1 /*
2 * Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
3 * Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
4 * Copyright (C) 2005 Eric Seidel <eric@webkit.org>
5 * Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
6 * Copyright (C) Research In Motion Limited 2010. All rights reserved.
7 * Copyright (C) 2013 Google Inc. All rights reserved.
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Library General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Library General Public License for more details.
18 *
19 * You should have received a copy of the GNU Library General Public License
20 * along with this library; see the file COPYING.LIB. If not, write to
21 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 * Boston, MA 02110-1301, USA.
23 */
24
25 #include "config.h"
26
27 #include "platform/graphics/filters/FEComposite.h"
28
29 #include "SkArithmeticMode.h"
30 #include "SkXfermodeImageFilter.h"
31
32 #include "platform/graphics/GraphicsContext.h"
33 #include "platform/graphics/cpu/arm/filters/FECompositeArithmeticNEON.h"
34 #include "platform/graphics/filters/SkiaImageFilterBuilder.h"
35 #include "platform/text/TextStream.h"
36 #include "third_party/skia/include/core/SkDevice.h"
37
38 #include "wtf/Uint8ClampedArray.h"
39
40 namespace blink {
41
FEComposite(Filter * filter,const CompositeOperationType & type,float k1,float k2,float k3,float k4)42 FEComposite::FEComposite(Filter* filter, const CompositeOperationType& type, float k1, float k2, float k3, float k4)
43 : FilterEffect(filter)
44 , m_type(type)
45 , m_k1(k1)
46 , m_k2(k2)
47 , m_k3(k3)
48 , m_k4(k4)
49 {
50 }
51
create(Filter * filter,const CompositeOperationType & type,float k1,float k2,float k3,float k4)52 PassRefPtr<FEComposite> FEComposite::create(Filter* filter, const CompositeOperationType& type, float k1, float k2, float k3, float k4)
53 {
54 return adoptRef(new FEComposite(filter, type, k1, k2, k3, k4));
55 }
56
operation() const57 CompositeOperationType FEComposite::operation() const
58 {
59 return m_type;
60 }
61
setOperation(CompositeOperationType type)62 bool FEComposite::setOperation(CompositeOperationType type)
63 {
64 if (m_type == type)
65 return false;
66 m_type = type;
67 return true;
68 }
69
k1() const70 float FEComposite::k1() const
71 {
72 return m_k1;
73 }
74
setK1(float k1)75 bool FEComposite::setK1(float k1)
76 {
77 if (m_k1 == k1)
78 return false;
79 m_k1 = k1;
80 return true;
81 }
82
k2() const83 float FEComposite::k2() const
84 {
85 return m_k2;
86 }
87
setK2(float k2)88 bool FEComposite::setK2(float k2)
89 {
90 if (m_k2 == k2)
91 return false;
92 m_k2 = k2;
93 return true;
94 }
95
k3() const96 float FEComposite::k3() const
97 {
98 return m_k3;
99 }
100
setK3(float k3)101 bool FEComposite::setK3(float k3)
102 {
103 if (m_k3 == k3)
104 return false;
105 m_k3 = k3;
106 return true;
107 }
108
k4() const109 float FEComposite::k4() const
110 {
111 return m_k4;
112 }
113
setK4(float k4)114 bool FEComposite::setK4(float k4)
115 {
116 if (m_k4 == k4)
117 return false;
118 m_k4 = k4;
119 return true;
120 }
121
correctFilterResultIfNeeded()122 void FEComposite::correctFilterResultIfNeeded()
123 {
124 if (m_type != FECOMPOSITE_OPERATOR_ARITHMETIC)
125 return;
126
127 forceValidPreMultipliedPixels();
128 }
129
130 template <int b1, int b4>
computeArithmeticPixels(unsigned char * source,unsigned char * destination,int pixelArrayLength,float k1,float k2,float k3,float k4)131 static inline void computeArithmeticPixels(unsigned char* source, unsigned char* destination, int pixelArrayLength,
132 float k1, float k2, float k3, float k4)
133 {
134 float scaledK1;
135 float scaledK4;
136 if (b1)
137 scaledK1 = k1 / 255.0f;
138 if (b4)
139 scaledK4 = k4 * 255.0f;
140
141 while (--pixelArrayLength >= 0) {
142 unsigned char i1 = *source;
143 unsigned char i2 = *destination;
144 float result = k2 * i1 + k3 * i2;
145 if (b1)
146 result += scaledK1 * i1 * i2;
147 if (b4)
148 result += scaledK4;
149
150 if (result <= 0)
151 *destination = 0;
152 else if (result >= 255)
153 *destination = 255;
154 else
155 *destination = result;
156 ++source;
157 ++destination;
158 }
159 }
160
161 // computeArithmeticPixelsUnclamped is a faster version of computeArithmeticPixels for the common case where clamping
162 // is not necessary. This enables aggresive compiler optimizations such as auto-vectorization.
163 template <int b1, int b4>
computeArithmeticPixelsUnclamped(unsigned char * source,unsigned char * destination,int pixelArrayLength,float k1,float k2,float k3,float k4)164 static inline void computeArithmeticPixelsUnclamped(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
165 {
166 float scaledK1;
167 float scaledK4;
168 if (b1)
169 scaledK1 = k1 / 255.0f;
170 if (b4)
171 scaledK4 = k4 * 255.0f;
172
173 while (--pixelArrayLength >= 0) {
174 unsigned char i1 = *source;
175 unsigned char i2 = *destination;
176 float result = k2 * i1 + k3 * i2;
177 if (b1)
178 result += scaledK1 * i1 * i2;
179 if (b4)
180 result += scaledK4;
181
182 *destination = result;
183 ++source;
184 ++destination;
185 }
186 }
187
arithmeticSoftware(unsigned char * source,unsigned char * destination,int pixelArrayLength,float k1,float k2,float k3,float k4)188 static inline void arithmeticSoftware(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
189 {
190 float upperLimit = std::max(0.0f, k1) + std::max(0.0f, k2) + std::max(0.0f, k3) + k4;
191 float lowerLimit = std::min(0.0f, k1) + std::min(0.0f, k2) + std::min(0.0f, k3) + k4;
192 if ((k4 >= 0.0f && k4 <= 1.0f) && (upperLimit >= 0.0f && upperLimit <= 1.0f) && (lowerLimit >= 0.0f && lowerLimit <= 1.0f)) {
193 if (k4) {
194 if (k1)
195 computeArithmeticPixelsUnclamped<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
196 else
197 computeArithmeticPixelsUnclamped<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
198 } else {
199 if (k1)
200 computeArithmeticPixelsUnclamped<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
201 else
202 computeArithmeticPixelsUnclamped<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
203 }
204 return;
205 }
206
207 if (k4) {
208 if (k1)
209 computeArithmeticPixels<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
210 else
211 computeArithmeticPixels<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
212 } else {
213 if (k1)
214 computeArithmeticPixels<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
215 else
216 computeArithmeticPixels<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
217 }
218 }
219
platformArithmeticSoftware(Uint8ClampedArray * source,Uint8ClampedArray * destination,float k1,float k2,float k3,float k4)220 inline void FEComposite::platformArithmeticSoftware(Uint8ClampedArray* source, Uint8ClampedArray* destination,
221 float k1, float k2, float k3, float k4)
222 {
223 int length = source->length();
224 ASSERT(length == static_cast<int>(destination->length()));
225 // The selection here eventually should happen dynamically.
226 #if HAVE(ARM_NEON_INTRINSICS)
227 ASSERT(!(length & 0x3));
228 platformArithmeticNeon(source->data(), destination->data(), length, k1, k2, k3, k4);
229 #else
230 arithmeticSoftware(source->data(), destination->data(), length, k1, k2, k3, k4);
231 #endif
232 }
233
determineAbsolutePaintRect(const FloatRect & originalRequestedRect)234 FloatRect FEComposite::determineAbsolutePaintRect(const FloatRect& originalRequestedRect)
235 {
236 FloatRect requestedRect = originalRequestedRect;
237 if (clipsToBounds())
238 requestedRect.intersect(maxEffectRect());
239
240 // We may be called multiple times if result is used more than once. Return
241 // quickly if nothing new is required.
242 if (absolutePaintRect().contains(enclosingIntRect(requestedRect)))
243 return requestedRect;
244
245 // No mapPaintRect required for FEComposite.
246 FloatRect input1Rect = inputEffect(1)->determineAbsolutePaintRect(requestedRect);
247 FloatRect affectedRect;
248 switch (m_type) {
249 case FECOMPOSITE_OPERATOR_IN:
250 // 'in' has output only in the intersection of both inputs.
251 affectedRect = intersection(input1Rect, inputEffect(0)->determineAbsolutePaintRect(input1Rect));
252 break;
253 case FECOMPOSITE_OPERATOR_ATOP:
254 // 'atop' has output only in the extents of the second input.
255 // Make sure first input knows where it needs to produce output.
256 inputEffect(0)->determineAbsolutePaintRect(input1Rect);
257 affectedRect = input1Rect;
258 break;
259 case FECOMPOSITE_OPERATOR_ARITHMETIC:
260 if (k4() > 0) {
261 // Make sure first input knows where it needs to produce output.
262 inputEffect(0)->determineAbsolutePaintRect(requestedRect);
263 // Arithmetic with non-zero k4 may influnce the complete filter primitive
264 // region. So we can't optimize the paint region here.
265 affectedRect = requestedRect;
266 break;
267 }
268 if (k2() <= 0) {
269 // Input 0 does not appear where input 1 is not present.
270 FloatRect input0Rect = inputEffect(0)->determineAbsolutePaintRect(input1Rect);
271 if (k3() > 0) {
272 affectedRect = input1Rect;
273 } else {
274 // Just k1 is positive. Use intersection.
275 affectedRect = intersection(input1Rect, input0Rect);
276 }
277 break;
278 }
279 // else fall through to use union
280 default:
281 // Take the union of both input effects.
282 affectedRect = unionRect(input1Rect, inputEffect(0)->determineAbsolutePaintRect(requestedRect));
283 break;
284 }
285
286 affectedRect.intersect(requestedRect);
287 addAbsolutePaintRect(affectedRect);
288 return affectedRect;
289 }
290
applySoftware()291 void FEComposite::applySoftware()
292 {
293 FilterEffect* in = inputEffect(0);
294 FilterEffect* in2 = inputEffect(1);
295
296 if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC) {
297 Uint8ClampedArray* dstPixelArray = createPremultipliedImageResult();
298 if (!dstPixelArray)
299 return;
300
301 IntRect effectADrawingRect = requestedRegionOfInputImageData(in->absolutePaintRect());
302 RefPtr<Uint8ClampedArray> srcPixelArray = in->asPremultipliedImage(effectADrawingRect);
303
304 IntRect effectBDrawingRect = requestedRegionOfInputImageData(in2->absolutePaintRect());
305 in2->copyPremultipliedImage(dstPixelArray, effectBDrawingRect);
306
307 platformArithmeticSoftware(srcPixelArray.get(), dstPixelArray, m_k1, m_k2, m_k3, m_k4);
308 return;
309 }
310
311 ImageBuffer* resultImage = createImageBufferResult();
312 if (!resultImage)
313 return;
314 GraphicsContext* filterContext = resultImage->context();
315
316 ImageBuffer* imageBuffer = in->asImageBuffer();
317 ImageBuffer* imageBuffer2 = in2->asImageBuffer();
318 ASSERT(imageBuffer);
319 ASSERT(imageBuffer2);
320
321 switch (m_type) {
322 case FECOMPOSITE_OPERATOR_OVER:
323 filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
324 filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()));
325 break;
326 case FECOMPOSITE_OPERATOR_IN: {
327 // Applies only to the intersected region.
328 IntRect destinationRect = in->absolutePaintRect();
329 destinationRect.intersect(in2->absolutePaintRect());
330 destinationRect.intersect(absolutePaintRect());
331 if (destinationRect.isEmpty())
332 break;
333 FloatRect sourceRect(IntPoint(destinationRect.x() - in->absolutePaintRect().x(),
334 destinationRect.y() - in->absolutePaintRect().y()), destinationRect.size());
335 FloatRect source2Rect(IntPoint(destinationRect.x() - in2->absolutePaintRect().x(),
336 destinationRect.y() - in2->absolutePaintRect().y()), destinationRect.size());
337 destinationRect.move(-absolutePaintRect().x(), -absolutePaintRect().y());
338 filterContext->drawImageBuffer(imageBuffer2, destinationRect, &source2Rect);
339 filterContext->drawImageBuffer(imageBuffer, destinationRect, &sourceRect, CompositeSourceIn);
340 break;
341 }
342 case FECOMPOSITE_OPERATOR_OUT:
343 filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()));
344 filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()), 0, CompositeDestinationOut);
345 break;
346 case FECOMPOSITE_OPERATOR_ATOP:
347 filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
348 filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()), 0, CompositeSourceAtop);
349 break;
350 case FECOMPOSITE_OPERATOR_XOR:
351 filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
352 filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()), 0, CompositeXOR);
353 break;
354 default:
355 break;
356 }
357 }
358
toXfermode(CompositeOperationType mode)359 SkXfermode::Mode toXfermode(CompositeOperationType mode)
360 {
361 switch (mode) {
362 case FECOMPOSITE_OPERATOR_OVER:
363 return SkXfermode::kSrcOver_Mode;
364 case FECOMPOSITE_OPERATOR_IN:
365 return SkXfermode::kSrcIn_Mode;
366 case FECOMPOSITE_OPERATOR_OUT:
367 return SkXfermode::kSrcOut_Mode;
368 case FECOMPOSITE_OPERATOR_ATOP:
369 return SkXfermode::kSrcATop_Mode;
370 case FECOMPOSITE_OPERATOR_XOR:
371 return SkXfermode::kXor_Mode;
372 default:
373 ASSERT_NOT_REACHED();
374 return SkXfermode::kSrcOver_Mode;
375 }
376 }
377
createImageFilter(SkiaImageFilterBuilder * builder)378 PassRefPtr<SkImageFilter> FEComposite::createImageFilter(SkiaImageFilterBuilder* builder)
379 {
380 return createImageFilterInternal(builder, true);
381 }
382
createImageFilterWithoutValidation(SkiaImageFilterBuilder * builder)383 PassRefPtr<SkImageFilter> FEComposite::createImageFilterWithoutValidation(SkiaImageFilterBuilder* builder)
384 {
385 return createImageFilterInternal(builder, false);
386 }
387
createImageFilterInternal(SkiaImageFilterBuilder * builder,bool requiresPMColorValidation)388 PassRefPtr<SkImageFilter> FEComposite::createImageFilterInternal(SkiaImageFilterBuilder* builder, bool requiresPMColorValidation)
389 {
390 RefPtr<SkImageFilter> foreground(builder->build(inputEffect(0), operatingColorSpace(), !mayProduceInvalidPreMultipliedPixels()));
391 RefPtr<SkImageFilter> background(builder->build(inputEffect(1), operatingColorSpace(), !mayProduceInvalidPreMultipliedPixels()));
392 SkImageFilter::CropRect cropRect = getCropRect(builder->cropOffset());
393 RefPtr<SkXfermode> mode;
394 if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC)
395 mode = adoptRef(SkArithmeticMode::Create(SkFloatToScalar(m_k1), SkFloatToScalar(m_k2), SkFloatToScalar(m_k3), SkFloatToScalar(m_k4), requiresPMColorValidation));
396 else
397 mode = adoptRef(SkXfermode::Create(toXfermode(m_type)));
398 return adoptRef(SkXfermodeImageFilter::Create(mode.get(), background.get(), foreground.get(), &cropRect));
399 }
400
operator <<(TextStream & ts,const CompositeOperationType & type)401 static TextStream& operator<<(TextStream& ts, const CompositeOperationType& type)
402 {
403 switch (type) {
404 case FECOMPOSITE_OPERATOR_UNKNOWN:
405 ts << "UNKNOWN";
406 break;
407 case FECOMPOSITE_OPERATOR_OVER:
408 ts << "OVER";
409 break;
410 case FECOMPOSITE_OPERATOR_IN:
411 ts << "IN";
412 break;
413 case FECOMPOSITE_OPERATOR_OUT:
414 ts << "OUT";
415 break;
416 case FECOMPOSITE_OPERATOR_ATOP:
417 ts << "ATOP";
418 break;
419 case FECOMPOSITE_OPERATOR_XOR:
420 ts << "XOR";
421 break;
422 case FECOMPOSITE_OPERATOR_ARITHMETIC:
423 ts << "ARITHMETIC";
424 break;
425 }
426 return ts;
427 }
428
externalRepresentation(TextStream & ts,int indent) const429 TextStream& FEComposite::externalRepresentation(TextStream& ts, int indent) const
430 {
431 writeIndent(ts, indent);
432 ts << "[feComposite";
433 FilterEffect::externalRepresentation(ts);
434 ts << " operation=\"" << m_type << "\"";
435 if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC)
436 ts << " k1=\"" << m_k1 << "\" k2=\"" << m_k2 << "\" k3=\"" << m_k3 << "\" k4=\"" << m_k4 << "\"";
437 ts << "]\n";
438 inputEffect(0)->externalRepresentation(ts, indent + 1);
439 inputEffect(1)->externalRepresentation(ts, indent + 1);
440 return ts;
441 }
442
443 } // namespace blink
444