1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "nodes.h"
18 #include "ssa_builder.h"
19 #include "utils/growable_array.h"
20 
21 namespace art {
22 
AddBlock(HBasicBlock * block)23 void HGraph::AddBlock(HBasicBlock* block) {
24   block->SetBlockId(blocks_.Size());
25   blocks_.Add(block);
26 }
27 
FindBackEdges(ArenaBitVector * visited)28 void HGraph::FindBackEdges(ArenaBitVector* visited) {
29   ArenaBitVector visiting(arena_, blocks_.Size(), false);
30   VisitBlockForBackEdges(entry_block_, visited, &visiting);
31 }
32 
RemoveDeadBlocks(const ArenaBitVector & visited) const33 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) const {
34   for (size_t i = 0; i < blocks_.Size(); ++i) {
35     if (!visited.IsBitSet(i)) {
36       HBasicBlock* block = blocks_.Get(i);
37       for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
38         block->GetSuccessors().Get(j)->RemovePredecessor(block);
39       }
40       for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
41         block->RemovePhi(it.Current()->AsPhi());
42       }
43       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
44         block->RemoveInstruction(it.Current());
45       }
46     }
47   }
48 }
49 
VisitBlockForBackEdges(HBasicBlock * block,ArenaBitVector * visited,ArenaBitVector * visiting)50 void HGraph::VisitBlockForBackEdges(HBasicBlock* block,
51                                     ArenaBitVector* visited,
52                                     ArenaBitVector* visiting) {
53   int id = block->GetBlockId();
54   if (visited->IsBitSet(id)) return;
55 
56   visited->SetBit(id);
57   visiting->SetBit(id);
58   for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
59     HBasicBlock* successor = block->GetSuccessors().Get(i);
60     if (visiting->IsBitSet(successor->GetBlockId())) {
61       successor->AddBackEdge(block);
62     } else {
63       VisitBlockForBackEdges(successor, visited, visiting);
64     }
65   }
66   visiting->ClearBit(id);
67 }
68 
BuildDominatorTree()69 void HGraph::BuildDominatorTree() {
70   ArenaBitVector visited(arena_, blocks_.Size(), false);
71 
72   // (1) Find the back edges in the graph doing a DFS traversal.
73   FindBackEdges(&visited);
74 
75   // (2) Remove blocks not visited during the initial DFS.
76   //     Step (3) requires dead blocks to be removed from the
77   //     predecessors list of live blocks.
78   RemoveDeadBlocks(visited);
79 
80   // (3) Simplify the CFG now, so that we don't need to recompute
81   //     dominators and the reverse post order.
82   SimplifyCFG();
83 
84   // (4) Compute the immediate dominator of each block. We visit
85   //     the successors of a block only when all its forward branches
86   //     have been processed.
87   GrowableArray<size_t> visits(arena_, blocks_.Size());
88   visits.SetSize(blocks_.Size());
89   reverse_post_order_.Add(entry_block_);
90   for (size_t i = 0; i < entry_block_->GetSuccessors().Size(); i++) {
91     VisitBlockForDominatorTree(entry_block_->GetSuccessors().Get(i), entry_block_, &visits);
92   }
93 }
94 
FindCommonDominator(HBasicBlock * first,HBasicBlock * second) const95 HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const {
96   ArenaBitVector visited(arena_, blocks_.Size(), false);
97   // Walk the dominator tree of the first block and mark the visited blocks.
98   while (first != nullptr) {
99     visited.SetBit(first->GetBlockId());
100     first = first->GetDominator();
101   }
102   // Walk the dominator tree of the second block until a marked block is found.
103   while (second != nullptr) {
104     if (visited.IsBitSet(second->GetBlockId())) {
105       return second;
106     }
107     second = second->GetDominator();
108   }
109   LOG(ERROR) << "Could not find common dominator";
110   return nullptr;
111 }
112 
VisitBlockForDominatorTree(HBasicBlock * block,HBasicBlock * predecessor,GrowableArray<size_t> * visits)113 void HGraph::VisitBlockForDominatorTree(HBasicBlock* block,
114                                         HBasicBlock* predecessor,
115                                         GrowableArray<size_t>* visits) {
116   if (block->GetDominator() == nullptr) {
117     block->SetDominator(predecessor);
118   } else {
119     block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor));
120   }
121 
122   visits->Increment(block->GetBlockId());
123   // Once all the forward edges have been visited, we know the immediate
124   // dominator of the block. We can then start visiting its successors.
125   if (visits->Get(block->GetBlockId()) ==
126       block->GetPredecessors().Size() - block->NumberOfBackEdges()) {
127     reverse_post_order_.Add(block);
128     for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
129       VisitBlockForDominatorTree(block->GetSuccessors().Get(i), block, visits);
130     }
131   }
132 }
133 
TransformToSSA()134 void HGraph::TransformToSSA() {
135   DCHECK(!reverse_post_order_.IsEmpty());
136   SsaBuilder ssa_builder(this);
137   ssa_builder.BuildSsa();
138 }
139 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)140 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
141   // Insert a new node between `block` and `successor` to split the
142   // critical edge.
143   HBasicBlock* new_block = new (arena_) HBasicBlock(this);
144   AddBlock(new_block);
145   new_block->AddInstruction(new (arena_) HGoto());
146   block->ReplaceSuccessor(successor, new_block);
147   new_block->AddSuccessor(successor);
148   if (successor->IsLoopHeader()) {
149     // If we split at a back edge boundary, make the new block the back edge.
150     HLoopInformation* info = successor->GetLoopInformation();
151     if (info->IsBackEdge(block)) {
152       info->RemoveBackEdge(block);
153       info->AddBackEdge(new_block);
154     }
155   }
156 }
157 
SimplifyLoop(HBasicBlock * header)158 void HGraph::SimplifyLoop(HBasicBlock* header) {
159   HLoopInformation* info = header->GetLoopInformation();
160 
161   // If there are more than one back edge, make them branch to the same block that
162   // will become the only back edge. This simplifies finding natural loops in the
163   // graph.
164   if (info->NumberOfBackEdges() > 1) {
165     HBasicBlock* new_back_edge = new (arena_) HBasicBlock(this);
166     AddBlock(new_back_edge);
167     new_back_edge->AddInstruction(new (arena_) HGoto());
168     for (size_t pred = 0, e = info->GetBackEdges().Size(); pred < e; ++pred) {
169       HBasicBlock* back_edge = info->GetBackEdges().Get(pred);
170       back_edge->ReplaceSuccessor(header, new_back_edge);
171     }
172     info->ClearBackEdges();
173     info->AddBackEdge(new_back_edge);
174     new_back_edge->AddSuccessor(header);
175   }
176 
177   // Make sure the loop has only one pre header. This simplifies SSA building by having
178   // to just look at the pre header to know which locals are initialized at entry of the
179   // loop.
180   size_t number_of_incomings = header->GetPredecessors().Size() - info->NumberOfBackEdges();
181   if (number_of_incomings != 1) {
182     HBasicBlock* pre_header = new (arena_) HBasicBlock(this);
183     AddBlock(pre_header);
184     pre_header->AddInstruction(new (arena_) HGoto());
185 
186     ArenaBitVector back_edges(arena_, GetBlocks().Size(), false);
187     HBasicBlock* back_edge = info->GetBackEdges().Get(0);
188     for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) {
189       HBasicBlock* predecessor = header->GetPredecessors().Get(pred);
190       if (predecessor != back_edge) {
191         predecessor->ReplaceSuccessor(header, pre_header);
192         pred--;
193       }
194     }
195     pre_header->AddSuccessor(header);
196   }
197 }
198 
SimplifyCFG()199 void HGraph::SimplifyCFG() {
200   // Simplify the CFG for future analysis, and code generation:
201   // (1): Split critical edges.
202   // (2): Simplify loops by having only one back edge, and one preheader.
203   for (size_t i = 0; i < blocks_.Size(); ++i) {
204     HBasicBlock* block = blocks_.Get(i);
205     if (block->GetSuccessors().Size() > 1) {
206       for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
207         HBasicBlock* successor = block->GetSuccessors().Get(j);
208         if (successor->GetPredecessors().Size() > 1) {
209           SplitCriticalEdge(block, successor);
210           --j;
211         }
212       }
213     }
214     if (block->IsLoopHeader()) {
215       SimplifyLoop(block);
216     }
217   }
218 }
219 
FindNaturalLoops() const220 bool HGraph::FindNaturalLoops() const {
221   for (size_t i = 0; i < blocks_.Size(); ++i) {
222     HBasicBlock* block = blocks_.Get(i);
223     if (block->IsLoopHeader()) {
224       HLoopInformation* info = block->GetLoopInformation();
225       if (!info->Populate()) {
226         // Abort if the loop is non natural. We currently bailout in such cases.
227         return false;
228       }
229     }
230   }
231   return true;
232 }
233 
PopulateRecursive(HBasicBlock * block)234 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
235   if (blocks_.IsBitSet(block->GetBlockId())) {
236     return;
237   }
238 
239   blocks_.SetBit(block->GetBlockId());
240   block->SetInLoop(this);
241   for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
242     PopulateRecursive(block->GetPredecessors().Get(i));
243   }
244 }
245 
Populate()246 bool HLoopInformation::Populate() {
247   DCHECK_EQ(GetBackEdges().Size(), 1u);
248   HBasicBlock* back_edge = GetBackEdges().Get(0);
249   DCHECK(back_edge->GetDominator() != nullptr);
250   if (!header_->Dominates(back_edge)) {
251     // This loop is not natural. Do not bother going further.
252     return false;
253   }
254 
255   // Populate this loop: starting with the back edge, recursively add predecessors
256   // that are not already part of that loop. Set the header as part of the loop
257   // to end the recursion.
258   // This is a recursive implementation of the algorithm described in
259   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
260   blocks_.SetBit(header_->GetBlockId());
261   PopulateRecursive(back_edge);
262   return true;
263 }
264 
GetPreHeader() const265 HBasicBlock* HLoopInformation::GetPreHeader() const {
266   DCHECK_EQ(header_->GetPredecessors().Size(), 2u);
267   return header_->GetDominator();
268 }
269 
Contains(const HBasicBlock & block) const270 bool HLoopInformation::Contains(const HBasicBlock& block) const {
271   return blocks_.IsBitSet(block.GetBlockId());
272 }
273 
IsIn(const HLoopInformation & other) const274 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
275   return other.blocks_.IsBitSet(header_->GetBlockId());
276 }
277 
Dominates(HBasicBlock * other) const278 bool HBasicBlock::Dominates(HBasicBlock* other) const {
279   // Walk up the dominator tree from `other`, to find out if `this`
280   // is an ancestor.
281   HBasicBlock* current = other;
282   while (current != nullptr) {
283     if (current == this) {
284       return true;
285     }
286     current = current->GetDominator();
287   }
288   return false;
289 }
290 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)291 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
292   DCHECK(cursor->AsPhi() == nullptr);
293   DCHECK(instruction->AsPhi() == nullptr);
294   DCHECK_EQ(instruction->GetId(), -1);
295   DCHECK_NE(cursor->GetId(), -1);
296   DCHECK_EQ(cursor->GetBlock(), this);
297   DCHECK(!instruction->IsControlFlow());
298   instruction->next_ = cursor;
299   instruction->previous_ = cursor->previous_;
300   cursor->previous_ = instruction;
301   if (GetFirstInstruction() == cursor) {
302     instructions_.first_instruction_ = instruction;
303   } else {
304     instruction->previous_->next_ = instruction;
305   }
306   instruction->SetBlock(this);
307   instruction->SetId(GetGraph()->GetNextInstructionId());
308 }
309 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)310 static void Add(HInstructionList* instruction_list,
311                 HBasicBlock* block,
312                 HInstruction* instruction) {
313   DCHECK(instruction->GetBlock() == nullptr);
314   DCHECK_EQ(instruction->GetId(), -1);
315   instruction->SetBlock(block);
316   instruction->SetId(block->GetGraph()->GetNextInstructionId());
317   instruction_list->AddInstruction(instruction);
318 }
319 
AddInstruction(HInstruction * instruction)320 void HBasicBlock::AddInstruction(HInstruction* instruction) {
321   Add(&instructions_, this, instruction);
322 }
323 
AddPhi(HPhi * phi)324 void HBasicBlock::AddPhi(HPhi* phi) {
325   Add(&phis_, this, phi);
326 }
327 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)328 static void Remove(HInstructionList* instruction_list,
329                    HBasicBlock* block,
330                    HInstruction* instruction) {
331   DCHECK_EQ(block, instruction->GetBlock());
332   DCHECK(instruction->GetUses() == nullptr);
333   DCHECK(instruction->GetEnvUses() == nullptr);
334   instruction->SetBlock(nullptr);
335   instruction_list->RemoveInstruction(instruction);
336 
337   for (size_t i = 0; i < instruction->InputCount(); i++) {
338     instruction->InputAt(i)->RemoveUser(instruction, i);
339   }
340 }
341 
RemoveInstruction(HInstruction * instruction)342 void HBasicBlock::RemoveInstruction(HInstruction* instruction) {
343   Remove(&instructions_, this, instruction);
344 }
345 
RemovePhi(HPhi * phi)346 void HBasicBlock::RemovePhi(HPhi* phi) {
347   Remove(&phis_, this, phi);
348 }
349 
RemoveUser(HInstruction * user,size_t input_index)350 void HInstruction::RemoveUser(HInstruction* user, size_t input_index) {
351   HUseListNode<HInstruction>* previous = nullptr;
352   HUseListNode<HInstruction>* current = uses_;
353   while (current != nullptr) {
354     if (current->GetUser() == user && current->GetIndex() == input_index) {
355       if (previous == NULL) {
356         uses_ = current->GetTail();
357       } else {
358         previous->SetTail(current->GetTail());
359       }
360     }
361     previous = current;
362     current = current->GetTail();
363   }
364 }
365 
AddInstruction(HInstruction * instruction)366 void HInstructionList::AddInstruction(HInstruction* instruction) {
367   if (first_instruction_ == nullptr) {
368     DCHECK(last_instruction_ == nullptr);
369     first_instruction_ = last_instruction_ = instruction;
370   } else {
371     last_instruction_->next_ = instruction;
372     instruction->previous_ = last_instruction_;
373     last_instruction_ = instruction;
374   }
375   for (size_t i = 0; i < instruction->InputCount(); i++) {
376     instruction->InputAt(i)->AddUseAt(instruction, i);
377   }
378 }
379 
RemoveInstruction(HInstruction * instruction)380 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
381   if (instruction->previous_ != nullptr) {
382     instruction->previous_->next_ = instruction->next_;
383   }
384   if (instruction->next_ != nullptr) {
385     instruction->next_->previous_ = instruction->previous_;
386   }
387   if (instruction == first_instruction_) {
388     first_instruction_ = instruction->next_;
389   }
390   if (instruction == last_instruction_) {
391     last_instruction_ = instruction->previous_;
392   }
393 }
394 
ReplaceWith(HInstruction * other)395 void HInstruction::ReplaceWith(HInstruction* other) {
396   DCHECK(other != nullptr);
397   for (HUseIterator<HInstruction> it(GetUses()); !it.Done(); it.Advance()) {
398     HUseListNode<HInstruction>* current = it.Current();
399     HInstruction* user = current->GetUser();
400     size_t input_index = current->GetIndex();
401     user->SetRawInputAt(input_index, other);
402     other->AddUseAt(user, input_index);
403   }
404 
405   for (HUseIterator<HEnvironment> it(GetEnvUses()); !it.Done(); it.Advance()) {
406     HUseListNode<HEnvironment>* current = it.Current();
407     HEnvironment* user = current->GetUser();
408     size_t input_index = current->GetIndex();
409     user->SetRawEnvAt(input_index, other);
410     other->AddEnvUseAt(user, input_index);
411   }
412 
413   uses_ = nullptr;
414   env_uses_ = nullptr;
415 }
416 
AddInput(HInstruction * input)417 void HPhi::AddInput(HInstruction* input) {
418   DCHECK(input->GetBlock() != nullptr);
419   inputs_.Add(input);
420   input->AddUseAt(this, inputs_.Size() - 1);
421 }
422 
423 #define DEFINE_ACCEPT(name)                                                    \
424 void H##name::Accept(HGraphVisitor* visitor) {                                 \
425   visitor->Visit##name(this);                                                  \
426 }
427 
FOR_EACH_INSTRUCTION(DEFINE_ACCEPT)428 FOR_EACH_INSTRUCTION(DEFINE_ACCEPT)
429 
430 #undef DEFINE_ACCEPT
431 
432 void HGraphVisitor::VisitInsertionOrder() {
433   const GrowableArray<HBasicBlock*>& blocks = graph_->GetBlocks();
434   for (size_t i = 0 ; i < blocks.Size(); i++) {
435     VisitBasicBlock(blocks.Get(i));
436   }
437 }
438 
VisitBasicBlock(HBasicBlock * block)439 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
440   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
441     it.Current()->Accept(this);
442   }
443   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
444     it.Current()->Accept(this);
445   }
446 }
447 
448 
NeedsMaterialization() const449 bool HCondition::NeedsMaterialization() const {
450   if (!HasOnlyOneUse()) {
451     return true;
452   }
453   HUseListNode<HInstruction>* uses = GetUses();
454   HInstruction* user = uses->GetUser();
455   if (!user->IsIf()) {
456     return true;
457   }
458 
459   // TODO: should we allow intervening instructions with no side-effect between this condition
460   // and the If instruction?
461   if (GetNext() != user) {
462     return true;
463   }
464   return false;
465 }
466 
467 }  // namespace art
468