get_presentation_position() for Audio HAL.
380 // According to the prototype in audio.h, the frame count should not get
381 // reset on standby().
getPresentationPosition(uint64_t * frames,struct timespec * timestamp)382 status_t AudioStreamOut::getPresentationPosition(uint64_t *frames,
383         struct timespec *timestamp)
384 {
385     Mutex::Autolock _l(mRoutingLock);
386     status_t result = -ENODEV;
387     // The presentation timestamp should be the same for all devices.
388     // Also Molly only has one output device at the moment.
389     // So just use the first one in the list.
390     if (!mPhysOutputs.isEmpty()) {
391         const unsigned int kInsaneAvail = 10 * 48000;
392         unsigned int avail = 0;
393         sp<AudioOutput> audioOutput = mPhysOutputs.itemAt(0);
394         if (audioOutput->getHardwareTimestamp(&avail, timestamp) == 0) {
395             if (avail < kInsaneAvail) {
396                 // FIXME av sync fudge factor
397                 // Use a fudge factor to account for hidden buffering in the
398                 // HDMI output path. This is a hack until we can determine the
399                 // actual buffer sizes.
400                 // Increasing kFudgeMSec will move the audio earlier in
401                 // relation to the video.
402                 const int kFudgeMSec = 50;
403                 int fudgeFrames = kFudgeMSec * sampleRate() / 1000;
404 
405                 // Scale the frames in the driver because it might be running at
406                 // a higher rate for EAC3.
407                 int64_t framesInDriverBuffer =
408                     (int64_t)audioOutput->getKernelBufferSize() - (int64_t)avail;
409                 framesInDriverBuffer = framesInDriverBuffer / getRateMultiplier();
410 
411                 int64_t pendingFrames = framesInDriverBuffer + fudgeFrames;
412                 int64_t signedFrames = mFramesPresented - pendingFrames;
413                 if (pendingFrames < 0) {
414                     ALOGE("getPresentationPosition: negative pendingFrames = %lld",
415                         pendingFrames);
416                 } else if (signedFrames < 0) {
417                     ALOGI("getPresentationPosition: playing silent preroll"
418                         ", mFramesPresented = %llu, pendingFrames = %lld",
419                         mFramesPresented, pendingFrames);
420                 } else {
421 #if HAL_PRINT_TIMESTAMP_CSV
422                     // Print comma separated values for spreadsheet analysis.
423                     uint64_t nanos = (((uint64_t)timestamp->tv_sec) * 1000000000L)
424                             + timestamp->tv_nsec;
425                     ALOGI("getPresentationPosition, %lld, %4u, %lld, %llu",
426                             mFramesPresented, avail, signedFrames, nanos);
427 #endif
428                     *frames = (uint64_t) signedFrames;
429                     result = NO_ERROR;
430                 }
431             } else {
432                 ALOGE("getPresentationPosition: avail too large = %u", avail);
433             }
434         } else {
435             ALOGE("getPresentationPosition: getHardwareTimestamp returned non-zero");
436         }
437     } else {
438         ALOGVV("getPresentationPosition: no physical outputs! This HAL is inactive!");
439     }
440     return result;
441 }
442 
getRenderPosition(__unused uint32_t * dspFrames)443 status_t AudioStreamOut::getRenderPosition(__unused uint32_t *dspFrames)
444 {
445     if (dspFrames == NULL) {
446         return -EINVAL;
447     }
448     if (mPhysOutputs.isEmpty()) {
449         *dspFrames = 0;
450         return -ENODEV;
451     }
452     *dspFrames = (uint32_t) mFramesRendered;
453     return NO_ERROR;
454 }
455 
updateTargetOutputs()456 void AudioStreamOut::updateTargetOutputs()
457 {
458     Mutex::Autolock _l(mRoutingLock);
459 
460     AudioOutputList::iterator I;
461     uint32_t cur_outputs = 0;
462 
463     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I)
464         cur_outputs |= (*I)->devMask();
465 
466     if (cur_outputs == mTgtDevices)
467         return;
468 
469     uint32_t outputsToObtain  = mTgtDevices & ~cur_outputs;
470     uint32_t outputsToRelease = cur_outputs & ~mTgtDevices;
471 
472     // Start by releasing any outputs we should no longer have back to the HAL.
473     if (outputsToRelease) {
474 
475         I = mPhysOutputs.begin();
476         while (I != mPhysOutputs.end()) {
477             if (!(outputsToRelease & (*I)->devMask())) {
478                 ++I;
479                 continue;
480             }
481 
482             outputsToRelease &= ~((*I)->devMask());
483             mOwnerHAL.releaseOutput(*this, *I);
484             I = mPhysOutputs.erase(I);
485         }
486     }
487 
488     if (outputsToRelease) {
489         ALOGW("Bookkeeping error!  Still have outputs to release (%08x), but"
490               " none of them appear to be in the mPhysOutputs list!",
491               outputsToRelease);
492     }
493 
494     // Now attempt to obtain any outputs we should be using, but are not
495     // currently.
496     if (outputsToObtain) {
497         uint32_t mask;
498 
499         // Buffer configuration may need updating now that we have decoded
500         // the start of a stream. For example, EAC3, needs 4X sampleRate.
501         updateInputNums();
502 
503         for (mask = 0x1; outputsToObtain; mask <<= 1) {
504             if (!(mask & outputsToObtain))
505                 continue;
506 
507             sp<AudioOutput> newOutput;
508             status_t res;
509 
510             res = mOwnerHAL.obtainOutput(*this, mask, &newOutput);
511             outputsToObtain &= ~mask;
512 
513             if (OK != res) {
514                 // If we get an error back from obtain output, it means that
515                 // something went really wrong at a lower level (probably failed
516                 // to open the driver).  We should not try to obtain this output
517                 // again, at least until the next routing change.
518                 ALOGW("Failed to obtain output %08x for %s audio stream out."
519                       " (res %d)", mask, getName(), res);
520                 mTgtDevices &= ~mask;
521                 continue;
522             }
523 
524             if (newOutput != NULL) {
525                 // If we actually got an output, go ahead and add it to our list
526                 // of physical outputs.  The rest of the system will handle
527                 // starting it up.  If we didn't get an output, but also go no
528                 // error code, it just means that the output is currently busy
529                 // and should become available soon.
530                 ALOGI("updateTargetOutputs: adding output back to mPhysOutputs");
531                 mPhysOutputs.push_back(newOutput);
532             }
533         }
534     }
535 }
536 
adjustOutputs(int64_t maxTime)537 void AudioStreamOut::adjustOutputs(int64_t maxTime)
538 {
539     int64_t a_zero_original = mLocalTimeToFrames.a_zero;
540     int64_t b_zero_original = mLocalTimeToFrames.b_zero;
541     AudioOutputList::iterator I;
542 
543     // Check to see if any outputs are active and see what their buffer levels
544     // are.
545     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
546         if ((*I)->getState() == AudioOutput::DMA_START) {
547             int64_t lastWriteTS = (*I)->getLastNextWriteTS();
548             int64_t padAmt;
549 
550             mLocalTimeToFrames.a_zero = lastWriteTS;
551             mLocalTimeToFrames.b_zero = 0;
552             if (mLocalTimeToFrames.doForwardTransform(maxTime,
553                                                       &padAmt)) {
554                 (*I)->adjustDelay(((int32_t)padAmt));
555             }
556         }
557     }
558     // Restore original offset so that the sleep time calculation for
559     // throttling is not broken in finishedWriteOp().
560     mLocalTimeToFrames.a_zero = a_zero_original;
561     mLocalTimeToFrames.b_zero = b_zero_original;
562 }
563 
write(const void * buffer,size_t bytes)564 ssize_t AudioStreamOut::write(const void* buffer, size_t bytes)
565 {
566     uint8_t *data = (uint8_t *)buffer;
567     ALOGVV("AudioStreamOut::write(%u)   0x%02X, 0x%02X, 0x%02X, 0x%02X,"
568           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
569           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
570           " 0x%02X, 0x%02X, 0x%02X, 0x%02X ====",
571         bytes, data[0], data[1], data[2], data[3],
572         data[4], data[5], data[6], data[7],
573         data[8], data[9], data[10], data[11],
574         data[12], data[13], data[14], data[15]
575         );
576     if (mIsEncoded) {
577         return mSPDIFEncoder.write(buffer, bytes);
578     } else {
579         return writeInternal(buffer, bytes);
580     }
581 }
582 
writeInternal(const void * buffer,size_t bytes)583 ssize_t AudioStreamOut::writeInternal(const void* buffer, size_t bytes)
584 {
585     uint8_t *data = (uint8_t *)buffer;
586     ALOGVV("AudioStreamOut::write_l(%u) 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
587           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
588           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
589           " 0x%02X, 0x%02X, 0x%02X, 0x%02X",
590         bytes, data[0], data[1], data[2], data[3],
591         data[4], data[5], data[6], data[7],
592         data[8], data[9], data[10], data[11],
593         data[12], data[13], data[14], data[15]
594         );
595 
596     // Note: no lock is obtained here.  Calls to write and getNextWriteTimestamp
597     // happen only on the AudioFlinger mixer thread which owns this particular
598     // output stream, so there is no need to worry that there will be two
599     // threads in this instance method concurrently.
600     //
601     // In addition, only calls to write change the contents of the mPhysOutputs
602     // collection (during the call to updateTargetOutputs).  updateTargetOutputs
603     // will hold the routing lock during the operation, as should any reader of
604     // mPhysOutputs, unless the reader is a call to write or
605     // getNextWriteTimestamp (we know that it is safe for write and gnwt to read
606     // the collection because the only collection mutator is the same thread
607     // which calls write and gnwt).
608 
609     // If the stream is in standby, then the first write should bring it out
610     // of standby
611     if (mInStandby) {
612         mOwnerHAL.standbyStatusUpdate(false, mIsMCOutput);
613         mInStandby = false;
614     }
615 
616     updateTargetOutputs();
617 
618     // If any of our outputs is in the PRIMED state when ::write is called, it
619     // means one of two things.  First, it could be that the DMA output really
620     // has not started yet.  This is odd, but certainly not impossible.  The
621     // other possibility is that AudioFlinger is in its silence-pushing mode and
622     // is not calling getNextWriteTimestamp.  After an output is primed, its in
623     // GNWTS where the amt of padding to compensate for different DMA start
624     // times is taken into account.  Go ahead and force a call to GNWTS, just to
625     // be certain that we have checked recently and are not stuck in silence
626     // fill mode.  Failure to do this will cause the AudioOutput state machine
627     // to eventually give up on DMA starting and reset the output over and over
628     // again (spamming the log and producing general confusion).
629     //
630     // While we are in the process of checking our various output states, check
631     // to see if any outputs have made it to the ACTIVE state.  Pass this
632     // information along to the call to processOneChunk.  If any of our outputs
633     // are waiting to be primed while other outputs have made it to steady
634     // state, we need to change our priming behavior slightly.  Instead of
635     // filling an output's buffer completely, we want to fill it to slightly
636     // less than full and let the adjustDelay mechanism take care of the rest.
637     //
638     // Failure to do this during steady state operation will almost certainly
639     // lead to the new output being over-filled relative to the other outputs
640     // causing it to be slightly out of sync.
641     AudioOutputList::iterator I;
642     bool checkDMAStart = false;
643     bool hasActiveOutputs = false;
644     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
645         if (AudioOutput::PRIMED == (*I)->getState())
646             checkDMAStart = true;
647 
648         if ((*I)->getState() == AudioOutput::ACTIVE)
649             hasActiveOutputs = true;
650     }
651 
652     if (checkDMAStart) {
653         int64_t junk;
654         getNextWriteTimestamp_internal(&junk);
655     }
656 
657     // We always call processOneChunk on the outputs, as it is the
658     // tick for their state machines.
659     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
660         (*I)->processOneChunk((uint8_t *)buffer, bytes, hasActiveOutputs);
661     }
662 
663     // If we don't actually have any physical outputs to write to, just sleep
664     // for the proper amt of time in order to simulate the throttle that writing
665     // to the hardware would impose.
666     finishedWriteOp(bytes / getBytesPerOutputFrame(), (0 == mPhysOutputs.size()));
667 
668     return static_cast<ssize_t>(bytes);
669 }
670 
getNextWriteTimestamp(int64_t * timestamp)671 status_t AudioStreamOut::getNextWriteTimestamp(int64_t *timestamp)
672 {
673     return getNextWriteTimestamp_internal(timestamp);
674 }
675 
getNextWriteTimestamp_internal(int64_t * timestamp)676 status_t AudioStreamOut::getNextWriteTimestamp_internal(
677         int64_t *timestamp)
678 {
679     int64_t max_time = LLONG_MIN;
680     bool    max_time_valid = false;
681     bool    need_adjust = false;
682 
683     // Across all of our physical outputs, figure out the max time when
684     // a write operation will hit the speakers.  Assume that if an
685     // output cannot answer the question, its because it has never
686     // started or because it has recently underflowed and needs to be
687     // restarted.  If this is the case, we will need to prime the
688     // pipeline with a chunk's worth of data before proceeding.
689     // If any of the outputs indicate a discontinuity (meaning that the
690     // DMA start time was valid and is now invalid, or was and is valid
691     // but was different from before; almost certainly caused by a low
692     // level underfow), then just stop now.  We will need to reset and
693     // re-prime all of the outputs in order to make certain that the
694     // lead-times on all of the outputs match.
695 
696     AudioOutputList::iterator I;
697     bool discon = false;
698 
699     // Find the largest next write timestamp. The goal is to make EVERY
700     // output have the same value, but we also need this to pass back
701     // up the layers.
702     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
703         int64_t tmp;
704         if (OK == (*I)->getNextWriteTimestamp(&tmp, &discon)) {
705             if (!max_time_valid || (max_time < tmp)) {
706                 max_time = tmp;
707                 max_time_valid = true;
708             }
709         }
710     }
711 
712     // Check the state of each output and determine if we need to align them.
713     // Make sure to do this after we have called each outputs'
714     // getNextWriteTimestamp as the transition from PRIMED to DMA_START happens
715     // there.
716     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
717         if ((*I)->getState() == AudioOutput::DMA_START) {
718             need_adjust = true;
719             break;
720         }
721     }
722 
723     // At this point, if we still have not found at least one output
724     // who knows when their data is going to hit the speakers, then we
725     // just can't answer the getNextWriteTimestamp question and we
726     // should give up.
727     if (!max_time_valid) {
728         return INVALID_OPERATION;
729     }
730 
731     // Stuff silence into the non-aligned outputs so that the effective
732     // timestamp is the same for all the outputs.
733     if (need_adjust)
734         adjustOutputs(max_time);
735 
736     // We are done. The time at which the next written audio should
737     // hit the speakers is just max_time plus the maximum amt of delay
738     // compensation in the system.
739     *timestamp = max_time;
740     return OK;
741 }
742 
743 #define DUMP(a...) \
744     snprintf(buffer, SIZE, a); \
745     buffer[SIZE - 1] = 0; \
746     result.append(buffer);
747 #define B2STR(b) b ? "true" : "false"
748 
dump(int fd)749 status_t AudioStreamOut::dump(int fd)
750 {
751     const size_t SIZE = 256;
752     char buffer[SIZE];
753     String8 result;
754     DUMP("\n%s AudioStreamOut::dump\n", getName());
755     DUMP("\tsample rate            : %d\n", sampleRate());
756     DUMP("\tbuffer size            : %d\n", bufferSize());
757     DUMP("\tchannel mask           : 0x%04x\n", chanMask());
758     DUMP("\tformat                 : %d\n", format());
759     DUMP("\tdevice mask            : 0x%04x\n", mTgtDevices);
760     DUMP("\tIn standby             : %s\n", mInStandby? "yes" : "no");
761 
762     mRoutingLock.lock();
763     AudioOutputList outSnapshot(mPhysOutputs);
764     mRoutingLock.unlock();
765 
766     AudioOutputList::iterator I;
767     for (I = outSnapshot.begin(); I != outSnapshot.end(); ++I)
768         (*I)->dump(result);
769 
770     ::write(fd, result.string(), result.size());
771 
772     return NO_ERROR;
773 }
774 
775 #undef B2STR
776 #undef DUMP
777 
778 }  // android
779