1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <pthread.h>
30
31 #include <errno.h>
32 #include <limits.h>
33 #include <sys/mman.h>
34 #include <unistd.h>
35
36 #include "pthread_internal.h"
37
38 #include "private/bionic_atomic_inline.h"
39 #include "private/bionic_futex.h"
40 #include "private/bionic_tls.h"
41
42 extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
43 extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
44
45 /* a mutex is implemented as a 32-bit integer holding the following fields
46 *
47 * bits: name description
48 * 31-16 tid owner thread's tid (recursive and errorcheck only)
49 * 15-14 type mutex type
50 * 13 shared process-shared flag
51 * 12-2 counter counter of recursive mutexes
52 * 1-0 state lock state (0, 1 or 2)
53 */
54
55 /* Convenience macro, creates a mask of 'bits' bits that starts from
56 * the 'shift'-th least significant bit in a 32-bit word.
57 *
58 * Examples: FIELD_MASK(0,4) -> 0xf
59 * FIELD_MASK(16,9) -> 0x1ff0000
60 */
61 #define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
62
63 /* This one is used to create a bit pattern from a given field value */
64 #define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
65
66 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
67 #define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
68
69 /* Mutex state:
70 *
71 * 0 for unlocked
72 * 1 for locked, no waiters
73 * 2 for locked, maybe waiters
74 */
75 #define MUTEX_STATE_SHIFT 0
76 #define MUTEX_STATE_LEN 2
77
78 #define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
79 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
80 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
81
82 #define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
83 #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
84 #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
85
86 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
87 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
88
89 #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
90 #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
91 #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
92
93 /* return true iff the mutex if locked with no waiters */
94 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
95
96 /* return true iff the mutex if locked with maybe waiters */
97 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
98
99 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
100 #define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
101
102 /* Mutex counter:
103 *
104 * We need to check for overflow before incrementing, and we also need to
105 * detect when the counter is 0
106 */
107 #define MUTEX_COUNTER_SHIFT 2
108 #define MUTEX_COUNTER_LEN 11
109 #define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
110
111 #define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
112 #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
113
114 /* Used to increment the counter directly after overflow has been checked */
115 #define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
116
117 /* Returns true iff the counter is 0 */
118 #define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
119
120 /* Mutex shared bit flag
121 *
122 * This flag is set to indicate that the mutex is shared among processes.
123 * This changes the futex opcode we use for futex wait/wake operations
124 * (non-shared operations are much faster).
125 */
126 #define MUTEX_SHARED_SHIFT 13
127 #define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
128
129 /* Mutex type:
130 *
131 * We support normal, recursive and errorcheck mutexes.
132 *
133 * The constants defined here *cannot* be changed because they must match
134 * the C library ABI which defines the following initialization values in
135 * <pthread.h>:
136 *
137 * __PTHREAD_MUTEX_INIT_VALUE
138 * __PTHREAD_RECURSIVE_MUTEX_VALUE
139 * __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
140 */
141 #define MUTEX_TYPE_SHIFT 14
142 #define MUTEX_TYPE_LEN 2
143 #define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
144
145 #define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
146 #define MUTEX_TYPE_RECURSIVE 1
147 #define MUTEX_TYPE_ERRORCHECK 2
148
149 #define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
150
151 #define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
152 #define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
153 #define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
154
155 /* Mutex owner field:
156 *
157 * This is only used for recursive and errorcheck mutexes. It holds the
158 * tid of the owning thread. Note that this works because the Linux
159 * kernel _only_ uses 16-bit values for tids.
160 *
161 * More specifically, it will wrap to 10000 when it reaches over 32768 for
162 * application processes. You can check this by running the following inside
163 * an adb shell session:
164 *
165 OLDPID=$$;
166 while true; do
167 NEWPID=$(sh -c 'echo $$')
168 if [ "$NEWPID" -gt 32768 ]; then
169 echo "AARGH: new PID $NEWPID is too high!"
170 exit 1
171 fi
172 if [ "$NEWPID" -lt "$OLDPID" ]; then
173 echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
174 else
175 echo -n "$NEWPID!"
176 fi
177 OLDPID=$NEWPID
178 done
179
180 * Note that you can run the same example on a desktop Linux system,
181 * the wrapping will also happen at 32768, but will go back to 300 instead.
182 */
183 #define MUTEX_OWNER_SHIFT 16
184 #define MUTEX_OWNER_LEN 16
185
186 #define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
187 #define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
188
189 /* Convenience macros.
190 *
191 * These are used to form or modify the bit pattern of a given mutex value
192 */
193
194
195
196 /* a mutex attribute holds the following fields
197 *
198 * bits: name description
199 * 0-3 type type of mutex
200 * 4 shared process-shared flag
201 */
202 #define MUTEXATTR_TYPE_MASK 0x000f
203 #define MUTEXATTR_SHARED_MASK 0x0010
204
205
pthread_mutexattr_init(pthread_mutexattr_t * attr)206 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
207 {
208 *attr = PTHREAD_MUTEX_DEFAULT;
209 return 0;
210 }
211
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)212 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
213 {
214 *attr = -1;
215 return 0;
216 }
217
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type_p)218 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
219 {
220 int type = (*attr & MUTEXATTR_TYPE_MASK);
221
222 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
223 return EINVAL;
224 }
225
226 *type_p = type;
227 return 0;
228 }
229
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)230 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
231 {
232 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
233 return EINVAL;
234 }
235
236 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
237 return 0;
238 }
239
240 /* process-shared mutexes are not supported at the moment */
241
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)242 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
243 {
244 switch (pshared) {
245 case PTHREAD_PROCESS_PRIVATE:
246 *attr &= ~MUTEXATTR_SHARED_MASK;
247 return 0;
248
249 case PTHREAD_PROCESS_SHARED:
250 /* our current implementation of pthread actually supports shared
251 * mutexes but won't cleanup if a process dies with the mutex held.
252 * Nevertheless, it's better than nothing. Shared mutexes are used
253 * by surfaceflinger and audioflinger.
254 */
255 *attr |= MUTEXATTR_SHARED_MASK;
256 return 0;
257 }
258 return EINVAL;
259 }
260
pthread_mutexattr_getpshared(const pthread_mutexattr_t * attr,int * pshared)261 int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
262 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
263 return 0;
264 }
265
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)266 int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) {
267 if (__predict_true(attr == NULL)) {
268 mutex->value = MUTEX_TYPE_BITS_NORMAL;
269 return 0;
270 }
271
272 int value = 0;
273 if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
274 value |= MUTEX_SHARED_MASK;
275 }
276
277 switch (*attr & MUTEXATTR_TYPE_MASK) {
278 case PTHREAD_MUTEX_NORMAL:
279 value |= MUTEX_TYPE_BITS_NORMAL;
280 break;
281 case PTHREAD_MUTEX_RECURSIVE:
282 value |= MUTEX_TYPE_BITS_RECURSIVE;
283 break;
284 case PTHREAD_MUTEX_ERRORCHECK:
285 value |= MUTEX_TYPE_BITS_ERRORCHECK;
286 break;
287 default:
288 return EINVAL;
289 }
290
291 mutex->value = value;
292 return 0;
293 }
294
295
296 /*
297 * Lock a non-recursive mutex.
298 *
299 * As noted above, there are three states:
300 * 0 (unlocked, no contention)
301 * 1 (locked, no contention)
302 * 2 (locked, contention)
303 *
304 * Non-recursive mutexes don't use the thread-id or counter fields, and the
305 * "type" value is zero, so the only bits that will be set are the ones in
306 * the lock state field.
307 */
_normal_lock(pthread_mutex_t * mutex,int shared)308 static inline void _normal_lock(pthread_mutex_t* mutex, int shared) {
309 /* convenience shortcuts */
310 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
311 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
312 /*
313 * The common case is an unlocked mutex, so we begin by trying to
314 * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
315 * __bionic_cmpxchg() returns 0 if it made the swap successfully.
316 * If the result is nonzero, this lock is already held by another thread.
317 */
318 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
319 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
320 /*
321 * We want to go to sleep until the mutex is available, which
322 * requires promoting it to state 2 (CONTENDED). We need to
323 * swap in the new state value and then wait until somebody wakes us up.
324 *
325 * __bionic_swap() returns the previous value. We swap 2 in and
326 * see if we got zero back; if so, we have acquired the lock. If
327 * not, another thread still holds the lock and we wait again.
328 *
329 * The second argument to the __futex_wait() call is compared
330 * against the current value. If it doesn't match, __futex_wait()
331 * returns immediately (otherwise, it sleeps for a time specified
332 * by the third argument; 0 means sleep forever). This ensures
333 * that the mutex is in state 2 when we go to sleep on it, which
334 * guarantees a wake-up call.
335 */
336 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
337 __futex_wait_ex(&mutex->value, shared, locked_contended, NULL);
338 }
339 }
340 ANDROID_MEMBAR_FULL();
341 }
342
343 /*
344 * Release a non-recursive mutex. The caller is responsible for determining
345 * that we are in fact the owner of this lock.
346 */
_normal_unlock(pthread_mutex_t * mutex,int shared)347 static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) {
348 ANDROID_MEMBAR_FULL();
349
350 /*
351 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement
352 * to release the lock. __bionic_atomic_dec() returns the previous value;
353 * if it wasn't 1 we have to do some additional work.
354 */
355 if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
356 /*
357 * Start by releasing the lock. The decrement changed it from
358 * "contended lock" to "uncontended lock", which means we still
359 * hold it, and anybody who tries to sneak in will push it back
360 * to state 2.
361 *
362 * Once we set it to zero the lock is up for grabs. We follow
363 * this with a __futex_wake() to ensure that one of the waiting
364 * threads has a chance to grab it.
365 *
366 * This doesn't cause a race with the swap/wait pair in
367 * _normal_lock(), because the __futex_wait() call there will
368 * return immediately if the mutex value isn't 2.
369 */
370 mutex->value = shared;
371
372 /*
373 * Wake up one waiting thread. We don't know which thread will be
374 * woken or when it'll start executing -- futexes make no guarantees
375 * here. There may not even be a thread waiting.
376 *
377 * The newly-woken thread will replace the 0 we just set above
378 * with 2, which means that when it eventually releases the mutex
379 * it will also call FUTEX_WAKE. This results in one extra wake
380 * call whenever a lock is contended, but lets us avoid forgetting
381 * anyone without requiring us to track the number of sleepers.
382 *
383 * It's possible for another thread to sneak in and grab the lock
384 * between the zero assignment above and the wake call below. If
385 * the new thread is "slow" and holds the lock for a while, we'll
386 * wake up a sleeper, which will swap in a 2 and then go back to
387 * sleep since the lock is still held. If the new thread is "fast",
388 * running to completion before we call wake, the thread we
389 * eventually wake will find an unlocked mutex and will execute.
390 * Either way we have correct behavior and nobody is orphaned on
391 * the wait queue.
392 */
393 __futex_wake_ex(&mutex->value, shared, 1);
394 }
395 }
396
397 /* This common inlined function is used to increment the counter of an
398 * errorcheck or recursive mutex.
399 *
400 * For errorcheck mutexes, it will return EDEADLK
401 * If the counter overflows, it will return EAGAIN
402 * Otherwise, it atomically increments the counter and returns 0
403 * after providing an acquire barrier.
404 *
405 * mtype is the current mutex type
406 * mvalue is the current mutex value (already loaded)
407 * mutex pointers to the mutex.
408 */
_recursive_increment(pthread_mutex_t * mutex,int mvalue,int mtype)409 static inline __always_inline int _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) {
410 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
411 /* trying to re-lock a mutex we already acquired */
412 return EDEADLK;
413 }
414
415 /* Detect recursive lock overflow and return EAGAIN.
416 * This is safe because only the owner thread can modify the
417 * counter bits in the mutex value.
418 */
419 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
420 return EAGAIN;
421 }
422
423 /* We own the mutex, but other threads are able to change
424 * the lower bits (e.g. promoting it to "contended"), so we
425 * need to use an atomic cmpxchg loop to update the counter.
426 */
427 for (;;) {
428 /* increment counter, overflow was already checked */
429 int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
430 if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
431 /* mutex is still locked, not need for a memory barrier */
432 return 0;
433 }
434 /* the value was changed, this happens when another thread changes
435 * the lower state bits from 1 to 2 to indicate contention. This
436 * cannot change the counter, so simply reload and try again.
437 */
438 mvalue = mutex->value;
439 }
440 }
441
pthread_mutex_lock(pthread_mutex_t * mutex)442 int pthread_mutex_lock(pthread_mutex_t* mutex) {
443 #if !defined(__LP64__)
444 if (mutex == NULL) {
445 return EINVAL;
446 }
447 #endif
448
449 int mvalue, mtype, tid, shared;
450
451 mvalue = mutex->value;
452 mtype = (mvalue & MUTEX_TYPE_MASK);
453 shared = (mvalue & MUTEX_SHARED_MASK);
454
455 /* Handle non-recursive case first */
456 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
457 _normal_lock(mutex, shared);
458 return 0;
459 }
460
461 /* Do we already own this recursive or error-check mutex ? */
462 tid = __get_thread()->tid;
463 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
464 return _recursive_increment(mutex, mvalue, mtype);
465
466 /* Add in shared state to avoid extra 'or' operations below */
467 mtype |= shared;
468
469 /* First, if the mutex is unlocked, try to quickly acquire it.
470 * In the optimistic case where this works, set the state to 1 to
471 * indicate locked with no contention */
472 if (mvalue == mtype) {
473 int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
474 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
475 ANDROID_MEMBAR_FULL();
476 return 0;
477 }
478 /* argh, the value changed, reload before entering the loop */
479 mvalue = mutex->value;
480 }
481
482 for (;;) {
483 int newval;
484
485 /* if the mutex is unlocked, its value should be 'mtype' and
486 * we try to acquire it by setting its owner and state atomically.
487 * NOTE: We put the state to 2 since we _know_ there is contention
488 * when we are in this loop. This ensures all waiters will be
489 * unlocked.
490 */
491 if (mvalue == mtype) {
492 newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
493 /* TODO: Change this to __bionic_cmpxchg_acquire when we
494 * implement it to get rid of the explicit memory
495 * barrier below.
496 */
497 if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
498 mvalue = mutex->value;
499 continue;
500 }
501 ANDROID_MEMBAR_FULL();
502 return 0;
503 }
504
505 /* the mutex is already locked by another thread, if its state is 1
506 * we will change it to 2 to indicate contention. */
507 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
508 newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
509 if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
510 mvalue = mutex->value;
511 continue;
512 }
513 mvalue = newval;
514 }
515
516 /* wait until the mutex is unlocked */
517 __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
518
519 mvalue = mutex->value;
520 }
521 /* NOTREACHED */
522 }
523
pthread_mutex_unlock(pthread_mutex_t * mutex)524 int pthread_mutex_unlock(pthread_mutex_t* mutex) {
525 #if !defined(__LP64__)
526 if (mutex == NULL) {
527 return EINVAL;
528 }
529 #endif
530
531 int mvalue, mtype, tid, shared;
532
533 mvalue = mutex->value;
534 mtype = (mvalue & MUTEX_TYPE_MASK);
535 shared = (mvalue & MUTEX_SHARED_MASK);
536
537 /* Handle common case first */
538 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
539 _normal_unlock(mutex, shared);
540 return 0;
541 }
542
543 /* Do we already own this recursive or error-check mutex ? */
544 tid = __get_thread()->tid;
545 if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
546 return EPERM;
547
548 /* If the counter is > 0, we can simply decrement it atomically.
549 * Since other threads can mutate the lower state bits (and only the
550 * lower state bits), use a cmpxchg to do it.
551 */
552 if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
553 for (;;) {
554 int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
555 if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
556 /* success: we still own the mutex, so no memory barrier */
557 return 0;
558 }
559 /* the value changed, so reload and loop */
560 mvalue = mutex->value;
561 }
562 }
563
564 /* the counter is 0, so we're going to unlock the mutex by resetting
565 * its value to 'unlocked'. We need to perform a swap in order
566 * to read the current state, which will be 2 if there are waiters
567 * to awake.
568 *
569 * TODO: Change this to __bionic_swap_release when we implement it
570 * to get rid of the explicit memory barrier below.
571 */
572 ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
573 mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
574
575 /* Wake one waiting thread, if any */
576 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
577 __futex_wake_ex(&mutex->value, shared, 1);
578 }
579 return 0;
580 }
581
pthread_mutex_trylock(pthread_mutex_t * mutex)582 int pthread_mutex_trylock(pthread_mutex_t* mutex) {
583 int mvalue, mtype, tid, shared;
584
585 mvalue = mutex->value;
586 mtype = (mvalue & MUTEX_TYPE_MASK);
587 shared = (mvalue & MUTEX_SHARED_MASK);
588
589 /* Handle common case first */
590 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
591 {
592 if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
593 shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
594 &mutex->value) == 0) {
595 ANDROID_MEMBAR_FULL();
596 return 0;
597 }
598
599 return EBUSY;
600 }
601
602 /* Do we already own this recursive or error-check mutex ? */
603 tid = __get_thread()->tid;
604 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
605 return _recursive_increment(mutex, mvalue, mtype);
606
607 /* Same as pthread_mutex_lock, except that we don't want to wait, and
608 * the only operation that can succeed is a single cmpxchg to acquire the
609 * lock if it is released / not owned by anyone. No need for a complex loop.
610 */
611 mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
612 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
613
614 if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
615 ANDROID_MEMBAR_FULL();
616 return 0;
617 }
618
619 return EBUSY;
620 }
621
__pthread_mutex_timedlock(pthread_mutex_t * mutex,const timespec * abs_timeout,clockid_t clock)622 static int __pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_timeout, clockid_t clock) {
623 timespec ts;
624
625 int mvalue = mutex->value;
626 int mtype = (mvalue & MUTEX_TYPE_MASK);
627 int shared = (mvalue & MUTEX_SHARED_MASK);
628
629 // Handle common case first.
630 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
631 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
632 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
633 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
634
635 // Fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0.
636 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
637 ANDROID_MEMBAR_FULL();
638 return 0;
639 }
640
641 // Loop while needed.
642 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
643 if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
644 return ETIMEDOUT;
645 }
646 __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
647 }
648 ANDROID_MEMBAR_FULL();
649 return 0;
650 }
651
652 // Do we already own this recursive or error-check mutex?
653 pid_t tid = __get_thread()->tid;
654 if (tid == MUTEX_OWNER_FROM_BITS(mvalue)) {
655 return _recursive_increment(mutex, mvalue, mtype);
656 }
657
658 // The following implements the same loop as pthread_mutex_lock_impl
659 // but adds checks to ensure that the operation never exceeds the
660 // absolute expiration time.
661 mtype |= shared;
662
663 // First try a quick lock.
664 if (mvalue == mtype) {
665 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
666 if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
667 ANDROID_MEMBAR_FULL();
668 return 0;
669 }
670 mvalue = mutex->value;
671 }
672
673 while (true) {
674 // If the value is 'unlocked', try to acquire it directly.
675 // NOTE: put state to 2 since we know there is contention.
676 if (mvalue == mtype) { // Unlocked.
677 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
678 if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
679 ANDROID_MEMBAR_FULL();
680 return 0;
681 }
682 // The value changed before we could lock it. We need to check
683 // the time to avoid livelocks, reload the value, then loop again.
684 if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
685 return ETIMEDOUT;
686 }
687
688 mvalue = mutex->value;
689 continue;
690 }
691
692 // The value is locked. If 'uncontended', try to switch its state
693 // to 'contented' to ensure we get woken up later.
694 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
695 int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
696 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
697 // This failed because the value changed, reload it.
698 mvalue = mutex->value;
699 } else {
700 // This succeeded, update mvalue.
701 mvalue = newval;
702 }
703 }
704
705 // Check time and update 'ts'.
706 if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
707 return ETIMEDOUT;
708 }
709
710 // Only wait to be woken up if the state is '2', otherwise we'll
711 // simply loop right now. This can happen when the second cmpxchg
712 // in our loop failed because the mutex was unlocked by another thread.
713 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
714 if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == -ETIMEDOUT) {
715 return ETIMEDOUT;
716 }
717 mvalue = mutex->value;
718 }
719 }
720 /* NOTREACHED */
721 }
722
723 #if !defined(__LP64__)
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned ms)724 extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex, unsigned ms) {
725 timespec abs_timeout;
726 clock_gettime(CLOCK_MONOTONIC, &abs_timeout);
727 abs_timeout.tv_sec += ms / 1000;
728 abs_timeout.tv_nsec += (ms % 1000) * 1000000;
729 if (abs_timeout.tv_nsec >= 1000000000) {
730 abs_timeout.tv_sec++;
731 abs_timeout.tv_nsec -= 1000000000;
732 }
733
734 int error = __pthread_mutex_timedlock(mutex, &abs_timeout, CLOCK_MONOTONIC);
735 if (error == ETIMEDOUT) {
736 error = EBUSY;
737 }
738 return error;
739 }
740 #endif
741
pthread_mutex_timedlock(pthread_mutex_t * mutex,const timespec * abs_timeout)742 int pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_timeout) {
743 return __pthread_mutex_timedlock(mutex, abs_timeout, CLOCK_REALTIME);
744 }
745
pthread_mutex_destroy(pthread_mutex_t * mutex)746 int pthread_mutex_destroy(pthread_mutex_t* mutex) {
747 // Use trylock to ensure that the mutex is valid and not already locked.
748 int error = pthread_mutex_trylock(mutex);
749 if (error != 0) {
750 return error;
751 }
752 mutex->value = 0xdead10cc;
753 return 0;
754 }
755