1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "a64/instructions-a64.h"
28 #include "a64/assembler-a64.h"
29 
30 namespace vixl {
31 
32 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)33 static uint64_t RotateRight(uint64_t value,
34                             unsigned int rotate,
35                             unsigned int width) {
36   VIXL_ASSERT(width <= 64);
37   rotate &= 63;
38   return ((value & ((UINT64_C(1) << rotate) - 1)) <<
39           (width - rotate)) | (value >> rotate);
40 }
41 
42 
RepeatBitsAcrossReg(unsigned reg_size,uint64_t value,unsigned width)43 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
44                                     uint64_t value,
45                                     unsigned width) {
46   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
47               (width == 32));
48   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
49   uint64_t result = value & ((UINT64_C(1) << width) - 1);
50   for (unsigned i = width; i < reg_size; i *= 2) {
51     result |= (result << i);
52   }
53   return result;
54 }
55 
56 
57 // Logical immediates can't encode zero, so a return value of zero is used to
58 // indicate a failure case. Specifically, where the constraints on imm_s are
59 // not met.
ImmLogical()60 uint64_t Instruction::ImmLogical() {
61   unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
62   int64_t n = BitN();
63   int64_t imm_s = ImmSetBits();
64   int64_t imm_r = ImmRotate();
65 
66   // An integer is constructed from the n, imm_s and imm_r bits according to
67   // the following table:
68   //
69   //  N   imms    immr    size        S             R
70   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
71   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
72   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
73   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
74   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
75   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
76   // (s bits must not be all set)
77   //
78   // A pattern is constructed of size bits, where the least significant S+1
79   // bits are set. The pattern is rotated right by R, and repeated across a
80   // 32 or 64-bit value, depending on destination register width.
81   //
82 
83   if (n == 1) {
84     if (imm_s == 0x3F) {
85       return 0;
86     }
87     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
88     return RotateRight(bits, imm_r, 64);
89   } else {
90     if ((imm_s >> 1) == 0x1F) {
91       return 0;
92     }
93     for (int width = 0x20; width >= 0x2; width >>= 1) {
94       if ((imm_s & width) == 0) {
95         int mask = width - 1;
96         if ((imm_s & mask) == mask) {
97           return 0;
98         }
99         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
100         return RepeatBitsAcrossReg(reg_size,
101                                    RotateRight(bits, imm_r & mask, width),
102                                    width);
103       }
104     }
105   }
106   VIXL_UNREACHABLE();
107   return 0;
108 }
109 
110 
ImmFP32()111 float Instruction::ImmFP32() {
112   //  ImmFP: abcdefgh (8 bits)
113   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
114   // where B is b ^ 1
115   uint32_t bits = ImmFP();
116   uint32_t bit7 = (bits >> 7) & 0x1;
117   uint32_t bit6 = (bits >> 6) & 0x1;
118   uint32_t bit5_to_0 = bits & 0x3f;
119   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
120 
121   return rawbits_to_float(result);
122 }
123 
124 
ImmFP64()125 double Instruction::ImmFP64() {
126   //  ImmFP: abcdefgh (8 bits)
127   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
128   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
129   // where B is b ^ 1
130   uint32_t bits = ImmFP();
131   uint64_t bit7 = (bits >> 7) & 0x1;
132   uint64_t bit6 = (bits >> 6) & 0x1;
133   uint64_t bit5_to_0 = bits & 0x3f;
134   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
135 
136   return rawbits_to_double(result);
137 }
138 
139 
CalcLSPairDataSize(LoadStorePairOp op)140 LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
141   switch (op) {
142     case STP_x:
143     case LDP_x:
144     case STP_d:
145     case LDP_d: return LSDoubleWord;
146     default: return LSWord;
147   }
148 }
149 
150 
ImmPCOffsetTarget()151 Instruction* Instruction::ImmPCOffsetTarget() {
152   ptrdiff_t offset;
153   if (IsPCRelAddressing()) {
154     // PC-relative addressing. Only ADR is supported.
155     offset = ImmPCRel();
156   } else {
157     // All PC-relative branches.
158     VIXL_ASSERT(BranchType() != UnknownBranchType);
159     // Relative branch offsets are instruction-size-aligned.
160     offset = ImmBranch() << kInstructionSizeLog2;
161   }
162   return this + offset;
163 }
164 
165 
ImmBranch() const166 inline int Instruction::ImmBranch() const {
167   switch (BranchType()) {
168     case CondBranchType: return ImmCondBranch();
169     case UncondBranchType: return ImmUncondBranch();
170     case CompareBranchType: return ImmCmpBranch();
171     case TestBranchType: return ImmTestBranch();
172     default: VIXL_UNREACHABLE();
173   }
174   return 0;
175 }
176 
177 
SetImmPCOffsetTarget(Instruction * target)178 void Instruction::SetImmPCOffsetTarget(Instruction* target) {
179   if (IsPCRelAddressing()) {
180     SetPCRelImmTarget(target);
181   } else {
182     SetBranchImmTarget(target);
183   }
184 }
185 
186 
SetPCRelImmTarget(Instruction * target)187 void Instruction::SetPCRelImmTarget(Instruction* target) {
188   // ADRP is not supported, so 'this' must point to an ADR instruction.
189   VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
190 
191   Instr imm = Assembler::ImmPCRelAddress(target - this);
192 
193   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
194 }
195 
196 
SetBranchImmTarget(Instruction * target)197 void Instruction::SetBranchImmTarget(Instruction* target) {
198   VIXL_ASSERT(((target - this) & 3) == 0);
199   Instr branch_imm = 0;
200   uint32_t imm_mask = 0;
201   int offset = (target - this) >> kInstructionSizeLog2;
202   switch (BranchType()) {
203     case CondBranchType: {
204       branch_imm = Assembler::ImmCondBranch(offset);
205       imm_mask = ImmCondBranch_mask;
206       break;
207     }
208     case UncondBranchType: {
209       branch_imm = Assembler::ImmUncondBranch(offset);
210       imm_mask = ImmUncondBranch_mask;
211       break;
212     }
213     case CompareBranchType: {
214       branch_imm = Assembler::ImmCmpBranch(offset);
215       imm_mask = ImmCmpBranch_mask;
216       break;
217     }
218     case TestBranchType: {
219       branch_imm = Assembler::ImmTestBranch(offset);
220       imm_mask = ImmTestBranch_mask;
221       break;
222     }
223     default: VIXL_UNREACHABLE();
224   }
225   SetInstructionBits(Mask(~imm_mask) | branch_imm);
226 }
227 
228 
SetImmLLiteral(Instruction * source)229 void Instruction::SetImmLLiteral(Instruction* source) {
230   VIXL_ASSERT(((source - this) & 3) == 0);
231   int offset = (source - this) >> kLiteralEntrySizeLog2;
232   Instr imm = Assembler::ImmLLiteral(offset);
233   Instr mask = ImmLLiteral_mask;
234 
235   SetInstructionBits(Mask(~mask) | imm);
236 }
237 }  // namespace vixl
238 
239