1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18 #define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19 
20 #include "dex/compiler_internals.h"
21 #include "x86_lir.h"
22 
23 #include <map>
24 
25 namespace art {
26 
27 class X86Mir2Lir : public Mir2Lir {
28  protected:
29   class InToRegStorageMapper {
30    public:
31     virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
~InToRegStorageMapper()32     virtual ~InToRegStorageMapper() {}
33   };
34 
35   class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36    public:
InToRegStorageX86_64Mapper(Mir2Lir * ml)37     explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
~InToRegStorageX86_64Mapper()38     virtual ~InToRegStorageX86_64Mapper() {}
39     virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40    protected:
41     Mir2Lir* ml_;
42    private:
43     int cur_core_reg_;
44     int cur_fp_reg_;
45   };
46 
47   class InToRegStorageMapping {
48    public:
InToRegStorageMapping()49     InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50     initialized_(false) {}
51     void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
GetMaxMappedIn()52     int GetMaxMappedIn() { return max_mapped_in_; }
IsThereStackMapped()53     bool IsThereStackMapped() { return is_there_stack_mapped_; }
54     RegStorage Get(int in_position);
IsInitialized()55     bool IsInitialized() { return initialized_; }
56    private:
57     std::map<int, RegStorage> mapping_;
58     int max_mapped_in_;
59     bool is_there_stack_mapped_;
60     bool initialized_;
61   };
62 
63  public:
64   X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65 
66   // Required for target - codegen helpers.
67   bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                           RegLocation rl_dest, int lit) OVERRIDE;
69   bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70   LIR* CheckSuspendUsingLoad() OVERRIDE;
71   RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE;
72   LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
73                     OpSize size, VolatileKind is_volatile) OVERRIDE;
74   LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
75                        OpSize size) OVERRIDE;
76   LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
77   LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
78   LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
79                      OpSize size, VolatileKind is_volatile) OVERRIDE;
80   LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
81                         OpSize size) OVERRIDE;
82   void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) OVERRIDE;
83   void GenImplicitNullCheck(RegStorage reg, int opt_flags) OVERRIDE;
84 
85   // Required for target - register utilities.
86   RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
TargetReg(SpecialTargetRegister symbolic_reg,WideKind wide_kind)87   RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
88     if (wide_kind == kWide) {
89       if (cu_->target64) {
90         return As64BitReg(TargetReg32(symbolic_reg));
91       } else {
92         // x86: construct a pair.
93         DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
94                (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
95                (kRet0 == symbolic_reg));
96         return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
97                                  TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
98       }
99     } else if (wide_kind == kRef && cu_->target64) {
100       return As64BitReg(TargetReg32(symbolic_reg));
101     } else {
102       return TargetReg32(symbolic_reg);
103     }
104   }
TargetPtrReg(SpecialTargetRegister symbolic_reg)105   RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
106     return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
107   }
108 
109   RegStorage GetArgMappingToPhysicalReg(int arg_num) OVERRIDE;
110 
111   RegLocation GetReturnAlt() OVERRIDE;
112   RegLocation GetReturnWideAlt() OVERRIDE;
113   RegLocation LocCReturn() OVERRIDE;
114   RegLocation LocCReturnRef() OVERRIDE;
115   RegLocation LocCReturnDouble() OVERRIDE;
116   RegLocation LocCReturnFloat() OVERRIDE;
117   RegLocation LocCReturnWide() OVERRIDE;
118 
119   ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
120   void AdjustSpillMask() OVERRIDE;
121   void ClobberCallerSave() OVERRIDE;
122   void FreeCallTemps() OVERRIDE;
123   void LockCallTemps() OVERRIDE;
124 
125   void CompilerInitializeRegAlloc() OVERRIDE;
126   int VectorRegisterSize() OVERRIDE;
127   int NumReservableVectorRegisters(bool fp_used) OVERRIDE;
128 
129   // Required for target - miscellaneous.
130   void AssembleLIR() OVERRIDE;
131   void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
132   void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
133                                 ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
134   const char* GetTargetInstFmt(int opcode) OVERRIDE;
135   const char* GetTargetInstName(int opcode) OVERRIDE;
136   std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) OVERRIDE;
137   ResourceMask GetPCUseDefEncoding() const OVERRIDE;
138   uint64_t GetTargetInstFlags(int opcode) OVERRIDE;
139   size_t GetInsnSize(LIR* lir) OVERRIDE;
140   bool IsUnconditionalBranch(LIR* lir) OVERRIDE;
141 
142   // Get the register class for load/store of a field.
143   RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
144 
145   // Required for target - Dalvik-level generators.
146   void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
147                    RegLocation rl_dest, int scale) OVERRIDE;
148   void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
149                    RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) OVERRIDE;
150 
151   void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
152                         RegLocation rl_src2) OVERRIDE;
153   void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
154                        RegLocation rl_src2) OVERRIDE;
155   void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
156                 RegLocation rl_src2) OVERRIDE;
157   void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
158 
159   bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) OVERRIDE;
160   bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) OVERRIDE;
161   bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) OVERRIDE;
162   bool GenInlinedSqrt(CallInfo* info) OVERRIDE;
163   bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
164   bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
165   bool GenInlinedPeek(CallInfo* info, OpSize size) OVERRIDE;
166   bool GenInlinedPoke(CallInfo* info, OpSize size) OVERRIDE;
167   bool GenInlinedCharAt(CallInfo* info) OVERRIDE;
168 
169   // Long instructions.
170   void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
171                       RegLocation rl_src2) OVERRIDE;
172   void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
173                          RegLocation rl_src2) OVERRIDE;
174   void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
175                          RegLocation rl_src1, RegLocation rl_shift) OVERRIDE;
176   void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE;
177   void GenIntToLong(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
178   void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
179                       RegLocation rl_src1, RegLocation rl_shift) OVERRIDE;
180 
181   /*
182    * @brief Generate a two address long operation with a constant value
183    * @param rl_dest location of result
184    * @param rl_src constant source operand
185    * @param op Opcode to be generated
186    * @return success or not
187    */
188   bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
189 
190   /*
191    * @brief Generate a three address long operation with a constant value
192    * @param rl_dest location of result
193    * @param rl_src1 source operand
194    * @param rl_src2 constant source operand
195    * @param op Opcode to be generated
196    * @return success or not
197    */
198   bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
199                       Instruction::Code op);
200   /**
201    * @brief Generate a long arithmetic operation.
202    * @param rl_dest The destination.
203    * @param rl_src1 First operand.
204    * @param rl_src2 Second operand.
205    * @param op The DEX opcode for the operation.
206    * @param is_commutative The sources can be swapped if needed.
207    */
208   virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
209                             Instruction::Code op, bool is_commutative);
210 
211   /**
212    * @brief Generate a two operand long arithmetic operation.
213    * @param rl_dest The destination.
214    * @param rl_src Second operand.
215    * @param op The DEX opcode for the operation.
216    */
217   void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
218 
219   /**
220    * @brief Generate a long operation.
221    * @param rl_dest The destination.  Must be in a register
222    * @param rl_src The other operand.  May be in a register or in memory.
223    * @param op The DEX opcode for the operation.
224    */
225   virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
226 
227 
228   // TODO: collapse reg_lo, reg_hi
229   RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div)
230       OVERRIDE;
231   RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) OVERRIDE;
232   void GenDivZeroCheckWide(RegStorage reg) OVERRIDE;
233   void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE;
234   void GenExitSequence() OVERRIDE;
235   void GenSpecialExitSequence() OVERRIDE;
236   void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) OVERRIDE;
237   void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) OVERRIDE;
238   void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) OVERRIDE;
239   void GenSelect(BasicBlock* bb, MIR* mir) OVERRIDE;
240   void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
241                         int32_t true_val, int32_t false_val, RegStorage rs_dest,
242                         int dest_reg_class) OVERRIDE;
243   bool GenMemBarrier(MemBarrierKind barrier_kind) OVERRIDE;
244   void GenMoveException(RegLocation rl_dest) OVERRIDE;
245   void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
246                                      int first_bit, int second_bit) OVERRIDE;
247   void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
248   void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
249   void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
250   void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
251 
252   /**
253    * @brief Implement instanceof a final class with x86 specific code.
254    * @param use_declaring_class 'true' if we can use the class itself.
255    * @param type_idx Type index to use if use_declaring_class is 'false'.
256    * @param rl_dest Result to be set to 0 or 1.
257    * @param rl_src Object to be tested.
258    */
259   void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
260                           RegLocation rl_src) OVERRIDE;
261 
262   // Single operation generators.
263   LIR* OpUnconditionalBranch(LIR* target) OVERRIDE;
264   LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) OVERRIDE;
265   LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) OVERRIDE;
266   LIR* OpCondBranch(ConditionCode cc, LIR* target) OVERRIDE;
267   LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) OVERRIDE;
268   LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
269   LIR* OpIT(ConditionCode cond, const char* guide) OVERRIDE;
270   void OpEndIT(LIR* it) OVERRIDE;
271   LIR* OpMem(OpKind op, RegStorage r_base, int disp) OVERRIDE;
272   LIR* OpPcRelLoad(RegStorage reg, LIR* target) OVERRIDE;
273   LIR* OpReg(OpKind op, RegStorage r_dest_src) OVERRIDE;
274   void OpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
275   LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) OVERRIDE;
276   LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) OVERRIDE;
277   LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) OVERRIDE;
278   LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) OVERRIDE;
279   LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) OVERRIDE;
280   LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) OVERRIDE;
281   LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) OVERRIDE;
282   LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) OVERRIDE;
283   LIR* OpTestSuspend(LIR* target) OVERRIDE;
284   LIR* OpVldm(RegStorage r_base, int count) OVERRIDE;
285   LIR* OpVstm(RegStorage r_base, int count) OVERRIDE;
286   void OpRegCopyWide(RegStorage dest, RegStorage src) OVERRIDE;
287   bool GenInlinedCurrentThread(CallInfo* info) OVERRIDE;
288 
289   bool InexpensiveConstantInt(int32_t value) OVERRIDE;
290   bool InexpensiveConstantFloat(int32_t value) OVERRIDE;
291   bool InexpensiveConstantLong(int64_t value) OVERRIDE;
292   bool InexpensiveConstantDouble(int64_t value) OVERRIDE;
293 
294   /*
295    * @brief Should try to optimize for two address instructions?
296    * @return true if we try to avoid generating three operand instructions.
297    */
GenerateTwoOperandInstructions()298   virtual bool GenerateTwoOperandInstructions() const { return true; }
299 
300   /*
301    * @brief x86 specific codegen for int operations.
302    * @param opcode Operation to perform.
303    * @param rl_dest Destination for the result.
304    * @param rl_lhs Left hand operand.
305    * @param rl_rhs Right hand operand.
306    */
307   void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
308                      RegLocation rl_rhs) OVERRIDE;
309 
310   /*
311    * @brief Load the Method* of a dex method into the register.
312    * @param target_method The MethodReference of the method to be invoked.
313    * @param type How the method will be invoked.
314    * @param register that will contain the code address.
315    * @note register will be passed to TargetReg to get physical register.
316    */
317   void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
318                          SpecialTargetRegister symbolic_reg) OVERRIDE;
319 
320   /*
321    * @brief Load the Class* of a Dex Class type into the register.
322    * @param type How the method will be invoked.
323    * @param register that will contain the code address.
324    * @note register will be passed to TargetReg to get physical register.
325    */
326   void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) OVERRIDE;
327 
328   void FlushIns(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE;
329 
330   int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
331                            NextCallInsn next_call_insn,
332                            const MethodReference& target_method,
333                            uint32_t vtable_idx,
334                            uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
335                            bool skip_this) OVERRIDE;
336 
337   int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
338                          NextCallInsn next_call_insn,
339                          const MethodReference& target_method,
340                          uint32_t vtable_idx,
341                          uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
342                          bool skip_this) OVERRIDE;
343 
344   /*
345    * @brief Generate a relative call to the method that will be patched at link time.
346    * @param target_method The MethodReference of the method to be invoked.
347    * @param type How the method will be invoked.
348    * @returns Call instruction
349    */
350   virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
351 
352   /*
353    * @brief Handle x86 specific literals
354    */
355   void InstallLiteralPools() OVERRIDE;
356 
357   /*
358    * @brief Generate the debug_frame CFI information.
359    * @returns pointer to vector containing CFE information
360    */
361   static std::vector<uint8_t>* ReturnCommonCallFrameInformation(bool is_x86_64);
362 
363   /*
364    * @brief Generate the debug_frame FDE information.
365    * @returns pointer to vector containing CFE information
366    */
367   std::vector<uint8_t>* ReturnCallFrameInformation() OVERRIDE;
368 
369   LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE;
370 
371  protected:
372   RegStorage TargetReg32(SpecialTargetRegister reg);
373   // Casting of RegStorage
As32BitReg(RegStorage reg)374   RegStorage As32BitReg(RegStorage reg) {
375     DCHECK(!reg.IsPair());
376     if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
377       if (kFailOnSizeError) {
378         LOG(FATAL) << "Expected 64b register " << reg.GetReg();
379       } else {
380         LOG(WARNING) << "Expected 64b register " << reg.GetReg();
381         return reg;
382       }
383     }
384     RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
385                                     reg.GetRawBits() & RegStorage::kRegTypeMask);
386     DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
387                              ->GetReg().GetReg(),
388               ret_val.GetReg());
389     return ret_val;
390   }
391 
As64BitReg(RegStorage reg)392   RegStorage As64BitReg(RegStorage reg) {
393     DCHECK(!reg.IsPair());
394     if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
395       if (kFailOnSizeError) {
396         LOG(FATAL) << "Expected 32b register " << reg.GetReg();
397       } else {
398         LOG(WARNING) << "Expected 32b register " << reg.GetReg();
399         return reg;
400       }
401     }
402     RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
403                                     reg.GetRawBits() & RegStorage::kRegTypeMask);
404     DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
405                              ->GetReg().GetReg(),
406               ret_val.GetReg());
407     return ret_val;
408   }
409 
410   LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
411                            RegStorage r_dest, OpSize size);
412   LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
413                             RegStorage r_src, OpSize size);
414 
415   RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
416 
417   int AssignInsnOffsets();
418   void AssignOffsets();
419   AssemblerStatus AssembleInstructions(CodeOffset start_addr);
420 
421   size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
422                      int32_t raw_base, int32_t displacement);
423   void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
424   void EmitPrefix(const X86EncodingMap* entry,
425                   int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
426   void EmitOpcode(const X86EncodingMap* entry);
427   void EmitPrefixAndOpcode(const X86EncodingMap* entry,
428                            int32_t reg_r, int32_t reg_x, int32_t reg_b);
429   void EmitDisp(uint8_t base, int32_t disp);
430   void EmitModrmThread(uint8_t reg_or_opcode);
431   void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
432   void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
433                         int32_t disp);
434   void EmitImm(const X86EncodingMap* entry, int64_t imm);
435   void EmitNullary(const X86EncodingMap* entry);
436   void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
437   void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
438   void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
439   void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
440                    int32_t disp);
441   void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
442   void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
443   void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
444                     int32_t raw_index, int scale, int32_t disp);
445   void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
446                     int32_t disp, int32_t raw_reg);
447   void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
448   void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
449                     int32_t raw_disp, int32_t imm);
450   void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
451   void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
452   void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
453   void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
454                      int32_t imm);
455   void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
456                      int32_t imm);
457   void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
458   void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
459   void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
460   void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
461   void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
462   void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
463   void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
464   void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
465   void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
466   void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
467   void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
468                       int32_t cc);
469 
470   void EmitJmp(const X86EncodingMap* entry, int32_t rel);
471   void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
472   void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
473   void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
474   void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
475   void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
476                  int32_t raw_index, int scale, int32_t table_or_disp);
477   void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
478   void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
479   void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
480                                 int64_t val, ConditionCode ccode);
481   void GenConstWide(RegLocation rl_dest, int64_t value);
482   void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
483   void GenShiftByteVector(BasicBlock *bb, MIR *mir);
484   void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
485   void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
486   void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
487 
488   static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
489 
490   /*
491    * @brief Ensure that a temporary register is byte addressable.
492    * @returns a temporary guarenteed to be byte addressable.
493    */
494   virtual RegStorage AllocateByteRegister();
495 
496   /*
497    * @brief Use a wide temporary as a 128-bit register
498    * @returns a 128-bit temporary register.
499    */
500   virtual RegStorage Get128BitRegister(RegStorage reg);
501 
502   /*
503    * @brief Check if a register is byte addressable.
504    * @returns true if a register is byte addressable.
505    */
506   bool IsByteRegister(RegStorage reg);
507 
508   void GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src, int64_t imm, bool is_div);
509 
510   bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
511 
512   /*
513    * @brief generate inline code for fast case of Strng.indexOf.
514    * @param info Call parameters
515    * @param zero_based 'true' if the index into the string is 0.
516    * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
517    * generated.
518    */
519   bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
520 
521   /**
522    * @brief Reserve a fixed number of vector  registers from the register pool
523    * @details The mir->dalvikInsn.vA specifies an N such that vector registers
524    * [0..N-1] are removed from the temporary pool. The caller must call
525    * ReturnVectorRegisters before calling ReserveVectorRegisters again.
526    * Also sets the num_reserved_vector_regs_ to the specified value
527    * @param mir whose vA specifies the number of registers to reserve
528    */
529   void ReserveVectorRegisters(MIR* mir);
530 
531   /**
532    * @brief Return all the reserved vector registers to the temp pool
533    * @details Returns [0..num_reserved_vector_regs_]
534    */
535   void ReturnVectorRegisters();
536 
537   /*
538    * @brief Load 128 bit constant into vector register.
539    * @param bb The basic block in which the MIR is from.
540    * @param mir The MIR whose opcode is kMirConstVector
541    * @note vA is the TypeSize for the register.
542    * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
543    */
544   void GenConst128(BasicBlock* bb, MIR* mir);
545 
546   /*
547    * @brief MIR to move a vectorized register to another.
548    * @param bb The basic block in which the MIR is from.
549    * @param mir The MIR whose opcode is kMirConstVector.
550    * @note vA: TypeSize
551    * @note vB: destination
552    * @note vC: source
553    */
554   void GenMoveVector(BasicBlock *bb, MIR *mir);
555 
556   /*
557    * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
558    * @param bb The basic block in which the MIR is from.
559    * @param mir The MIR whose opcode is kMirConstVector.
560    * @note vA: TypeSize
561    * @note vB: destination and source
562    * @note vC: source
563    */
564   void GenMultiplyVector(BasicBlock *bb, MIR *mir);
565 
566   /*
567    * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
568    * @param bb The basic block in which the MIR is from.
569    * @param mir The MIR whose opcode is kMirConstVector.
570    * @note vA: TypeSize
571    * @note vB: destination and source
572    * @note vC: source
573    */
574   void GenAddVector(BasicBlock *bb, MIR *mir);
575 
576   /*
577    * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
578    * @param bb The basic block in which the MIR is from.
579    * @param mir The MIR whose opcode is kMirConstVector.
580    * @note vA: TypeSize
581    * @note vB: destination and source
582    * @note vC: source
583    */
584   void GenSubtractVector(BasicBlock *bb, MIR *mir);
585 
586   /*
587    * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
588    * @param bb The basic block in which the MIR is from.
589    * @param mir The MIR whose opcode is kMirConstVector.
590    * @note vA: TypeSize
591    * @note vB: destination and source
592    * @note vC: immediate
593    */
594   void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
595 
596   /*
597    * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
598    * @param bb The basic block in which the MIR is from.
599    * @param mir The MIR whose opcode is kMirConstVector.
600    * @note vA: TypeSize
601    * @note vB: destination and source
602    * @note vC: immediate
603    */
604   void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
605 
606   /*
607    * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
608    * @param bb The basic block in which the MIR is from..
609    * @param mir The MIR whose opcode is kMirConstVector.
610    * @note vA: TypeSize
611    * @note vB: destination and source
612    * @note vC: immediate
613    */
614   void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
615 
616   /*
617    * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
618    * @note vA: TypeSize
619    * @note vB: destination and source
620    * @note vC: source
621    */
622   void GenAndVector(BasicBlock *bb, MIR *mir);
623 
624   /*
625    * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
626    * @param bb The basic block in which the MIR is from.
627    * @param mir The MIR whose opcode is kMirConstVector.
628    * @note vA: TypeSize
629    * @note vB: destination and source
630    * @note vC: source
631    */
632   void GenOrVector(BasicBlock *bb, MIR *mir);
633 
634   /*
635    * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
636    * @param bb The basic block in which the MIR is from.
637    * @param mir The MIR whose opcode is kMirConstVector.
638    * @note vA: TypeSize
639    * @note vB: destination and source
640    * @note vC: source
641    */
642   void GenXorVector(BasicBlock *bb, MIR *mir);
643 
644   /*
645    * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
646    * @param bb The basic block in which the MIR is from.
647    * @param mir The MIR whose opcode is kMirConstVector.
648    * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
649    * @note vA: TypeSize
650    * @note vB: destination and source VR (not vector register)
651    * @note vC: source (vector register)
652    */
653   void GenAddReduceVector(BasicBlock *bb, MIR *mir);
654 
655   /*
656    * @brief Extract a packed element into a single VR.
657    * @param bb The basic block in which the MIR is from.
658    * @param mir The MIR whose opcode is kMirConstVector.
659    * @note vA: TypeSize
660    * @note vB: destination VR (not vector register)
661    * @note vC: source (vector register)
662    * @note arg[0]: The index to use for extraction from vector register (which packed element).
663    */
664   void GenReduceVector(BasicBlock *bb, MIR *mir);
665 
666   /*
667    * @brief Create a vector value, with all TypeSize values equal to vC
668    * @param bb The basic block in which the MIR is from.
669    * @param mir The MIR whose opcode is kMirConstVector.
670    * @note vA: TypeSize.
671    * @note vB: destination vector register.
672    * @note vC: source VR (not vector register).
673    */
674   void GenSetVector(BasicBlock *bb, MIR *mir);
675 
676   /*
677    * @brief Generate code for a vector opcode.
678    * @param bb The basic block in which the MIR is from.
679    * @param mir The MIR whose opcode is a non-standard opcode.
680    */
681   void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
682 
683   /*
684    * @brief Return the correct x86 opcode for the Dex operation
685    * @param op Dex opcode for the operation
686    * @param loc Register location of the operand
687    * @param is_high_op 'true' if this is an operation on the high word
688    * @param value Immediate value for the operation.  Used for byte variants
689    * @returns the correct x86 opcode to perform the operation
690    */
691   X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
692 
693   /*
694    * @brief Return the correct x86 opcode for the Dex operation
695    * @param op Dex opcode for the operation
696    * @param dest location of the destination.  May be register or memory.
697    * @param rhs Location for the rhs of the operation.  May be in register or memory.
698    * @param is_high_op 'true' if this is an operation on the high word
699    * @returns the correct x86 opcode to perform the operation
700    * @note at most one location may refer to memory
701    */
702   X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
703                       bool is_high_op);
704 
705   /*
706    * @brief Is this operation a no-op for this opcode and value
707    * @param op Dex opcode for the operation
708    * @param value Immediate value for the operation.
709    * @returns 'true' if the operation will have no effect
710    */
711   bool IsNoOp(Instruction::Code op, int32_t value);
712 
713   /**
714    * @brief Calculate magic number and shift for a given divisor
715    * @param divisor divisor number for calculation
716    * @param magic hold calculated magic number
717    * @param shift hold calculated shift
718    * @param is_long 'true' if divisor is jlong, 'false' for jint.
719    */
720   void CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long);
721 
722   /*
723    * @brief Generate an integer div or rem operation.
724    * @param rl_dest Destination Location.
725    * @param rl_src1 Numerator Location.
726    * @param rl_src2 Divisor Location.
727    * @param is_div 'true' if this is a division, 'false' for a remainder.
728    * @param check_zero 'true' if an exception should be generated if the divisor is 0.
729    */
730   RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
731                         bool is_div, bool check_zero);
732 
733   /*
734    * @brief Generate an integer div or rem operation by a literal.
735    * @param rl_dest Destination Location.
736    * @param rl_src Numerator Location.
737    * @param lit Divisor.
738    * @param is_div 'true' if this is a division, 'false' for a remainder.
739    */
740   RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
741 
742   /*
743    * Generate code to implement long shift operations.
744    * @param opcode The DEX opcode to specify the shift type.
745    * @param rl_dest The destination.
746    * @param rl_src The value to be shifted.
747    * @param shift_amount How much to shift.
748    * @returns the RegLocation of the result.
749    */
750   RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
751                                 RegLocation rl_src, int shift_amount);
752   /*
753    * Generate an imul of a register by a constant or a better sequence.
754    * @param dest Destination Register.
755    * @param src Source Register.
756    * @param val Constant multiplier.
757    */
758   void GenImulRegImm(RegStorage dest, RegStorage src, int val);
759 
760   /*
761    * Generate an imul of a memory location by a constant or a better sequence.
762    * @param dest Destination Register.
763    * @param sreg Symbolic register.
764    * @param displacement Displacement on stack of Symbolic Register.
765    * @param val Constant multiplier.
766    */
767   void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
768 
769   /*
770    * @brief Compare memory to immediate, and branch if condition true.
771    * @param cond The condition code that when true will branch to the target.
772    * @param temp_reg A temporary register that can be used if compare memory is not
773    * supported by the architecture.
774    * @param base_reg The register holding the base address.
775    * @param offset The offset from the base.
776    * @param check_value The immediate to compare to.
777    * @param target branch target (or nullptr)
778    * @param compare output for getting LIR for comparison (or nullptr)
779    */
780   LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
781                          int offset, int check_value, LIR* target, LIR** compare);
782 
783   void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
784 
785   /*
786    * Can this operation be using core registers without temporaries?
787    * @param rl_lhs Left hand operand.
788    * @param rl_rhs Right hand operand.
789    * @returns 'true' if the operation can proceed without needing temporary regs.
790    */
791   bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
792 
793   /**
794    * @brief Generates inline code for conversion of long to FP by using x87/
795    * @param rl_dest The destination of the FP.
796    * @param rl_src The source of the long.
797    * @param is_double 'true' if dealing with double, 'false' for float.
798    */
799   virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
800 
801   void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
802   void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
803 
804   LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
805   LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
806   LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
807   LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset);
808   LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset);
809   void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
810   void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
811   void OpTlsCmp(ThreadOffset<4> offset, int val);
812   void OpTlsCmp(ThreadOffset<8> offset, int val);
813 
814   void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
815 
816   // Try to do a long multiplication where rl_src2 is a constant. This simplified setup might fail,
817   // in which case false will be returned.
818   bool GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val);
819   void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
820                   RegLocation rl_src2);
821   void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
822   void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
823   void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
824                      RegLocation rl_src2, bool is_div);
825 
826   void SpillCoreRegs();
827   void UnSpillCoreRegs();
828   void UnSpillFPRegs();
829   void SpillFPRegs();
830 
831   /*
832    * @brief Perform MIR analysis before compiling method.
833    * @note Invokes Mir2LiR::Materialize after analysis.
834    */
835   void Materialize();
836 
837   /*
838    * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
839    * without regard to data type.  In practice, this can result in UpdateLoc returning a
840    * location record for a Dalvik float value in a core register, and vis-versa.  For targets
841    * which can inexpensively move data between core and float registers, this can often be a win.
842    * However, for x86 this is generally not a win.  These variants of UpdateLoc()
843    * take a register class argument - and will return an in-register location record only if
844    * the value is live in a temp register of the correct class.  Additionally, if the value is in
845    * a temp register of the wrong register class, it will be clobbered.
846    */
847   RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
848   RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
849 
850   /*
851    * @brief Analyze MIR before generating code, to prepare for the code generation.
852    */
853   void AnalyzeMIR();
854 
855   /*
856    * @brief Analyze one basic block.
857    * @param bb Basic block to analyze.
858    */
859   void AnalyzeBB(BasicBlock * bb);
860 
861   /*
862    * @brief Analyze one extended MIR instruction
863    * @param opcode MIR instruction opcode.
864    * @param bb Basic block containing instruction.
865    * @param mir Extended instruction to analyze.
866    */
867   void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
868 
869   /*
870    * @brief Analyze one MIR instruction
871    * @param opcode MIR instruction opcode.
872    * @param bb Basic block containing instruction.
873    * @param mir Instruction to analyze.
874    */
875   virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
876 
877   /*
878    * @brief Analyze one MIR float/double instruction
879    * @param opcode MIR instruction opcode.
880    * @param bb Basic block containing instruction.
881    * @param mir Instruction to analyze.
882    */
883   void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
884 
885   /*
886    * @brief Analyze one use of a double operand.
887    * @param rl_use Double RegLocation for the operand.
888    */
889   void AnalyzeDoubleUse(RegLocation rl_use);
890 
891   /*
892    * @brief Analyze one invoke-static MIR instruction
893    * @param opcode MIR instruction opcode.
894    * @param bb Basic block containing instruction.
895    * @param mir Instruction to analyze.
896    */
897   void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
898 
899   // Information derived from analysis of MIR
900 
901   // The compiler temporary for the code address of the method.
902   CompilerTemp *base_of_code_;
903 
904   // Have we decided to compute a ptr to code and store in temporary VR?
905   bool store_method_addr_;
906 
907   // Have we used the stored method address?
908   bool store_method_addr_used_;
909 
910   // Instructions to remove if we didn't use the stored method address.
911   LIR* setup_method_address_[2];
912 
913   // Instructions needing patching with Method* values.
914   GrowableArray<LIR*> method_address_insns_;
915 
916   // Instructions needing patching with Class Type* values.
917   GrowableArray<LIR*> class_type_address_insns_;
918 
919   // Instructions needing patching with PC relative code addresses.
920   GrowableArray<LIR*> call_method_insns_;
921 
922   // Prologue decrement of stack pointer.
923   LIR* stack_decrement_;
924 
925   // Epilogue increment of stack pointer.
926   LIR* stack_increment_;
927 
928   // The list of const vector literals.
929   LIR *const_vectors_;
930 
931   /*
932    * @brief Search for a matching vector literal
933    * @param mir A kMirOpConst128b MIR instruction to match.
934    * @returns pointer to matching LIR constant, or nullptr if not found.
935    */
936   LIR *ScanVectorLiteral(MIR *mir);
937 
938   /*
939    * @brief Add a constant vector literal
940    * @param mir A kMirOpConst128b MIR instruction to match.
941    */
942   LIR *AddVectorLiteral(MIR *mir);
943 
944   InToRegStorageMapping in_to_reg_storage_mapping_;
945 
WideGPRsAreAliases()946   bool WideGPRsAreAliases() OVERRIDE {
947     return cu_->target64;  // On 64b, we have 64b GPRs.
948   }
WideFPRsAreAliases()949   bool WideFPRsAreAliases() OVERRIDE {
950     return true;  // xmm registers have 64b views even on x86.
951   }
952 
953   /*
954    * @brief Dump a RegLocation using printf
955    * @param loc Register location to dump
956    */
957   static void DumpRegLocation(RegLocation loc);
958 
959   static const X86EncodingMap EncodingMap[kX86Last];
960 
961  private:
962   // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
963   int num_reserved_vector_regs_;
964 };
965 
966 }  // namespace art
967 
968 #endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
969