1 /*-
2 * Copyright (c) 2007 Steven G. Kargl
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <fenv.h>
31 #include <float.h>
32
33 #include "fpmath.h"
34 #include "math.h"
35
36 /* Return (x + ulp) for normal positive x. Assumes no overflow. */
37 static inline long double
inc(long double x)38 inc(long double x)
39 {
40 union IEEEl2bits u;
41
42 u.e = x;
43 if (++u.bits.manl == 0) {
44 if (++u.bits.manh == 0) {
45 u.bits.exp++;
46 u.bits.manh |= LDBL_NBIT;
47 }
48 }
49 return (u.e);
50 }
51
52 /* Return (x - ulp) for normal positive x. Assumes no underflow. */
53 static inline long double
dec(long double x)54 dec(long double x)
55 {
56 union IEEEl2bits u;
57
58 u.e = x;
59 if (u.bits.manl-- == 0) {
60 if (u.bits.manh-- == LDBL_NBIT) {
61 u.bits.exp--;
62 u.bits.manh |= LDBL_NBIT;
63 }
64 }
65 return (u.e);
66 }
67
68 #pragma STDC FENV_ACCESS ON
69
70 /*
71 * This is slow, but simple and portable. You should use hardware sqrt
72 * if possible.
73 */
74
75 long double
sqrtl(long double x)76 sqrtl(long double x)
77 {
78 union IEEEl2bits u;
79 int k, r;
80 long double lo, xn;
81 fenv_t env;
82
83 u.e = x;
84
85 /* If x = NaN, then sqrt(x) = NaN. */
86 /* If x = Inf, then sqrt(x) = Inf. */
87 /* If x = -Inf, then sqrt(x) = NaN. */
88 if (u.bits.exp == LDBL_MAX_EXP * 2 - 1)
89 return (x * x + x);
90
91 /* If x = +-0, then sqrt(x) = +-0. */
92 if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0)
93 return (x);
94
95 /* If x < 0, then raise invalid and return NaN */
96 if (u.bits.sign)
97 return ((x - x) / (x - x));
98
99 feholdexcept(&env);
100
101 if (u.bits.exp == 0) {
102 /* Adjust subnormal numbers. */
103 u.e *= 0x1.0p514;
104 k = -514;
105 } else {
106 k = 0;
107 }
108 /*
109 * u.e is a normal number, so break it into u.e = e*2^n where
110 * u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
111 */
112 if ((u.bits.exp - 0x3ffe) & 1) { /* n is odd. */
113 k += u.bits.exp - 0x3fff; /* 2k = n - 1. */
114 u.bits.exp = 0x3fff; /* u.e in [1,2). */
115 } else {
116 k += u.bits.exp - 0x4000; /* 2k = n - 2. */
117 u.bits.exp = 0x4000; /* u.e in [2,4). */
118 }
119
120 /*
121 * Newton's iteration.
122 * Split u.e into a high and low part to achieve additional precision.
123 */
124 xn = sqrt(u.e); /* 53-bit estimate of sqrtl(x). */
125 #if LDBL_MANT_DIG > 100
126 xn = (xn + (u.e / xn)) * 0.5; /* 106-bit estimate. */
127 #endif
128 lo = u.e;
129 u.bits.manl = 0; /* Zero out lower bits. */
130 lo = (lo - u.e) / xn; /* Low bits divided by xn. */
131 xn = xn + (u.e / xn); /* High portion of estimate. */
132 u.e = xn + lo; /* Combine everything. */
133 u.bits.exp += (k >> 1) - 1;
134
135 feclearexcept(FE_INEXACT);
136 r = fegetround();
137 fesetround(FE_TOWARDZERO); /* Set to round-toward-zero. */
138 xn = x / u.e; /* Chopped quotient (inexact?). */
139
140 if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
141 if (xn == u.e) {
142 fesetenv(&env);
143 return (u.e);
144 }
145 /* Round correctly for inputs like x = y**2 - ulp. */
146 xn = dec(xn); /* xn = xn - ulp. */
147 }
148
149 if (r == FE_TONEAREST) {
150 xn = inc(xn); /* xn = xn + ulp. */
151 } else if (r == FE_UPWARD) {
152 u.e = inc(u.e); /* u.e = u.e + ulp. */
153 xn = inc(xn); /* xn = xn + ulp. */
154 }
155 u.e = u.e + xn; /* Chopped sum. */
156 feupdateenv(&env); /* Restore env and raise inexact */
157 u.bits.exp--;
158 return (u.e);
159 }
160