1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* This file contains codegen for the Mips ISA */
18 
19 #include "codegen_mips.h"
20 #include "dex/quick/mir_to_lir-inl.h"
21 #include "entrypoints/quick/quick_entrypoints.h"
22 #include "gc/accounting/card_table.h"
23 #include "mips_lir.h"
24 
25 namespace art {
26 
GenSpecialCase(BasicBlock * bb,MIR * mir,const InlineMethod & special)27 bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
28                                  const InlineMethod& special) {
29   // TODO
30   return false;
31 }
32 
33 /*
34  * The lack of pc-relative loads on Mips presents somewhat of a challenge
35  * for our PIC switch table strategy.  To materialize the current location
36  * we'll do a dummy JAL and reference our tables using rRA as the
37  * base register.  Note that rRA will be used both as the base to
38  * locate the switch table data and as the reference base for the switch
39  * target offsets stored in the table.  We'll use a special pseudo-instruction
40  * to represent the jal and trigger the construction of the
41  * switch table offsets (which will happen after final assembly and all
42  * labels are fixed).
43  *
44  * The test loop will look something like:
45  *
46  *   ori   r_end, rZERO, #table_size  ; size in bytes
47  *   jal   BaseLabel         ; stores "return address" (BaseLabel) in rRA
48  *   nop                     ; opportunistically fill
49  * BaseLabel:
50  *   addiu r_base, rRA, <table> - <BaseLabel>    ; table relative to BaseLabel
51      addu  r_end, r_end, r_base                   ; end of table
52  *   lw    r_val, [rSP, v_reg_off]                ; Test Value
53  * loop:
54  *   beq   r_base, r_end, done
55  *   lw    r_key, 0(r_base)
56  *   addu  r_base, 8
57  *   bne   r_val, r_key, loop
58  *   lw    r_disp, -4(r_base)
59  *   addu  rRA, r_disp
60  *   jr    rRA
61  * done:
62  *
63  */
GenLargeSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)64 void MipsMir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
65   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
66   if (cu_->verbose) {
67     DumpSparseSwitchTable(table);
68   }
69   // Add the table to the list - we'll process it later
70   SwitchTable* tab_rec =
71       static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
72   tab_rec->table = table;
73   tab_rec->vaddr = current_dalvik_offset_;
74   int elements = table[1];
75   tab_rec->targets =
76       static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), kArenaAllocLIR));
77   switch_tables_.Insert(tab_rec);
78 
79   // The table is composed of 8-byte key/disp pairs
80   int byte_size = elements * 8;
81 
82   int size_hi = byte_size >> 16;
83   int size_lo = byte_size & 0xffff;
84 
85   RegStorage r_end = AllocTemp();
86   if (size_hi) {
87     NewLIR2(kMipsLui, r_end.GetReg(), size_hi);
88   }
89   // Must prevent code motion for the curr pc pair
90   GenBarrier();  // Scheduling barrier
91   NewLIR0(kMipsCurrPC);  // Really a jal to .+8
92   // Now, fill the branch delay slot
93   if (size_hi) {
94     NewLIR3(kMipsOri, r_end.GetReg(), r_end.GetReg(), size_lo);
95   } else {
96     NewLIR3(kMipsOri, r_end.GetReg(), rZERO, size_lo);
97   }
98   GenBarrier();  // Scheduling barrier
99 
100   // Construct BaseLabel and set up table base register
101   LIR* base_label = NewLIR0(kPseudoTargetLabel);
102   // Remember base label so offsets can be computed later
103   tab_rec->anchor = base_label;
104   RegStorage r_base = AllocTemp();
105   NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
106   OpRegRegReg(kOpAdd, r_end, r_end, r_base);
107 
108   // Grab switch test value
109   rl_src = LoadValue(rl_src, kCoreReg);
110 
111   // Test loop
112   RegStorage r_key = AllocTemp();
113   LIR* loop_label = NewLIR0(kPseudoTargetLabel);
114   LIR* exit_branch = OpCmpBranch(kCondEq, r_base, r_end, NULL);
115   Load32Disp(r_base, 0, r_key);
116   OpRegImm(kOpAdd, r_base, 8);
117   OpCmpBranch(kCondNe, rl_src.reg, r_key, loop_label);
118   RegStorage r_disp = AllocTemp();
119   Load32Disp(r_base, -4, r_disp);
120   OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
121   OpReg(kOpBx, rs_rRA);
122 
123   // Loop exit
124   LIR* exit_label = NewLIR0(kPseudoTargetLabel);
125   exit_branch->target = exit_label;
126 }
127 
128 /*
129  * Code pattern will look something like:
130  *
131  *   lw    r_val
132  *   jal   BaseLabel         ; stores "return address" (BaseLabel) in rRA
133  *   nop                     ; opportunistically fill
134  *   [subiu r_val, bias]      ; Remove bias if low_val != 0
135  *   bound check -> done
136  *   lw    r_disp, [rRA, r_val]
137  *   addu  rRA, r_disp
138  *   jr    rRA
139  * done:
140  */
GenLargePackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)141 void MipsMir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
142   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
143   if (cu_->verbose) {
144     DumpPackedSwitchTable(table);
145   }
146   // Add the table to the list - we'll process it later
147   SwitchTable* tab_rec =
148       static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
149   tab_rec->table = table;
150   tab_rec->vaddr = current_dalvik_offset_;
151   int size = table[1];
152   tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
153                                                       kArenaAllocLIR));
154   switch_tables_.Insert(tab_rec);
155 
156   // Get the switch value
157   rl_src = LoadValue(rl_src, kCoreReg);
158 
159   // Prepare the bias.  If too big, handle 1st stage here
160   int low_key = s4FromSwitchData(&table[2]);
161   bool large_bias = false;
162   RegStorage r_key;
163   if (low_key == 0) {
164     r_key = rl_src.reg;
165   } else if ((low_key & 0xffff) != low_key) {
166     r_key = AllocTemp();
167     LoadConstant(r_key, low_key);
168     large_bias = true;
169   } else {
170     r_key = AllocTemp();
171   }
172 
173   // Must prevent code motion for the curr pc pair
174   GenBarrier();
175   NewLIR0(kMipsCurrPC);  // Really a jal to .+8
176   // Now, fill the branch delay slot with bias strip
177   if (low_key == 0) {
178     NewLIR0(kMipsNop);
179   } else {
180     if (large_bias) {
181       OpRegRegReg(kOpSub, r_key, rl_src.reg, r_key);
182     } else {
183       OpRegRegImm(kOpSub, r_key, rl_src.reg, low_key);
184     }
185   }
186   GenBarrier();  // Scheduling barrier
187 
188   // Construct BaseLabel and set up table base register
189   LIR* base_label = NewLIR0(kPseudoTargetLabel);
190   // Remember base label so offsets can be computed later
191   tab_rec->anchor = base_label;
192 
193   // Bounds check - if < 0 or >= size continue following switch
194   LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
195 
196   // Materialize the table base pointer
197   RegStorage r_base = AllocTemp();
198   NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
199 
200   // Load the displacement from the switch table
201   RegStorage r_disp = AllocTemp();
202   LoadBaseIndexed(r_base, r_key, r_disp, 2, k32);
203 
204   // Add to rAP and go
205   OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
206   OpReg(kOpBx, rs_rRA);
207 
208   /* branch_over target here */
209   LIR* target = NewLIR0(kPseudoTargetLabel);
210   branch_over->target = target;
211 }
212 
213 /*
214  * Array data table format:
215  *  ushort ident = 0x0300   magic value
216  *  ushort width            width of each element in the table
217  *  uint   size             number of elements in the table
218  *  ubyte  data[size*width] table of data values (may contain a single-byte
219  *                          padding at the end)
220  *
221  * Total size is 4+(width * size + 1)/2 16-bit code units.
222  */
GenFillArrayData(DexOffset table_offset,RegLocation rl_src)223 void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
224   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
225   // Add the table to the list - we'll process it later
226   FillArrayData* tab_rec =
227       reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData),
228                                                      kArenaAllocData));
229   tab_rec->table = table;
230   tab_rec->vaddr = current_dalvik_offset_;
231   uint16_t width = tab_rec->table[1];
232   uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
233   tab_rec->size = (size * width) + 8;
234 
235   fill_array_data_.Insert(tab_rec);
236 
237   // Making a call - use explicit registers
238   FlushAllRegs();   /* Everything to home location */
239   LockCallTemps();
240   LoadValueDirectFixed(rl_src, rs_rMIPS_ARG0);
241 
242   // Must prevent code motion for the curr pc pair
243   GenBarrier();
244   NewLIR0(kMipsCurrPC);  // Really a jal to .+8
245   // Now, fill the branch delay slot with the helper load
246   RegStorage r_tgt = LoadHelper(kQuickHandleFillArrayData);
247   GenBarrier();  // Scheduling barrier
248 
249   // Construct BaseLabel and set up table base register
250   LIR* base_label = NewLIR0(kPseudoTargetLabel);
251 
252   // Materialize a pointer to the fill data image
253   NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec));
254 
255   // And go...
256   ClobberCallerSave();
257   LIR* call_inst = OpReg(kOpBlx, r_tgt);  // ( array*, fill_data* )
258   MarkSafepointPC(call_inst);
259 }
260 
GenMoveException(RegLocation rl_dest)261 void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
262   int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
263   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
264   RegStorage reset_reg = AllocTempRef();
265   LoadRefDisp(rs_rMIPS_SELF, ex_offset, rl_result.reg, kNotVolatile);
266   LoadConstant(reset_reg, 0);
267   StoreRefDisp(rs_rMIPS_SELF, ex_offset, reset_reg, kNotVolatile);
268   FreeTemp(reset_reg);
269   StoreValue(rl_dest, rl_result);
270 }
271 
272 /*
273  * Mark garbage collection card. Skip if the value we're storing is null.
274  */
MarkGCCard(RegStorage val_reg,RegStorage tgt_addr_reg)275 void MipsMir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
276   RegStorage reg_card_base = AllocTemp();
277   RegStorage reg_card_no = AllocTemp();
278   LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
279   // NOTE: native pointer.
280   LoadWordDisp(rs_rMIPS_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
281   OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
282   StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
283   LIR* target = NewLIR0(kPseudoTargetLabel);
284   branch_over->target = target;
285   FreeTemp(reg_card_base);
286   FreeTemp(reg_card_no);
287 }
288 
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)289 void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
290   int spill_count = num_core_spills_ + num_fp_spills_;
291   /*
292    * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
293    * allocation mechanism know so it doesn't try to use any of them when
294    * expanding the frame or flushing.  This leaves the utility
295    * code with a single temp: r12.  This should be enough.
296    */
297   LockTemp(rs_rMIPS_ARG0);
298   LockTemp(rs_rMIPS_ARG1);
299   LockTemp(rs_rMIPS_ARG2);
300   LockTemp(rs_rMIPS_ARG3);
301 
302   /*
303    * We can safely skip the stack overflow check if we're
304    * a leaf *and* our frame size < fudge factor.
305    */
306   bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kMips);
307   NewLIR0(kPseudoMethodEntry);
308   RegStorage check_reg = AllocTemp();
309   RegStorage new_sp = AllocTemp();
310   if (!skip_overflow_check) {
311     /* Load stack limit */
312     Load32Disp(rs_rMIPS_SELF, Thread::StackEndOffset<4>().Int32Value(), check_reg);
313   }
314   /* Spill core callee saves */
315   SpillCoreRegs();
316   /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
317   DCHECK_EQ(num_fp_spills_, 0);
318   const int frame_sub = frame_size_ - spill_count * 4;
319   if (!skip_overflow_check) {
320     class StackOverflowSlowPath : public LIRSlowPath {
321      public:
322       StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
323           : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), sp_displace_(sp_displace) {
324       }
325       void Compile() OVERRIDE {
326         m2l_->ResetRegPool();
327         m2l_->ResetDefTracking();
328         GenerateTargetLabel(kPseudoThrowTarget);
329         // LR is offset 0 since we push in reverse order.
330         m2l_->Load32Disp(rs_rMIPS_SP, 0, rs_rRA);
331         m2l_->OpRegImm(kOpAdd, rs_rMIPS_SP, sp_displace_);
332         m2l_->ClobberCallerSave();
333         RegStorage r_tgt = m2l_->CallHelperSetup(kQuickThrowStackOverflow);  // Doesn't clobber LR.
334         m2l_->CallHelper(r_tgt, kQuickThrowStackOverflow, false /* MarkSafepointPC */,
335                          false /* UseLink */);
336       }
337 
338      private:
339       const size_t sp_displace_;
340     };
341     OpRegRegImm(kOpSub, new_sp, rs_rMIPS_SP, frame_sub);
342     LIR* branch = OpCmpBranch(kCondUlt, new_sp, check_reg, nullptr);
343     AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, spill_count * 4));
344     // TODO: avoid copy for small frame sizes.
345     OpRegCopy(rs_rMIPS_SP, new_sp);     // Establish stack
346   } else {
347     OpRegImm(kOpSub, rs_rMIPS_SP, frame_sub);
348   }
349 
350   FlushIns(ArgLocs, rl_method);
351 
352   FreeTemp(rs_rMIPS_ARG0);
353   FreeTemp(rs_rMIPS_ARG1);
354   FreeTemp(rs_rMIPS_ARG2);
355   FreeTemp(rs_rMIPS_ARG3);
356 }
357 
GenExitSequence()358 void MipsMir2Lir::GenExitSequence() {
359   /*
360    * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
361    * allocated by the register utilities as temps.
362    */
363   LockTemp(rs_rMIPS_RET0);
364   LockTemp(rs_rMIPS_RET1);
365 
366   NewLIR0(kPseudoMethodExit);
367   UnSpillCoreRegs();
368   OpReg(kOpBx, rs_rRA);
369 }
370 
GenSpecialExitSequence()371 void MipsMir2Lir::GenSpecialExitSequence() {
372   OpReg(kOpBx, rs_rRA);
373 }
374 
375 }  // namespace art
376