1 /* e_j1f.c -- float version of e_j1.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
4
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "math.h"
20 #include "math_private.h"
21
22 static float ponef(float), qonef(float);
23
24 static const float
25 huge = 1e30,
26 one = 1.0,
27 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
28 tpi = 6.3661974669e-01, /* 0x3f22f983 */
29 /* R0/S0 on [0,2] */
30 r00 = -6.2500000000e-02, /* 0xbd800000 */
31 r01 = 1.4070566976e-03, /* 0x3ab86cfd */
32 r02 = -1.5995563444e-05, /* 0xb7862e36 */
33 r03 = 4.9672799207e-08, /* 0x335557d2 */
34 s01 = 1.9153760746e-02, /* 0x3c9ce859 */
35 s02 = 1.8594678841e-04, /* 0x3942fab6 */
36 s03 = 1.1771846857e-06, /* 0x359dffc2 */
37 s04 = 5.0463624390e-09, /* 0x31ad6446 */
38 s05 = 1.2354227016e-11; /* 0x2d59567e */
39
40 static const float zero = 0.0;
41
42 float
__ieee754_j1f(float x)43 __ieee754_j1f(float x)
44 {
45 float z, s,c,ss,cc,r,u,v,y;
46 int32_t hx,ix;
47
48 GET_FLOAT_WORD(hx,x);
49 ix = hx&0x7fffffff;
50 if(ix>=0x7f800000) return one/x;
51 y = fabsf(x);
52 if(ix >= 0x40000000) { /* |x| >= 2.0 */
53 s = sinf(y);
54 c = cosf(y);
55 ss = -s-c;
56 cc = s-c;
57 if(ix<0x7f000000) { /* make sure y+y not overflow */
58 z = cosf(y+y);
59 if ((s*c)>zero) cc = z/ss;
60 else ss = z/cc;
61 }
62 /*
63 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
64 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
65 */
66 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
67 else {
68 u = ponef(y); v = qonef(y);
69 z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
70 }
71 if(hx<0) return -z;
72 else return z;
73 }
74 if(ix<0x32000000) { /* |x|<2**-27 */
75 if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
76 }
77 z = x*x;
78 r = z*(r00+z*(r01+z*(r02+z*r03)));
79 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
80 r *= x;
81 return(x*(float)0.5+r/s);
82 }
83
84 static const float U0[5] = {
85 -1.9605709612e-01, /* 0xbe48c331 */
86 5.0443872809e-02, /* 0x3d4e9e3c */
87 -1.9125689287e-03, /* 0xbafaaf2a */
88 2.3525259166e-05, /* 0x37c5581c */
89 -9.1909917899e-08, /* 0xb3c56003 */
90 };
91 static const float V0[5] = {
92 1.9916731864e-02, /* 0x3ca3286a */
93 2.0255257550e-04, /* 0x3954644b */
94 1.3560879779e-06, /* 0x35b602d4 */
95 6.2274145840e-09, /* 0x31d5f8eb */
96 1.6655924903e-11, /* 0x2d9281cf */
97 };
98
99 float
__ieee754_y1f(float x)100 __ieee754_y1f(float x)
101 {
102 float z, s,c,ss,cc,u,v;
103 int32_t hx,ix;
104
105 GET_FLOAT_WORD(hx,x);
106 ix = 0x7fffffff&hx;
107 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
108 if(ix>=0x7f800000) return one/(x+x*x);
109 if(ix==0) return -one/zero;
110 if(hx<0) return zero/zero;
111 if(ix >= 0x40000000) { /* |x| >= 2.0 */
112 s = sinf(x);
113 c = cosf(x);
114 ss = -s-c;
115 cc = s-c;
116 if(ix<0x7f000000) { /* make sure x+x not overflow */
117 z = cosf(x+x);
118 if ((s*c)>zero) cc = z/ss;
119 else ss = z/cc;
120 }
121 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
122 * where x0 = x-3pi/4
123 * Better formula:
124 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
125 * = 1/sqrt(2) * (sin(x) - cos(x))
126 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
127 * = -1/sqrt(2) * (cos(x) + sin(x))
128 * To avoid cancellation, use
129 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
130 * to compute the worse one.
131 */
132 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
133 else {
134 u = ponef(x); v = qonef(x);
135 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
136 }
137 return z;
138 }
139 if(ix<=0x24800000) { /* x < 2**-54 */
140 return(-tpi/x);
141 }
142 z = x*x;
143 u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
144 v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
145 return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
146 }
147
148 /* For x >= 8, the asymptotic expansions of pone is
149 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
150 * We approximate pone by
151 * pone(x) = 1 + (R/S)
152 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
153 * S = 1 + ps0*s^2 + ... + ps4*s^10
154 * and
155 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
156 */
157
158 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
159 0.0000000000e+00, /* 0x00000000 */
160 1.1718750000e-01, /* 0x3df00000 */
161 1.3239480972e+01, /* 0x4153d4ea */
162 4.1205184937e+02, /* 0x43ce06a3 */
163 3.8747453613e+03, /* 0x45722bed */
164 7.9144794922e+03, /* 0x45f753d6 */
165 };
166 static const float ps8[5] = {
167 1.1420736694e+02, /* 0x42e46a2c */
168 3.6509309082e+03, /* 0x45642ee5 */
169 3.6956207031e+04, /* 0x47105c35 */
170 9.7602796875e+04, /* 0x47bea166 */
171 3.0804271484e+04, /* 0x46f0a88b */
172 };
173
174 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
175 1.3199052094e-11, /* 0x2d68333f */
176 1.1718749255e-01, /* 0x3defffff */
177 6.8027510643e+00, /* 0x40d9b023 */
178 1.0830818176e+02, /* 0x42d89dca */
179 5.1763616943e+02, /* 0x440168b7 */
180 5.2871520996e+02, /* 0x44042dc6 */
181 };
182 static const float ps5[5] = {
183 5.9280597687e+01, /* 0x426d1f55 */
184 9.9140142822e+02, /* 0x4477d9b1 */
185 5.3532670898e+03, /* 0x45a74a23 */
186 7.8446904297e+03, /* 0x45f52586 */
187 1.5040468750e+03, /* 0x44bc0180 */
188 };
189
190 static const float pr3[6] = {
191 3.0250391081e-09, /* 0x314fe10d */
192 1.1718686670e-01, /* 0x3defffab */
193 3.9329774380e+00, /* 0x407bb5e7 */
194 3.5119403839e+01, /* 0x420c7a45 */
195 9.1055007935e+01, /* 0x42b61c2a */
196 4.8559066772e+01, /* 0x42423c7c */
197 };
198 static const float ps3[5] = {
199 3.4791309357e+01, /* 0x420b2a4d */
200 3.3676245117e+02, /* 0x43a86198 */
201 1.0468714600e+03, /* 0x4482dbe3 */
202 8.9081134033e+02, /* 0x445eb3ed */
203 1.0378793335e+02, /* 0x42cf936c */
204 };
205
206 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
207 1.0771083225e-07, /* 0x33e74ea8 */
208 1.1717621982e-01, /* 0x3deffa16 */
209 2.3685150146e+00, /* 0x401795c0 */
210 1.2242610931e+01, /* 0x4143e1bc */
211 1.7693971634e+01, /* 0x418d8d41 */
212 5.0735230446e+00, /* 0x40a25a4d */
213 };
214 static const float ps2[5] = {
215 2.1436485291e+01, /* 0x41ab7dec */
216 1.2529022980e+02, /* 0x42fa9499 */
217 2.3227647400e+02, /* 0x436846c7 */
218 1.1767937469e+02, /* 0x42eb5bd7 */
219 8.3646392822e+00, /* 0x4105d590 */
220 };
221
ponef(float x)222 static float ponef(float x)
223 {
224 const float *p,*q;
225 float z,r,s;
226 int32_t ix;
227 GET_FLOAT_WORD(ix,x);
228 ix &= 0x7fffffff;
229 if(ix>=0x41000000) {p = pr8; q= ps8;}
230 else if(ix>=0x40f71c58){p = pr5; q= ps5;}
231 else if(ix>=0x4036db68){p = pr3; q= ps3;}
232 else if(ix>=0x40000000){p = pr2; q= ps2;}
233 z = one/(x*x);
234 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
235 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
236 return one+ r/s;
237 }
238
239
240 /* For x >= 8, the asymptotic expansions of qone is
241 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
242 * We approximate pone by
243 * qone(x) = s*(0.375 + (R/S))
244 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
245 * S = 1 + qs1*s^2 + ... + qs6*s^12
246 * and
247 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
248 */
249
250 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
251 0.0000000000e+00, /* 0x00000000 */
252 -1.0253906250e-01, /* 0xbdd20000 */
253 -1.6271753311e+01, /* 0xc1822c8d */
254 -7.5960174561e+02, /* 0xc43de683 */
255 -1.1849806641e+04, /* 0xc639273a */
256 -4.8438511719e+04, /* 0xc73d3683 */
257 };
258 static const float qs8[6] = {
259 1.6139537048e+02, /* 0x43216537 */
260 7.8253862305e+03, /* 0x45f48b17 */
261 1.3387534375e+05, /* 0x4802bcd6 */
262 7.1965775000e+05, /* 0x492fb29c */
263 6.6660125000e+05, /* 0x4922be94 */
264 -2.9449025000e+05, /* 0xc88fcb48 */
265 };
266
267 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
268 -2.0897993405e-11, /* 0xadb7d219 */
269 -1.0253904760e-01, /* 0xbdd1fffe */
270 -8.0564479828e+00, /* 0xc100e736 */
271 -1.8366960144e+02, /* 0xc337ab6b */
272 -1.3731937256e+03, /* 0xc4aba633 */
273 -2.6124443359e+03, /* 0xc523471c */
274 };
275 static const float qs5[6] = {
276 8.1276550293e+01, /* 0x42a28d98 */
277 1.9917987061e+03, /* 0x44f8f98f */
278 1.7468484375e+04, /* 0x468878f8 */
279 4.9851425781e+04, /* 0x4742bb6d */
280 2.7948074219e+04, /* 0x46da5826 */
281 -4.7191835938e+03, /* 0xc5937978 */
282 };
283
284 static const float qr3[6] = {
285 -5.0783124372e-09, /* 0xb1ae7d4f */
286 -1.0253783315e-01, /* 0xbdd1ff5b */
287 -4.6101160049e+00, /* 0xc0938612 */
288 -5.7847221375e+01, /* 0xc267638e */
289 -2.2824453735e+02, /* 0xc3643e9a */
290 -2.1921012878e+02, /* 0xc35b35cb */
291 };
292 static const float qs3[6] = {
293 4.7665153503e+01, /* 0x423ea91e */
294 6.7386511230e+02, /* 0x4428775e */
295 3.3801528320e+03, /* 0x45534272 */
296 5.5477290039e+03, /* 0x45ad5dd5 */
297 1.9031191406e+03, /* 0x44ede3d0 */
298 -1.3520118713e+02, /* 0xc3073381 */
299 };
300
301 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
302 -1.7838172539e-07, /* 0xb43f8932 */
303 -1.0251704603e-01, /* 0xbdd1f475 */
304 -2.7522056103e+00, /* 0xc0302423 */
305 -1.9663616180e+01, /* 0xc19d4f16 */
306 -4.2325313568e+01, /* 0xc2294d1f */
307 -2.1371921539e+01, /* 0xc1aaf9b2 */
308 };
309 static const float qs2[6] = {
310 2.9533363342e+01, /* 0x41ec4454 */
311 2.5298155212e+02, /* 0x437cfb47 */
312 7.5750280762e+02, /* 0x443d602e */
313 7.3939318848e+02, /* 0x4438d92a */
314 1.5594900513e+02, /* 0x431bf2f2 */
315 -4.9594988823e+00, /* 0xc09eb437 */
316 };
317
qonef(float x)318 static float qonef(float x)
319 {
320 const float *p,*q;
321 float s,r,z;
322 int32_t ix;
323 GET_FLOAT_WORD(ix,x);
324 ix &= 0x7fffffff;
325 if(ix>=0x40200000) {p = qr8; q= qs8;}
326 else if(ix>=0x40f71c58){p = qr5; q= qs5;}
327 else if(ix>=0x4036db68){p = qr3; q= qs3;}
328 else if(ix>=0x40000000){p = qr2; q= qs2;}
329 z = one/(x*x);
330 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
331 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
332 return ((float).375 + r/s)/x;
333 }
334