1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* This file contains codegen for the Mips ISA */
18
19 #include "codegen_mips.h"
20 #include "dex/quick/mir_to_lir-inl.h"
21 #include "entrypoints/quick/quick_entrypoints.h"
22 #include "gc/accounting/card_table.h"
23 #include "mips_lir.h"
24
25 namespace art {
26
GenSpecialCase(BasicBlock * bb,MIR * mir,const InlineMethod & special)27 bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
28 const InlineMethod& special) {
29 // TODO
30 return false;
31 }
32
33 /*
34 * The lack of pc-relative loads on Mips presents somewhat of a challenge
35 * for our PIC switch table strategy. To materialize the current location
36 * we'll do a dummy JAL and reference our tables using rRA as the
37 * base register. Note that rRA will be used both as the base to
38 * locate the switch table data and as the reference base for the switch
39 * target offsets stored in the table. We'll use a special pseudo-instruction
40 * to represent the jal and trigger the construction of the
41 * switch table offsets (which will happen after final assembly and all
42 * labels are fixed).
43 *
44 * The test loop will look something like:
45 *
46 * ori r_end, rZERO, #table_size ; size in bytes
47 * jal BaseLabel ; stores "return address" (BaseLabel) in rRA
48 * nop ; opportunistically fill
49 * BaseLabel:
50 * addiu r_base, rRA, <table> - <BaseLabel> ; table relative to BaseLabel
51 addu r_end, r_end, r_base ; end of table
52 * lw r_val, [rSP, v_reg_off] ; Test Value
53 * loop:
54 * beq r_base, r_end, done
55 * lw r_key, 0(r_base)
56 * addu r_base, 8
57 * bne r_val, r_key, loop
58 * lw r_disp, -4(r_base)
59 * addu rRA, r_disp
60 * jr rRA
61 * done:
62 *
63 */
GenLargeSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)64 void MipsMir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
65 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
66 if (cu_->verbose) {
67 DumpSparseSwitchTable(table);
68 }
69 // Add the table to the list - we'll process it later
70 SwitchTable* tab_rec =
71 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
72 tab_rec->table = table;
73 tab_rec->vaddr = current_dalvik_offset_;
74 int elements = table[1];
75 tab_rec->targets =
76 static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), kArenaAllocLIR));
77 switch_tables_.Insert(tab_rec);
78
79 // The table is composed of 8-byte key/disp pairs
80 int byte_size = elements * 8;
81
82 int size_hi = byte_size >> 16;
83 int size_lo = byte_size & 0xffff;
84
85 RegStorage r_end = AllocTemp();
86 if (size_hi) {
87 NewLIR2(kMipsLui, r_end.GetReg(), size_hi);
88 }
89 // Must prevent code motion for the curr pc pair
90 GenBarrier(); // Scheduling barrier
91 NewLIR0(kMipsCurrPC); // Really a jal to .+8
92 // Now, fill the branch delay slot
93 if (size_hi) {
94 NewLIR3(kMipsOri, r_end.GetReg(), r_end.GetReg(), size_lo);
95 } else {
96 NewLIR3(kMipsOri, r_end.GetReg(), rZERO, size_lo);
97 }
98 GenBarrier(); // Scheduling barrier
99
100 // Construct BaseLabel and set up table base register
101 LIR* base_label = NewLIR0(kPseudoTargetLabel);
102 // Remember base label so offsets can be computed later
103 tab_rec->anchor = base_label;
104 RegStorage r_base = AllocTemp();
105 NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
106 OpRegRegReg(kOpAdd, r_end, r_end, r_base);
107
108 // Grab switch test value
109 rl_src = LoadValue(rl_src, kCoreReg);
110
111 // Test loop
112 RegStorage r_key = AllocTemp();
113 LIR* loop_label = NewLIR0(kPseudoTargetLabel);
114 LIR* exit_branch = OpCmpBranch(kCondEq, r_base, r_end, NULL);
115 Load32Disp(r_base, 0, r_key);
116 OpRegImm(kOpAdd, r_base, 8);
117 OpCmpBranch(kCondNe, rl_src.reg, r_key, loop_label);
118 RegStorage r_disp = AllocTemp();
119 Load32Disp(r_base, -4, r_disp);
120 OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
121 OpReg(kOpBx, rs_rRA);
122
123 // Loop exit
124 LIR* exit_label = NewLIR0(kPseudoTargetLabel);
125 exit_branch->target = exit_label;
126 }
127
128 /*
129 * Code pattern will look something like:
130 *
131 * lw r_val
132 * jal BaseLabel ; stores "return address" (BaseLabel) in rRA
133 * nop ; opportunistically fill
134 * [subiu r_val, bias] ; Remove bias if low_val != 0
135 * bound check -> done
136 * lw r_disp, [rRA, r_val]
137 * addu rRA, r_disp
138 * jr rRA
139 * done:
140 */
GenLargePackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)141 void MipsMir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
142 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
143 if (cu_->verbose) {
144 DumpPackedSwitchTable(table);
145 }
146 // Add the table to the list - we'll process it later
147 SwitchTable* tab_rec =
148 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
149 tab_rec->table = table;
150 tab_rec->vaddr = current_dalvik_offset_;
151 int size = table[1];
152 tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
153 kArenaAllocLIR));
154 switch_tables_.Insert(tab_rec);
155
156 // Get the switch value
157 rl_src = LoadValue(rl_src, kCoreReg);
158
159 // Prepare the bias. If too big, handle 1st stage here
160 int low_key = s4FromSwitchData(&table[2]);
161 bool large_bias = false;
162 RegStorage r_key;
163 if (low_key == 0) {
164 r_key = rl_src.reg;
165 } else if ((low_key & 0xffff) != low_key) {
166 r_key = AllocTemp();
167 LoadConstant(r_key, low_key);
168 large_bias = true;
169 } else {
170 r_key = AllocTemp();
171 }
172
173 // Must prevent code motion for the curr pc pair
174 GenBarrier();
175 NewLIR0(kMipsCurrPC); // Really a jal to .+8
176 // Now, fill the branch delay slot with bias strip
177 if (low_key == 0) {
178 NewLIR0(kMipsNop);
179 } else {
180 if (large_bias) {
181 OpRegRegReg(kOpSub, r_key, rl_src.reg, r_key);
182 } else {
183 OpRegRegImm(kOpSub, r_key, rl_src.reg, low_key);
184 }
185 }
186 GenBarrier(); // Scheduling barrier
187
188 // Construct BaseLabel and set up table base register
189 LIR* base_label = NewLIR0(kPseudoTargetLabel);
190 // Remember base label so offsets can be computed later
191 tab_rec->anchor = base_label;
192
193 // Bounds check - if < 0 or >= size continue following switch
194 LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
195
196 // Materialize the table base pointer
197 RegStorage r_base = AllocTemp();
198 NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
199
200 // Load the displacement from the switch table
201 RegStorage r_disp = AllocTemp();
202 LoadBaseIndexed(r_base, r_key, r_disp, 2, k32);
203
204 // Add to rAP and go
205 OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
206 OpReg(kOpBx, rs_rRA);
207
208 /* branch_over target here */
209 LIR* target = NewLIR0(kPseudoTargetLabel);
210 branch_over->target = target;
211 }
212
213 /*
214 * Array data table format:
215 * ushort ident = 0x0300 magic value
216 * ushort width width of each element in the table
217 * uint size number of elements in the table
218 * ubyte data[size*width] table of data values (may contain a single-byte
219 * padding at the end)
220 *
221 * Total size is 4+(width * size + 1)/2 16-bit code units.
222 */
GenFillArrayData(DexOffset table_offset,RegLocation rl_src)223 void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
224 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
225 // Add the table to the list - we'll process it later
226 FillArrayData* tab_rec =
227 reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData),
228 kArenaAllocData));
229 tab_rec->table = table;
230 tab_rec->vaddr = current_dalvik_offset_;
231 uint16_t width = tab_rec->table[1];
232 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
233 tab_rec->size = (size * width) + 8;
234
235 fill_array_data_.Insert(tab_rec);
236
237 // Making a call - use explicit registers
238 FlushAllRegs(); /* Everything to home location */
239 LockCallTemps();
240 LoadValueDirectFixed(rl_src, rs_rMIPS_ARG0);
241
242 // Must prevent code motion for the curr pc pair
243 GenBarrier();
244 NewLIR0(kMipsCurrPC); // Really a jal to .+8
245 // Now, fill the branch delay slot with the helper load
246 RegStorage r_tgt = LoadHelper(kQuickHandleFillArrayData);
247 GenBarrier(); // Scheduling barrier
248
249 // Construct BaseLabel and set up table base register
250 LIR* base_label = NewLIR0(kPseudoTargetLabel);
251
252 // Materialize a pointer to the fill data image
253 NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec));
254
255 // And go...
256 ClobberCallerSave();
257 LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* )
258 MarkSafepointPC(call_inst);
259 }
260
GenMoveException(RegLocation rl_dest)261 void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
262 int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
263 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
264 RegStorage reset_reg = AllocTempRef();
265 LoadRefDisp(rs_rMIPS_SELF, ex_offset, rl_result.reg, kNotVolatile);
266 LoadConstant(reset_reg, 0);
267 StoreRefDisp(rs_rMIPS_SELF, ex_offset, reset_reg, kNotVolatile);
268 FreeTemp(reset_reg);
269 StoreValue(rl_dest, rl_result);
270 }
271
272 /*
273 * Mark garbage collection card. Skip if the value we're storing is null.
274 */
MarkGCCard(RegStorage val_reg,RegStorage tgt_addr_reg)275 void MipsMir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
276 RegStorage reg_card_base = AllocTemp();
277 RegStorage reg_card_no = AllocTemp();
278 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
279 // NOTE: native pointer.
280 LoadWordDisp(rs_rMIPS_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
281 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
282 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
283 LIR* target = NewLIR0(kPseudoTargetLabel);
284 branch_over->target = target;
285 FreeTemp(reg_card_base);
286 FreeTemp(reg_card_no);
287 }
288
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)289 void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
290 int spill_count = num_core_spills_ + num_fp_spills_;
291 /*
292 * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register
293 * allocation mechanism know so it doesn't try to use any of them when
294 * expanding the frame or flushing. This leaves the utility
295 * code with a single temp: r12. This should be enough.
296 */
297 LockTemp(rs_rMIPS_ARG0);
298 LockTemp(rs_rMIPS_ARG1);
299 LockTemp(rs_rMIPS_ARG2);
300 LockTemp(rs_rMIPS_ARG3);
301
302 /*
303 * We can safely skip the stack overflow check if we're
304 * a leaf *and* our frame size < fudge factor.
305 */
306 bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kMips);
307 NewLIR0(kPseudoMethodEntry);
308 RegStorage check_reg = AllocTemp();
309 RegStorage new_sp = AllocTemp();
310 if (!skip_overflow_check) {
311 /* Load stack limit */
312 Load32Disp(rs_rMIPS_SELF, Thread::StackEndOffset<4>().Int32Value(), check_reg);
313 }
314 /* Spill core callee saves */
315 SpillCoreRegs();
316 /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
317 DCHECK_EQ(num_fp_spills_, 0);
318 const int frame_sub = frame_size_ - spill_count * 4;
319 if (!skip_overflow_check) {
320 class StackOverflowSlowPath : public LIRSlowPath {
321 public:
322 StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
323 : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), sp_displace_(sp_displace) {
324 }
325 void Compile() OVERRIDE {
326 m2l_->ResetRegPool();
327 m2l_->ResetDefTracking();
328 GenerateTargetLabel(kPseudoThrowTarget);
329 // LR is offset 0 since we push in reverse order.
330 m2l_->Load32Disp(rs_rMIPS_SP, 0, rs_rRA);
331 m2l_->OpRegImm(kOpAdd, rs_rMIPS_SP, sp_displace_);
332 m2l_->ClobberCallerSave();
333 RegStorage r_tgt = m2l_->CallHelperSetup(kQuickThrowStackOverflow); // Doesn't clobber LR.
334 m2l_->CallHelper(r_tgt, kQuickThrowStackOverflow, false /* MarkSafepointPC */,
335 false /* UseLink */);
336 }
337
338 private:
339 const size_t sp_displace_;
340 };
341 OpRegRegImm(kOpSub, new_sp, rs_rMIPS_SP, frame_sub);
342 LIR* branch = OpCmpBranch(kCondUlt, new_sp, check_reg, nullptr);
343 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, spill_count * 4));
344 // TODO: avoid copy for small frame sizes.
345 OpRegCopy(rs_rMIPS_SP, new_sp); // Establish stack
346 } else {
347 OpRegImm(kOpSub, rs_rMIPS_SP, frame_sub);
348 }
349
350 FlushIns(ArgLocs, rl_method);
351
352 FreeTemp(rs_rMIPS_ARG0);
353 FreeTemp(rs_rMIPS_ARG1);
354 FreeTemp(rs_rMIPS_ARG2);
355 FreeTemp(rs_rMIPS_ARG3);
356 }
357
GenExitSequence()358 void MipsMir2Lir::GenExitSequence() {
359 /*
360 * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
361 * allocated by the register utilities as temps.
362 */
363 LockTemp(rs_rMIPS_RET0);
364 LockTemp(rs_rMIPS_RET1);
365
366 NewLIR0(kPseudoMethodExit);
367 UnSpillCoreRegs();
368 OpReg(kOpBx, rs_rRA);
369 }
370
GenSpecialExitSequence()371 void MipsMir2Lir::GenSpecialExitSequence() {
372 OpReg(kOpBx, rs_rRA);
373 }
374
375 } // namespace art
376