1 /*-
2  * Copyright (c) 2011 David Schultz
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Hyperbolic tangent of a complex argument z = x + i y.
29  *
30  * The algorithm is from:
31  *
32  *   W. Kahan.  Branch Cuts for Complex Elementary Functions or Much
33  *   Ado About Nothing's Sign Bit.  In The State of the Art in
34  *   Numerical Analysis, pp. 165 ff.  Iserles and Powell, eds., 1987.
35  *
36  * Method:
37  *
38  *   Let t    = tan(x)
39  *       beta = 1/cos^2(y)
40  *       s    = sinh(x)
41  *       rho  = cosh(x)
42  *
43  *   We have:
44  *
45  *   tanh(z) = sinh(z) / cosh(z)
46  *
47  *             sinh(x) cos(y) + i cosh(x) sin(y)
48  *           = ---------------------------------
49  *             cosh(x) cos(y) + i sinh(x) sin(y)
50  *
51  *             cosh(x) sinh(x) / cos^2(y) + i tan(y)
52  *           = -------------------------------------
53  *                    1 + sinh^2(x) / cos^2(y)
54  *
55  *             beta rho s + i t
56  *           = ----------------
57  *               1 + beta s^2
58  *
59  * Modifications:
60  *
61  *   I omitted the original algorithm's handling of overflow in tan(x) after
62  *   verifying with nearpi.c that this can't happen in IEEE single or double
63  *   precision.  I also handle large x differently.
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 #include <complex.h>
70 #include <math.h>
71 
72 #include "math_private.h"
73 
74 double complex
ctanh(double complex z)75 ctanh(double complex z)
76 {
77 	double x, y;
78 	double t, beta, s, rho, denom;
79 	uint32_t hx, ix, lx;
80 
81 	x = creal(z);
82 	y = cimag(z);
83 
84 	EXTRACT_WORDS(hx, lx, x);
85 	ix = hx & 0x7fffffff;
86 
87 	/*
88 	 * ctanh(NaN + i 0) = NaN + i 0
89 	 *
90 	 * ctanh(NaN + i y) = NaN + i NaN		for y != 0
91 	 *
92 	 * The imaginary part has the sign of x*sin(2*y), but there's no
93 	 * special effort to get this right.
94 	 *
95 	 * ctanh(+-Inf +- i Inf) = +-1 +- 0
96 	 *
97 	 * ctanh(+-Inf + i y) = +-1 + 0 sin(2y)		for y finite
98 	 *
99 	 * The imaginary part of the sign is unspecified.  This special
100 	 * case is only needed to avoid a spurious invalid exception when
101 	 * y is infinite.
102 	 */
103 	if (ix >= 0x7ff00000) {
104 		if ((ix & 0xfffff) | lx)	/* x is NaN */
105 			return (cpack(x, (y == 0 ? y : x * y)));
106 		SET_HIGH_WORD(x, hx - 0x40000000);	/* x = copysign(1, x) */
107 		return (cpack(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
108 	}
109 
110 	/*
111 	 * ctanh(x + i NAN) = NaN + i NaN
112 	 * ctanh(x +- i Inf) = NaN + i NaN
113 	 */
114 	if (!isfinite(y))
115 		return (cpack(y - y, y - y));
116 
117 	/*
118 	 * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
119 	 * approximation sinh^2(huge) ~= exp(2*huge) / 4.
120 	 * We use a modified formula to avoid spurious overflow.
121 	 */
122 	if (ix >= 0x40360000) {	/* x >= 22 */
123 		double exp_mx = exp(-fabs(x));
124 		return (cpack(copysign(1, x),
125 		    4 * sin(y) * cos(y) * exp_mx * exp_mx));
126 	}
127 
128 	/* Kahan's algorithm */
129 	t = tan(y);
130 	beta = 1.0 + t * t;	/* = 1 / cos^2(y) */
131 	s = sinh(x);
132 	rho = sqrt(1 + s * s);	/* = cosh(x) */
133 	denom = 1 + beta * s * s;
134 	return (cpack((beta * rho * s) / denom, t / denom));
135 }
136 
137 double complex
ctan(double complex z)138 ctan(double complex z)
139 {
140 
141 	/* ctan(z) = -I * ctanh(I * z) */
142 	z = ctanh(cpack(-cimag(z), creal(z)));
143 	return (cpack(cimag(z), -creal(z)));
144 }
145