1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "code_generator.h"
20 #include "nodes.h"
21 
22 namespace art {
23 
Analyze()24 void SsaLivenessAnalysis::Analyze() {
25   LinearizeGraph();
26   NumberInstructions();
27   ComputeLiveness();
28 }
29 
IsLoopExit(HLoopInformation * current,HLoopInformation * to)30 static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) {
31   // `to` is either not part of a loop, or `current` is an inner loop of `to`.
32   return to == nullptr || (current != to && current->IsIn(*to));
33 }
34 
IsLoop(HLoopInformation * info)35 static bool IsLoop(HLoopInformation* info) {
36   return info != nullptr;
37 }
38 
InSameLoop(HLoopInformation * first_loop,HLoopInformation * second_loop)39 static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
40   return first_loop == second_loop;
41 }
42 
IsInnerLoop(HLoopInformation * outer,HLoopInformation * inner)43 static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
44   return (inner != outer)
45       && (inner != nullptr)
46       && (outer != nullptr)
47       && inner->IsIn(*outer);
48 }
49 
VisitBlockForLinearization(HBasicBlock * block,GrowableArray<HBasicBlock * > * order,ArenaBitVector * visited)50 static void VisitBlockForLinearization(HBasicBlock* block,
51                                        GrowableArray<HBasicBlock*>* order,
52                                        ArenaBitVector* visited) {
53   if (visited->IsBitSet(block->GetBlockId())) {
54     return;
55   }
56   visited->SetBit(block->GetBlockId());
57   size_t number_of_successors = block->GetSuccessors().Size();
58   if (number_of_successors == 0) {
59     // Nothing to do.
60   } else if (number_of_successors == 1) {
61     VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited);
62   } else {
63     DCHECK_EQ(number_of_successors, 2u);
64     HBasicBlock* first_successor = block->GetSuccessors().Get(0);
65     HBasicBlock* second_successor = block->GetSuccessors().Get(1);
66     HLoopInformation* my_loop = block->GetLoopInformation();
67     HLoopInformation* first_loop = first_successor->GetLoopInformation();
68     HLoopInformation* second_loop = second_successor->GetLoopInformation();
69 
70     if (!IsLoop(my_loop)) {
71       // Nothing to do. Current order is fine.
72     } else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) {
73       // Visit the loop exit first in post order.
74       std::swap(first_successor, second_successor);
75     } else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) {
76       // Visit the inner loop last in post order.
77       std::swap(first_successor, second_successor);
78     }
79     VisitBlockForLinearization(first_successor, order, visited);
80     VisitBlockForLinearization(second_successor, order, visited);
81   }
82   order->Add(block);
83 }
84 
LinearizeGraph()85 void SsaLivenessAnalysis::LinearizeGraph() {
86   // For simplicity of the implementation, we create post linear order. The order for
87   // computing live ranges is the reverse of that order.
88   ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false);
89   VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited);
90 }
91 
NumberInstructions()92 void SsaLivenessAnalysis::NumberInstructions() {
93   int ssa_index = 0;
94   size_t lifetime_position = 0;
95   // Each instruction gets a lifetime position, and a block gets a lifetime
96   // start and end position. Non-phi instructions have a distinct lifetime position than
97   // the block they are in. Phi instructions have the lifetime start of their block as
98   // lifetime position.
99   //
100   // Because the register allocator will insert moves in the graph, we need
101   // to differentiate between the start and end of an instruction. Adding 2 to
102   // the lifetime position for each instruction ensures the start of an
103   // instruction is different than the end of the previous instruction.
104   for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
105     HBasicBlock* block = it.Current();
106     block->SetLifetimeStart(lifetime_position);
107 
108     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
109       HInstruction* current = it.Current();
110       current->Accept(codegen_->GetLocationBuilder());
111       LocationSummary* locations = current->GetLocations();
112       if (locations != nullptr && locations->Out().IsValid()) {
113         instructions_from_ssa_index_.Add(current);
114         current->SetSsaIndex(ssa_index++);
115         current->SetLiveInterval(
116             new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
117       }
118       current->SetLifetimePosition(lifetime_position);
119     }
120     lifetime_position += 2;
121 
122     // Add a null marker to notify we are starting a block.
123     instructions_from_lifetime_position_.Add(nullptr);
124 
125     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
126       HInstruction* current = it.Current();
127       current->Accept(codegen_->GetLocationBuilder());
128       LocationSummary* locations = current->GetLocations();
129       if (locations != nullptr && locations->Out().IsValid()) {
130         instructions_from_ssa_index_.Add(current);
131         current->SetSsaIndex(ssa_index++);
132         current->SetLiveInterval(
133             new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
134       }
135       instructions_from_lifetime_position_.Add(current);
136       current->SetLifetimePosition(lifetime_position);
137       lifetime_position += 2;
138     }
139 
140     block->SetLifetimeEnd(lifetime_position);
141   }
142   number_of_ssa_values_ = ssa_index;
143 }
144 
ComputeLiveness()145 void SsaLivenessAnalysis::ComputeLiveness() {
146   for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
147     HBasicBlock* block = it.Current();
148     block_infos_.Put(
149         block->GetBlockId(),
150         new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
151   }
152 
153   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
154   // This method does not handle backward branches for the sets, therefore live_in
155   // and live_out sets are not yet correct.
156   ComputeLiveRanges();
157 
158   // Do a fixed point calculation to take into account backward branches,
159   // that will update live_in of loop headers, and therefore live_out and live_in
160   // of blocks in the loop.
161   ComputeLiveInAndLiveOutSets();
162 }
163 
ComputeLiveRanges()164 void SsaLivenessAnalysis::ComputeLiveRanges() {
165   // Do a post order visit, adding inputs of instructions live in the block where
166   // that instruction is defined, and killing instructions that are being visited.
167   for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
168     HBasicBlock* block = it.Current();
169 
170     BitVector* kill = GetKillSet(*block);
171     BitVector* live_in = GetLiveInSet(*block);
172 
173     // Set phi inputs of successors of this block corresponding to this block
174     // as live_in.
175     for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
176       HBasicBlock* successor = block->GetSuccessors().Get(i);
177       live_in->Union(GetLiveInSet(*successor));
178       size_t phi_input_index = successor->GetPredecessorIndexOf(block);
179       for (HInstructionIterator it(successor->GetPhis()); !it.Done(); it.Advance()) {
180         HInstruction* phi = it.Current();
181         HInstruction* input = phi->InputAt(phi_input_index);
182         input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
183         // A phi input whose last user is the phi dies at the end of the predecessor block,
184         // and not at the phi's lifetime position.
185         live_in->SetBit(input->GetSsaIndex());
186       }
187     }
188 
189     // Add a range that covers this block to all instructions live_in because of successors.
190     for (uint32_t idx : live_in->Indexes()) {
191       HInstruction* current = instructions_from_ssa_index_.Get(idx);
192       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
193     }
194 
195     for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
196       HInstruction* current = it.Current();
197       if (current->HasSsaIndex()) {
198         // Kill the instruction and shorten its interval.
199         kill->SetBit(current->GetSsaIndex());
200         live_in->ClearBit(current->GetSsaIndex());
201         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
202       }
203 
204       // All inputs of an instruction must be live.
205       for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
206         HInstruction* input = current->InputAt(i);
207         // Some instructions 'inline' their inputs, that is they do not need
208         // to be materialized.
209         if (input->HasSsaIndex()) {
210           live_in->SetBit(input->GetSsaIndex());
211           input->GetLiveInterval()->AddUse(current, i, false);
212         }
213       }
214 
215       if (current->HasEnvironment()) {
216         // All instructions in the environment must be live.
217         GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
218         for (size_t i = 0, e = environment->Size(); i < e; ++i) {
219           HInstruction* instruction = environment->Get(i);
220           if (instruction != nullptr) {
221             DCHECK(instruction->HasSsaIndex());
222             live_in->SetBit(instruction->GetSsaIndex());
223             instruction->GetLiveInterval()->AddUse(current, i, true);
224           }
225         }
226       }
227     }
228 
229     // Kill phis defined in this block.
230     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
231       HInstruction* current = it.Current();
232       if (current->HasSsaIndex()) {
233         kill->SetBit(current->GetSsaIndex());
234         live_in->ClearBit(current->GetSsaIndex());
235         LiveInterval* interval = current->GetLiveInterval();
236         DCHECK((interval->GetFirstRange() == nullptr)
237                || (interval->GetStart() == current->GetLifetimePosition()));
238         interval->SetFrom(current->GetLifetimePosition());
239       }
240     }
241 
242     if (block->IsLoopHeader()) {
243       HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
244       // For all live_in instructions at the loop header, we need to create a range
245       // that covers the full loop.
246       for (uint32_t idx : live_in->Indexes()) {
247         HInstruction* current = instructions_from_ssa_index_.Get(idx);
248         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
249                                                  back_edge->GetLifetimeEnd());
250       }
251     }
252   }
253 }
254 
ComputeLiveInAndLiveOutSets()255 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
256   bool changed;
257   do {
258     changed = false;
259 
260     for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
261       const HBasicBlock& block = *it.Current();
262 
263       // The live_in set depends on the kill set (which does not
264       // change in this loop), and the live_out set.  If the live_out
265       // set does not change, there is no need to update the live_in set.
266       if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
267         changed = true;
268       }
269     }
270   } while (changed);
271 }
272 
UpdateLiveOut(const HBasicBlock & block)273 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
274   BitVector* live_out = GetLiveOutSet(block);
275   bool changed = false;
276   // The live_out set of a block is the union of live_in sets of its successors.
277   for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
278     HBasicBlock* successor = block.GetSuccessors().Get(i);
279     if (live_out->Union(GetLiveInSet(*successor))) {
280       changed = true;
281     }
282   }
283   return changed;
284 }
285 
286 
UpdateLiveIn(const HBasicBlock & block)287 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
288   BitVector* live_out = GetLiveOutSet(block);
289   BitVector* kill = GetKillSet(block);
290   BitVector* live_in = GetLiveInSet(block);
291   // If live_out is updated (because of backward branches), we need to make
292   // sure instructions in live_out are also in live_in, unless they are killed
293   // by this block.
294   return live_in->UnionIfNotIn(live_out, kill);
295 }
296 
297 }  // namespace art
298