1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
18 #define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
19
20 namespace android {
21
22 /*
23 * generates a sine wave at equal steps.
24 *
25 * As most of our functions use sine or cosine at equal steps,
26 * it is very efficient to compute them that way (single multiply and subtract),
27 * rather than invoking the math library sin() or cos() each time.
28 *
29 * SineGen uses Goertzel's Algorithm (as a generator not a filter)
30 * to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep)
31 * by stepping through 0, 1, ... n.
32 *
33 * e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep)
34 *
35 * or looking at just the imaginary sine term, as the cosine follows identically:
36 *
37 * sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep)
38 *
39 * Goertzel's algorithm is more efficient than the angle addition formula,
40 * e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to
41 * 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and
42 * cosine generation due to the complex * complex multiply (full rotation).
43 *
44 * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
45 *
46 */
47
48 class SineGen {
49 public:
50 SineGen(double wstart, double wstep, bool cosine = false) {
51 if (cosine) {
52 mCurrent = cos(wstart);
53 mPrevious = cos(wstart - wstep);
54 } else {
55 mCurrent = sin(wstart);
56 mPrevious = sin(wstart - wstep);
57 }
58 mTwoCos = 2.*cos(wstep);
59 }
SineGen(double expNow,double expPrev,double twoCosStep)60 SineGen(double expNow, double expPrev, double twoCosStep) {
61 mCurrent = expNow;
62 mPrevious = expPrev;
63 mTwoCos = twoCosStep;
64 }
value()65 inline double value() const {
66 return mCurrent;
67 }
advance()68 inline void advance() {
69 double tmp = mCurrent;
70 mCurrent = mCurrent*mTwoCos - mPrevious;
71 mPrevious = tmp;
72 }
valueAdvance()73 inline double valueAdvance() {
74 double tmp = mCurrent;
75 mCurrent = mCurrent*mTwoCos - mPrevious;
76 mPrevious = tmp;
77 return tmp;
78 }
79
80 private:
81 double mCurrent; // current value of sine/cosine
82 double mPrevious; // previous value of sine/cosine
83 double mTwoCos; // stepping factor
84 };
85
86 /*
87 * generates a series of sine generators, phase offset by fixed steps.
88 *
89 * This is used to generate polyphase sine generators, one per polyphase
90 * in the filter code below.
91 *
92 * The SineGen returned by value() starts at innerStart = outerStart + n*outerStep;
93 * increments by innerStep.
94 *
95 */
96
97 class SineGenGen {
98 public:
99 SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false)
mSineInnerCur(outerStart,outerStep,cosine)100 : mSineInnerCur(outerStart, outerStep, cosine),
101 mSineInnerPrev(outerStart-innerStep, outerStep, cosine)
102 {
103 mTwoCos = 2.*cos(innerStep);
104 }
value()105 inline SineGen value() {
106 return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos);
107 }
advance()108 inline void advance() {
109 mSineInnerCur.advance();
110 mSineInnerPrev.advance();
111 }
valueAdvance()112 inline SineGen valueAdvance() {
113 return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos);
114 }
115
116 private:
117 SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep).
118 SineGen mSineInnerPrev; // generate the inner sine previous values
119 // (behind by innerStep, stepped by outerStep).
120 double mTwoCos; // the inner stepping factor for the returned SineGen.
121 };
122
sqr(double x)123 static inline double sqr(double x) {
124 return x * x;
125 }
126
127 /*
128 * rounds a double to the nearest integer for FIR coefficients.
129 *
130 * One variant uses noise shaping, which must keep error history
131 * to work (the err parameter, initialized to 0).
132 * The other variant is a non-noise shaped version for
133 * S32 coefficients (noise shaping doesn't gain much).
134 *
135 * Caution: No bounds saturation is applied, but isn't needed in this case.
136 *
137 * @param x is the value to round.
138 *
139 * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
140 * Typically this may be the maximum positive integer+1 (using the fact that double precision
141 * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
142 *
143 * @param err is the previous error (actual - rounded) for the previous rounding op.
144 * For 16b coefficients this can improve stopband dB performance by up to 2dB.
145 *
146 * Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping
147 *
148 */
149
toint(double x,int64_t maxval,double & err)150 static inline int64_t toint(double x, int64_t maxval, double& err) {
151 double val = x * maxval;
152 double ival = floor(val + 0.5 + err*0.2);
153 err = val - ival;
154 return static_cast<int64_t>(ival);
155 }
156
toint(double x,int64_t maxval)157 static inline int64_t toint(double x, int64_t maxval) {
158 return static_cast<int64_t>(floor(x * maxval + 0.5));
159 }
160
161 /*
162 * Modified Bessel function of the first kind
163 * http://en.wikipedia.org/wiki/Bessel_function
164 *
165 * The formulas are taken from Abramowitz and Stegun,
166 * _Handbook of Mathematical Functions_ (links below):
167 *
168 * http://people.math.sfu.ca/~cbm/aands/page_375.htm
169 * http://people.math.sfu.ca/~cbm/aands/page_378.htm
170 *
171 * http://dlmf.nist.gov/10.25
172 * http://dlmf.nist.gov/10.40
173 *
174 * Note we assume x is nonnegative (the function is symmetric,
175 * pass in the absolute value as needed).
176 *
177 * Constants are compile time derived with templates I0Term<> and
178 * I0ATerm<> to the precision of the compiler. The series can be expanded
179 * to any precision needed, but currently set around 24b precision.
180 *
181 * We use a bit of template math here, constexpr would probably be
182 * more appropriate for a C++11 compiler.
183 *
184 * For the intermediate range 3.75 < x < 15, we use minimax polynomial fit.
185 *
186 */
187
188 template <int N>
189 struct I0Term {
190 static const double value = I0Term<N-1>::value / (4. * N * N);
191 };
192
193 template <>
194 struct I0Term<0> {
195 static const double value = 1.;
196 };
197
198 template <int N>
199 struct I0ATerm {
200 static const double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
201 };
202
203 template <>
204 struct I0ATerm<0> { // 1/sqrt(2*PI);
205 static const double value = 0.398942280401432677939946059934381868475858631164934657665925;
206 };
207
208 #if USE_HORNERS_METHOD
209 /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
210 * using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method
211 *
212 * This has fewer multiplications than Estrin's method below, but has back to back
213 * floating point dependencies.
214 *
215 * On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled.
216 */
217
218 inline double Poly2(double A, double B, double x) {
219 return A + x * B;
220 }
221
222 inline double Poly4(double A, double B, double C, double D, double x) {
223 return A + x * (B + x * (C + x * (D)));
224 }
225
226 inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
227 double x) {
228 return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G))))));
229 }
230
231 inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
232 double H, double I, double x) {
233 return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I))))))));
234 }
235
236 #else
237 /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
238 * using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme
239 *
240 * This is typically faster, perhaps gains about 5-10% overall on ARM processors
241 * over Horner's method above.
242 */
243
244 inline double Poly2(double A, double B, double x) {
245 return A + B * x;
246 }
247
248 inline double Poly3(double A, double B, double C, double x, double x2) {
249 return Poly2(A, B, x) + C * x2;
250 }
251
252 inline double Poly3(double A, double B, double C, double x) {
253 return Poly2(A, B, x) + C * x * x;
254 }
255
256 inline double Poly4(double A, double B, double C, double D, double x, double x2) {
257 return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2);
258 }
259
260 inline double Poly4(double A, double B, double C, double D, double x) {
261 return Poly4(A, B, C, D, x, x * x);
262 }
263
264 inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
265 double x) {
266 double x2 = x * x;
267 return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2);
268 }
269
270 inline double Poly8(double A, double B, double C, double D, double E, double F, double G,
271 double H, double x, double x2, double x4) {
272 return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4;
273 }
274
275 inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
276 double H, double I, double x) {
277 double x2 = x * x;
278 #if 1
279 // It does not seem faster to explicitly decompose Poly8 into Poly4, but
280 // could depend on compiler floating point scheduling.
281 double x4 = x2 * x2;
282 return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4);
283 #else
284 double val = Poly4(A, B, C, D, x, x2);
285 double x4 = x2 * x2;
286 return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4);
287 #endif
288 }
289 #endif
290
291 static inline double I0(double x) {
292 if (x < 3.75) {
293 x *= x;
294 return Poly7(I0Term<0>::value, I0Term<1>::value,
295 I0Term<2>::value, I0Term<3>::value,
296 I0Term<4>::value, I0Term<5>::value,
297 I0Term<6>::value, x); // e < 1.6e-7
298 }
299 if (1) {
300 /*
301 * Series expansion coefs are easy to calculate, but are expanded around 0,
302 * so error is unequal over the interval 0 < x < 3.75, the error being
303 * significantly better near 0.
304 *
305 * A better solution is to use precise minimax polynomial fits.
306 *
307 * We use a slightly more complicated solution for 3.75 < x < 15, based on
308 * the tables in Blair and Edwards, "Stable Rational Minimax Approximations
309 * to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory,
310 * AECL-4928.
311 *
312 * http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf
313 *
314 * See Table 11 for 0 < x < 15; e < 10^(-7.13).
315 *
316 * Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b).
317 *
318 * This speeds up overall computation by about 40% over using the else clause below,
319 * which requires sqrt and exp.
320 *
321 */
322
323 x *= x;
324 double num = Poly9(-0.13544938430e9, -0.33153754512e8,
325 -0.19406631946e7, -0.48058318783e5,
326 -0.63269783360e3, -0.49520779070e1,
327 -0.24970910370e-1, -0.74741159550e-4,
328 -0.18257612460e-6, x);
329 double y = x - 225.; // reflection around 15 (squared)
330 double den = Poly4(-0.34598737196e8, 0.23852643181e6,
331 -0.70699387620e3, 0.10000000000e1, y);
332 return num / den;
333
334 #if IO_EXTENDED_BETA
335 /* Table 42 for x > 15; e < 10^(-8.11).
336 * This is used for Beta>15, but is disabled here as
337 * we never use Beta that high.
338 *
339 * NOTE: This should be enabled only for x > 15.
340 */
341
342 double y = 1./x;
343 double z = y - (1./15);
344 double num = Poly2(0.415079861746e1, -0.5149092496e1, z);
345 double den = Poly3(0.103150763823e2, -0.14181687413e2,
346 0.1000000000e1, z);
347 return exp(x) * sqrt(y) * num / den;
348 #endif
349 } else {
350 /*
351 * NOT USED, but reference for large Beta.
352 *
353 * Abramowitz and Stegun asymptotic formula.
354 * works for x > 3.75.
355 */
356 double y = 1./x;
357 return exp(x) * sqrt(y) *
358 // note: reciprocal squareroot may be easier!
359 // http://en.wikipedia.org/wiki/Fast_inverse_square_root
360 Poly9(I0ATerm<0>::value, I0ATerm<1>::value,
361 I0ATerm<2>::value, I0ATerm<3>::value,
362 I0ATerm<4>::value, I0ATerm<5>::value,
363 I0ATerm<6>::value, I0ATerm<7>::value,
364 I0ATerm<8>::value, y); // (... e) < 1.9e-7
365 }
366 }
367
368 /* A speed optimized version of the Modified Bessel I0() which incorporates
369 * the sqrt and numerator multiply and denominator divide into the computation.
370 * This speeds up filter computation by about 10-15%.
371 */
372 static inline double I0SqrRat(double x2, double num, double den) {
373 if (x2 < (3.75 * 3.75)) {
374 return Poly7(I0Term<0>::value, I0Term<1>::value,
375 I0Term<2>::value, I0Term<3>::value,
376 I0Term<4>::value, I0Term<5>::value,
377 I0Term<6>::value, x2) * num / den; // e < 1.6e-7
378 }
379 num *= Poly9(-0.13544938430e9, -0.33153754512e8,
380 -0.19406631946e7, -0.48058318783e5,
381 -0.63269783360e3, -0.49520779070e1,
382 -0.24970910370e-1, -0.74741159550e-4,
383 -0.18257612460e-6, x2); // e < 10^(-7.13).
384 double y = x2 - 225.; // reflection around 15 (squared)
385 den *= Poly4(-0.34598737196e8, 0.23852643181e6,
386 -0.70699387620e3, 0.10000000000e1, y);
387 return num / den;
388 }
389
390 /*
391 * calculates the transition bandwidth for a Kaiser filter
392 *
393 * Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
394 * Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
395 *
396 * @param halfNumCoef is half the number of coefficients per filter phase.
397 *
398 * @param stopBandAtten is the stop band attenuation desired.
399 *
400 * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
401 */
402 static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
403 return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef);
404 }
405
406 /*
407 * calculates the fir transfer response of the overall polyphase filter at w.
408 *
409 * Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the
410 * fact that h[n] is symmetric (cosines only, no complex arithmetic).
411 *
412 * We use Goertzel's algorithm to accelerate the computation to essentially
413 * a single multiply and 2 adds per filter coefficient h[].
414 *
415 * Be careful be careful to consider that h[n] is the overall polyphase filter,
416 * with L phases, so rescaling H(w)/L is probably what you expect for "unity gain",
417 * as you only use one of the polyphases at a time.
418 */
419 template <typename T>
420 static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
421 double accum = static_cast<double>(coef[0])*0.5; // "center coefficient" from first bank
422 coef += halfNumCoef; // skip first filterbank (picked up by the last filterbank).
423 #if SLOW_FIRTRANSFER
424 /* Original code for reference. This is equivalent to the code below, but slower. */
425 for (int i=1 ; i<=L ; ++i) {
426 for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
427 accum += cos(ix*w)*static_cast<double>(*coef++);
428 }
429 }
430 #else
431 /*
432 * Our overall filter is stored striped by polyphases, not a contiguous h[n].
433 * We could fetch coefficients in a non-contiguous fashion
434 * but that will not scale to vector processing.
435 *
436 * We apply Goertzel's algorithm directly to each polyphase filter bank instead of
437 * using cosine generation/multiplication, thereby saving one multiply per inner loop.
438 *
439 * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
440 * Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720.
441 *
442 * We use the basic recursion to incorporate the cosine steps into real sequence x[n]:
443 * s[n] = x[n] + (2cosw)*s[n-1] + s[n-2]
444 *
445 * y[n] = s[n] - e^(iw)s[n-1]
446 * = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k))
447 * = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk)
448 *
449 * The summation contains the frequency steps we want multiplied by the source
450 * (similar to a DTFT).
451 *
452 * Using symmetry, and just the real part (be careful, this must happen
453 * after any internal complex multiplications), the polyphase filterbank
454 * transfer function is:
455 *
456 * Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0)
457 * = Re{ e^(iwn + iw_0) y[n]}
458 * = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1]
459 *
460 * using the fact that s[n] of real x[n] is real.
461 *
462 */
463 double dcos = 2. * cos(L*w);
464 int start = ((halfNumCoef)*L + 1);
465 SineGen cc((start - L) * w, w, true); // cosine
466 SineGen cp(start * w, w, true); // cosine
467 for (int i=1 ; i<=L ; ++i) {
468 double sc = 0;
469 double sp = 0;
470 for (int j=0 ; j<halfNumCoef ; ++j) {
471 double tmp = sc;
472 sc = static_cast<double>(*coef++) + dcos*sc - sp;
473 sp = tmp;
474 }
475 // If we are awfully clever, we can apply Goertzel's algorithm
476 // again on the sc and sp sequences returned here.
477 accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp;
478 }
479 #endif
480 return accum*2.;
481 }
482
483 /*
484 * evaluates the minimum and maximum |H(f)| bound in a band region.
485 *
486 * This is usually done with equally spaced increments in the target band in question.
487 * The passband is often very small, and sampled that way. The stopband is often much
488 * larger.
489 *
490 * We use the fact that the overall polyphase filter has an additional bank at the end
491 * for interpolation; hence it is overspecified for the H(f) computation. Thus the
492 * first polyphase is never actually checked, excepting its first term.
493 *
494 * In this code we use the firTransfer() evaluator above, which uses Goertzel's
495 * algorithm to calculate the transfer function at each point.
496 *
497 * TODO: An alternative with equal spacing is the FFT/DFT. An alternative with unequal
498 * spacing is a chirp transform.
499 *
500 * @param coef is the designed polyphase filter banks
501 *
502 * @param L is the number of phases (for interpolation)
503 *
504 * @param halfNumCoef should be half the number of coefficients for a single
505 * polyphase.
506 *
507 * @param fstart is the normalized frequency start.
508 *
509 * @param fend is the normalized frequency end.
510 *
511 * @param steps is the number of steps to take (sampling) between frequency start and end
512 *
513 * @param firMin returns the minimum transfer |H(f)| found
514 *
515 * @param firMax returns the maximum transfer |H(f)| found
516 *
517 * 0 <= f <= 0.5.
518 * This is used to test passband and stopband performance.
519 */
520 template <typename T>
521 static void testFir(const T* coef, int L, int halfNumCoef,
522 double fstart, double fend, int steps, double &firMin, double &firMax) {
523 double wstart = fstart*(2.*M_PI);
524 double wend = fend*(2.*M_PI);
525 double wstep = (wend - wstart)/steps;
526 double fmax, fmin;
527 double trf = firTransfer(coef, L, halfNumCoef, wstart);
528 if (trf<0) {
529 trf = -trf;
530 }
531 fmin = fmax = trf;
532 wstart += wstep;
533 for (int i=1; i<steps; ++i) {
534 trf = firTransfer(coef, L, halfNumCoef, wstart);
535 if (trf<0) {
536 trf = -trf;
537 }
538 if (trf>fmax) {
539 fmax = trf;
540 }
541 else if (trf<fmin) {
542 fmin = trf;
543 }
544 wstart += wstep;
545 }
546 // renormalize - this is only needed for integer filter types
547 double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
548
549 firMin = fmin * norm;
550 firMax = fmax * norm;
551 }
552
553 /*
554 * evaluates the |H(f)| lowpass band characteristics.
555 *
556 * This function tests the lowpass characteristics for the overall polyphase filter,
557 * and is used to verify the design. For this case, fp should be set to the
558 * passband normalized frequency from 0 to 0.5 for the overall filter (thus it
559 * is the designed polyphase bank value / L). Likewise for fs.
560 *
561 * @param coef is the designed polyphase filter banks
562 *
563 * @param L is the number of phases (for interpolation)
564 *
565 * @param halfNumCoef should be half the number of coefficients for a single
566 * polyphase.
567 *
568 * @param fp is the passband normalized frequency, 0 < fp < fs < 0.5.
569 *
570 * @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5.
571 *
572 * @param passSteps is the number of passband sampling steps.
573 *
574 * @param stopSteps is the number of stopband sampling steps.
575 *
576 * @param passMin is the minimum value in the passband
577 *
578 * @param passMax is the maximum value in the passband (useful for scaling). This should
579 * be less than 1., to avoid sine wave test overflow.
580 *
581 * @param passRipple is the passband ripple. Typically this should be less than 0.1 for
582 * an audio filter. Generally speaker/headphone device characteristics will dominate
583 * the passband term.
584 *
585 * @param stopMax is the maximum value in the stopband.
586 *
587 * @param stopRipple is the stopband ripple, also known as stopband attenuation.
588 * Typically this should be greater than ~80dB for low quality, and greater than
589 * ~100dB for full 16b quality, otherwise aliasing may become noticeable.
590 *
591 */
592 template <typename T>
593 static void testFir(const T* coef, int L, int halfNumCoef,
594 double fp, double fs, int passSteps, int stopSteps,
595 double &passMin, double &passMax, double &passRipple,
596 double &stopMax, double &stopRipple) {
597 double fmin, fmax;
598 testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax);
599 double d1 = (fmax - fmin)/2.;
600 passMin = fmin;
601 passMax = fmax;
602 passRipple = -20.*log10(1. - d1); // passband ripple
603 testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax);
604 // fmin is really not important for the stopband.
605 stopMax = fmax;
606 stopRipple = -20.*log10(fmax); // stopband ripple/attenuation
607 }
608
609 /*
610 * Calculates the overall polyphase filter based on a windowed sinc function.
611 *
612 * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
613 * taps for the entire kernel. This is then decomposed into L+1 polyphase filterbanks.
614 * The last filterbank is used for interpolation purposes (and is mostly composed
615 * of the first bank shifted by one sample), and is unnecessary if one does
616 * not do interpolation.
617 *
618 * We use the last filterbank for some transfer function calculation purposes,
619 * so it needs to be generated anyways.
620 *
621 * @param coef is the caller allocated space for coefficients. This should be
622 * exactly (L+1)*halfNumCoef in size.
623 *
624 * @param L is the number of phases (for interpolation)
625 *
626 * @param halfNumCoef should be half the number of coefficients for a single
627 * polyphase.
628 *
629 * @param stopBandAtten is the stopband value, should be >50dB.
630 *
631 * @param fcr is cutoff frequency/sampling rate (<0.5). At this point, the energy
632 * should be 6dB less. (fcr is where the amplitude drops by half). Use the
633 * firKaiserTbw() to calculate the transition bandwidth. fcr is the midpoint
634 * between the stop band and the pass band (fstop+fpass)/2.
635 *
636 * @param atten is the attenuation (generally slightly less than 1).
637 */
638
639 template <typename T>
640 static inline void firKaiserGen(T* coef, int L, int halfNumCoef,
641 double stopBandAtten, double fcr, double atten) {
642 //
643 // Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
644 // Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
645 //
646 // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
647 //
648 // Kaiser window and beta parameter
649 //
650 // | 0.1102*(A - 8.7) A > 50
651 // beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50
652 // | 0. A < 21
653 //
654 // with A is the desired stop-band attenuation in dBFS
655 //
656 // 30 dB 2.210
657 // 40 dB 3.384
658 // 50 dB 4.538
659 // 60 dB 5.658
660 // 70 dB 6.764
661 // 80 dB 7.865
662 // 90 dB 8.960
663 // 100 dB 10.056
664
665 const int N = L * halfNumCoef; // non-negative half
666 const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
667 const double xstep = (2. * M_PI) * fcr / L;
668 const double xfrac = 1. / N;
669 const double yscale = atten * L / (I0(beta) * M_PI);
670 const double sqrbeta = sqr(beta);
671
672 // We use sine generators, which computes sines on regular step intervals.
673 // This speeds up overall computation about 40% from computing the sine directly.
674
675 SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase)
676
677 for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
678
679 // computation for a single polyphase of the overall filter.
680 SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop.
681 double err = 0; // for noise shaping on int16_t coefficients (over each polyphase)
682
683 for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
684 double y;
685 if (CC_LIKELY(ix)) {
686 double x = static_cast<double>(ix);
687
688 // sine generator: sg.valueAdvance() returns sin(ix*xstep);
689 // y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x;
690 y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x);
691 } else {
692 y = 2. * atten * fcr; // center of filter, sinc(0) = 1.
693 sg.advance();
694 }
695
696 if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
697 *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
698 } else if (is_same<T, int32_t>::value) {
699 *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
700 } else { // assumed float or double
701 *coef++ = static_cast<T>(y);
702 }
703 }
704 }
705 }
706
707 }; // namespace android
708
709 #endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/
710