1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "gl/builders/GrGLProgramBuilder.h"
9 #include "GrBicubicEffect.h"
10
11
12 #define DS(x) SkDoubleToScalar(x)
13
14 const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = {
15 DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0),
16 DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0),
17 DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0),
18 DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0),
19 };
20
21
22 class GrGLBicubicEffect : public GrGLFragmentProcessor {
23 public:
24 GrGLBicubicEffect(const GrBackendProcessorFactory& factory,
25 const GrProcessor&);
26
27 virtual void emitCode(GrGLProgramBuilder*,
28 const GrFragmentProcessor&,
29 const GrProcessorKey&,
30 const char* outputColor,
31 const char* inputColor,
32 const TransformedCoordsArray&,
33 const TextureSamplerArray&) SK_OVERRIDE;
34
35 virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE;
36
GenKey(const GrProcessor & effect,const GrGLCaps &,GrProcessorKeyBuilder * b)37 static inline void GenKey(const GrProcessor& effect, const GrGLCaps&,
38 GrProcessorKeyBuilder* b) {
39 const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain();
40 b->add32(GrTextureDomain::GLDomain::DomainKey(domain));
41 }
42
43 private:
44 typedef GrGLProgramDataManager::UniformHandle UniformHandle;
45
46 UniformHandle fCoefficientsUni;
47 UniformHandle fImageIncrementUni;
48 GrTextureDomain::GLDomain fDomain;
49
50 typedef GrGLFragmentProcessor INHERITED;
51 };
52
GrGLBicubicEffect(const GrBackendProcessorFactory & factory,const GrProcessor &)53 GrGLBicubicEffect::GrGLBicubicEffect(const GrBackendProcessorFactory& factory, const GrProcessor&)
54 : INHERITED(factory) {
55 }
56
emitCode(GrGLProgramBuilder * builder,const GrFragmentProcessor & effect,const GrProcessorKey & key,const char * outputColor,const char * inputColor,const TransformedCoordsArray & coords,const TextureSamplerArray & samplers)57 void GrGLBicubicEffect::emitCode(GrGLProgramBuilder* builder,
58 const GrFragmentProcessor& effect,
59 const GrProcessorKey& key,
60 const char* outputColor,
61 const char* inputColor,
62 const TransformedCoordsArray& coords,
63 const TextureSamplerArray& samplers) {
64 const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain();
65
66 fCoefficientsUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
67 kMat44f_GrSLType, "Coefficients");
68 fImageIncrementUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
69 kVec2f_GrSLType, "ImageIncrement");
70
71 const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
72 const char* coeff = builder->getUniformCStr(fCoefficientsUni);
73
74 SkString cubicBlendName;
75
76 static const GrGLShaderVar gCubicBlendArgs[] = {
77 GrGLShaderVar("coefficients", kMat44f_GrSLType),
78 GrGLShaderVar("t", kFloat_GrSLType),
79 GrGLShaderVar("c0", kVec4f_GrSLType),
80 GrGLShaderVar("c1", kVec4f_GrSLType),
81 GrGLShaderVar("c2", kVec4f_GrSLType),
82 GrGLShaderVar("c3", kVec4f_GrSLType),
83 };
84 GrGLFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
85 SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0);
86 fsBuilder->emitFunction(kVec4f_GrSLType,
87 "cubicBlend",
88 SK_ARRAY_COUNT(gCubicBlendArgs),
89 gCubicBlendArgs,
90 "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
91 "\tvec4 c = coefficients * ts;\n"
92 "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
93 &cubicBlendName);
94 fsBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
95 // We unnormalize the coord in order to determine our fractional offset (f) within the texel
96 // We then snap coord to a texel center and renormalize. The snap prevents cases where the
97 // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
98 // double hit a texel.
99 fsBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
100 fsBuilder->codeAppend("\tvec2 f = fract(coord);\n");
101 fsBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
102 fsBuilder->codeAppend("\tvec4 rowColors[4];\n");
103 for (int y = 0; y < 4; ++y) {
104 for (int x = 0; x < 4; ++x) {
105 SkString coord;
106 coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
107 SkString sampleVar;
108 sampleVar.printf("rowColors[%d]", x);
109 fDomain.sampleTexture(fsBuilder, domain, sampleVar.c_str(), coord, samplers[0]);
110 }
111 fsBuilder->codeAppendf("\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n", y, cubicBlendName.c_str(), coeff);
112 }
113 SkString bicubicColor;
114 bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
115 fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(bicubicColor.c_str()) * GrGLSLExpr4(inputColor)).c_str());
116 }
117
setData(const GrGLProgramDataManager & pdman,const GrProcessor & processor)118 void GrGLBicubicEffect::setData(const GrGLProgramDataManager& pdman,
119 const GrProcessor& processor) {
120 const GrBicubicEffect& bicubicEffect = processor.cast<GrBicubicEffect>();
121 const GrTexture& texture = *processor.texture(0);
122 float imageIncrement[2];
123 imageIncrement[0] = 1.0f / texture.width();
124 imageIncrement[1] = 1.0f / texture.height();
125 pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
126 pdman.setMatrix4f(fCoefficientsUni, bicubicEffect.coefficients());
127 fDomain.setData(pdman, bicubicEffect.domain(), texture.origin());
128 }
129
convert_row_major_scalar_coeffs_to_column_major_floats(float dst[16],const SkScalar src[16])130 static inline void convert_row_major_scalar_coeffs_to_column_major_floats(float dst[16],
131 const SkScalar src[16]) {
132 for (int y = 0; y < 4; y++) {
133 for (int x = 0; x < 4; x++) {
134 dst[x * 4 + y] = SkScalarToFloat(src[y * 4 + x]);
135 }
136 }
137 }
138
GrBicubicEffect(GrTexture * texture,const SkScalar coefficients[16],const SkMatrix & matrix,const SkShader::TileMode tileModes[2])139 GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
140 const SkScalar coefficients[16],
141 const SkMatrix &matrix,
142 const SkShader::TileMode tileModes[2])
143 : INHERITED(texture, matrix, GrTextureParams(tileModes, GrTextureParams::kNone_FilterMode))
144 , fDomain(GrTextureDomain::IgnoredDomain()) {
145 convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients);
146 }
147
GrBicubicEffect(GrTexture * texture,const SkScalar coefficients[16],const SkMatrix & matrix,const SkRect & domain)148 GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
149 const SkScalar coefficients[16],
150 const SkMatrix &matrix,
151 const SkRect& domain)
152 : INHERITED(texture, matrix, GrTextureParams(SkShader::kClamp_TileMode,
153 GrTextureParams::kNone_FilterMode))
154 , fDomain(domain, GrTextureDomain::kClamp_Mode) {
155 convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients);
156 }
157
~GrBicubicEffect()158 GrBicubicEffect::~GrBicubicEffect() {
159 }
160
getFactory() const161 const GrBackendFragmentProcessorFactory& GrBicubicEffect::getFactory() const {
162 return GrTBackendFragmentProcessorFactory<GrBicubicEffect>::getInstance();
163 }
164
onIsEqual(const GrProcessor & sBase) const165 bool GrBicubicEffect::onIsEqual(const GrProcessor& sBase) const {
166 const GrBicubicEffect& s = sBase.cast<GrBicubicEffect>();
167 return this->textureAccess(0) == s.textureAccess(0) &&
168 !memcmp(fCoefficients, s.coefficients(), 16) &&
169 fDomain == s.fDomain;
170 }
171
getConstantColorComponents(GrColor * color,uint32_t * validFlags) const172 void GrBicubicEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
173 // FIXME: Perhaps we can do better.
174 *validFlags = 0;
175 return;
176 }
177
178 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect);
179
TestCreate(SkRandom * random,GrContext * context,const GrDrawTargetCaps &,GrTexture * textures[])180 GrFragmentProcessor* GrBicubicEffect::TestCreate(SkRandom* random,
181 GrContext* context,
182 const GrDrawTargetCaps&,
183 GrTexture* textures[]) {
184 int texIdx = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
185 GrProcessorUnitTest::kAlphaTextureIdx;
186 SkScalar coefficients[16];
187 for (int i = 0; i < 16; i++) {
188 coefficients[i] = random->nextSScalar1();
189 }
190 return GrBicubicEffect::Create(textures[texIdx], coefficients);
191 }
192
193 //////////////////////////////////////////////////////////////////////////////
194
ShouldUseBicubic(const SkMatrix & matrix,GrTextureParams::FilterMode * filterMode)195 bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix,
196 GrTextureParams::FilterMode* filterMode) {
197 if (matrix.isIdentity()) {
198 *filterMode = GrTextureParams::kNone_FilterMode;
199 return false;
200 }
201
202 SkScalar scales[2];
203 if (!matrix.getMinMaxScales(scales) || scales[0] < SK_Scalar1) {
204 // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped
205 // entirely,
206 *filterMode = GrTextureParams::kMipMap_FilterMode;
207 return false;
208 }
209 // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling.
210 if (scales[1] == SK_Scalar1) {
211 if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) &&
212 SkScalarIsInt(matrix.getTranslateY())) {
213 *filterMode = GrTextureParams::kNone_FilterMode;
214 } else {
215 // Use bilerp to handle rotation or fractional translation.
216 *filterMode = GrTextureParams::kBilerp_FilterMode;
217 }
218 return false;
219 }
220 // When we use the bicubic filtering effect each sample is read from the texture using
221 // nearest neighbor sampling.
222 *filterMode = GrTextureParams::kNone_FilterMode;
223 return true;
224 }
225