1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 
19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20 #define CASTER_Z_CAP_RATIO 0.95f
21 
22 // When there is no umbra, then just fake the umbra using
23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
25 
26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27 // That is consider pretty fine tessllated polygon so far.
28 // This is just to prevent using too much some memory when edge slicing is not
29 // needed any more.
30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31 /**
32  * Extra vertices for the corner for smoother corner.
33  * Only for outer loop.
34  * Note that we use such extra memory to avoid an extra loop.
35  */
36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37 // Set to 1 if we don't want to have any.
38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39 
40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41 // therefore, the maximum number of extra vertices will be twice bigger.
42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43 
44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46 
47 
48 #include <math.h>
49 #include <stdlib.h>
50 #include <utils/Log.h>
51 
52 #include "ShadowTessellator.h"
53 #include "SpotShadow.h"
54 #include "Vertex.h"
55 #include "utils/MathUtils.h"
56 
57 // TODO: After we settle down the new algorithm, we can remove the old one and
58 // its utility functions.
59 // Right now, we still need to keep it for comparison purpose and future expansion.
60 namespace android {
61 namespace uirenderer {
62 
63 static const float EPSILON = 1e-7;
64 
65 /**
66  * For each polygon's vertex, the light center will project it to the receiver
67  * as one of the outline vertex.
68  * For each outline vertex, we need to store the position and normal.
69  * Normal here is defined against the edge by the current vertex and the next vertex.
70  */
71 struct OutlineData {
72     Vector2 position;
73     Vector2 normal;
74     float radius;
75 };
76 
77 /**
78  * For each vertex, we need to keep track of its angle, whether it is penumbra or
79  * umbra, and its corresponding vertex index.
80  */
81 struct SpotShadow::VertexAngleData {
82     // The angle to the vertex from the centroid.
83     float mAngle;
84     // True is the vertex comes from penumbra, otherwise it comes from umbra.
85     bool mIsPenumbra;
86     // The index of the vertex described by this data.
87     int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData88     void set(float angle, bool isPenumbra, int index) {
89         mAngle = angle;
90         mIsPenumbra = isPenumbra;
91         mVertexIndex = index;
92     }
93 };
94 
95 /**
96  * Calculate the angle between and x and a y coordinate.
97  * The atan2 range from -PI to PI.
98  */
angle(const Vector2 & point,const Vector2 & center)99 static float angle(const Vector2& point, const Vector2& center) {
100     return atan2(point.y - center.y, point.x - center.x);
101 }
102 
103 /**
104  * Calculate the intersection of a ray with the line segment defined by two points.
105  *
106  * Returns a negative value in error conditions.
107 
108  * @param rayOrigin The start of the ray
109  * @param dx The x vector of the ray
110  * @param dy The y vector of the ray
111  * @param p1 The first point defining the line segment
112  * @param p2 The second point defining the line segment
113  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114  */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116         const Vector2& p1, const Vector2& p2) {
117     // The math below is derived from solving this formula, basically the
118     // intersection point should stay on both the ray and the edge of (p1, p2).
119     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120 
121     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122     if (divisor == 0) return -1.0f; // error, invalid divisor
123 
124 #if DEBUG_SHADOW
125     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
126     if (interpVal < 0 || interpVal > 1) {
127         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128     }
129 #endif
130 
131     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132             rayOrigin.x * (p2.y - p1.y)) / divisor;
133 
134     return distance; // may be negative in error cases
135 }
136 
137 /**
138  * Sort points by their X coordinates
139  *
140  * @param points the points as a Vector2 array.
141  * @param pointsLength the number of vertices of the polygon.
142  */
xsort(Vector2 * points,int pointsLength)143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
144     quicksortX(points, 0, pointsLength - 1);
145 }
146 
147 /**
148  * compute the convex hull of a collection of Points
149  *
150  * @param points the points as a Vector2 array.
151  * @param pointsLength the number of vertices of the polygon.
152  * @param retPoly pre allocated array of floats to put the vertices
153  * @return the number of points in the polygon 0 if no intersection
154  */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156     xsort(points, pointsLength);
157     int n = pointsLength;
158     Vector2 lUpper[n];
159     lUpper[0] = points[0];
160     lUpper[1] = points[1];
161 
162     int lUpperSize = 2;
163 
164     for (int i = 2; i < n; i++) {
165         lUpper[lUpperSize] = points[i];
166         lUpperSize++;
167 
168         while (lUpperSize > 2 && !ccw(
169                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
172             // Remove the middle point of the three last
173             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175             lUpperSize--;
176         }
177     }
178 
179     Vector2 lLower[n];
180     lLower[0] = points[n - 1];
181     lLower[1] = points[n - 2];
182 
183     int lLowerSize = 2;
184 
185     for (int i = n - 3; i >= 0; i--) {
186         lLower[lLowerSize] = points[i];
187         lLowerSize++;
188 
189         while (lLowerSize > 2 && !ccw(
190                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
193             // Remove the middle point of the three last
194             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195             lLowerSize--;
196         }
197     }
198 
199     // output points in CW ordering
200     const int total = lUpperSize + lLowerSize - 2;
201     int outIndex = total - 1;
202     for (int i = 0; i < lUpperSize; i++) {
203         retPoly[outIndex] = lUpper[i];
204         outIndex--;
205     }
206 
207     for (int i = 1; i < lLowerSize - 1; i++) {
208         retPoly[outIndex] = lLower[i];
209         outIndex--;
210     }
211     // TODO: Add test harness which verify that all the points are inside the hull.
212     return total;
213 }
214 
215 /**
216  * Test whether the 3 points form a counter clockwise turn.
217  *
218  * @return true if a right hand turn
219  */
ccw(float ax,float ay,float bx,float by,float cx,float cy)220 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
221         float cx, float cy) {
222     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223 }
224 
225 /**
226  * Sort points about a center point
227  *
228  * @param poly The in and out polyogon as a Vector2 array.
229  * @param polyLength The number of vertices of the polygon.
230  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
231  */
sort(Vector2 * poly,int polyLength,const Vector2 & center)232 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
233     quicksortCirc(poly, 0, polyLength - 1, center);
234 }
235 
236 /**
237  * Swap points pointed to by i and j
238  */
swap(Vector2 * points,int i,int j)239 void SpotShadow::swap(Vector2* points, int i, int j) {
240     Vector2 temp = points[i];
241     points[i] = points[j];
242     points[j] = temp;
243 }
244 
245 /**
246  * quick sort implementation about the center.
247  */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)248 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
249         const Vector2& center) {
250     int i = low, j = high;
251     int p = low + (high - low) / 2;
252     float pivot = angle(points[p], center);
253     while (i <= j) {
254         while (angle(points[i], center) > pivot) {
255             i++;
256         }
257         while (angle(points[j], center) < pivot) {
258             j--;
259         }
260 
261         if (i <= j) {
262             swap(points, i, j);
263             i++;
264             j--;
265         }
266     }
267     if (low < j) quicksortCirc(points, low, j, center);
268     if (i < high) quicksortCirc(points, i, high, center);
269 }
270 
271 /**
272  * Sort points by x axis
273  *
274  * @param points points to sort
275  * @param low start index
276  * @param high end index
277  */
quicksortX(Vector2 * points,int low,int high)278 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
279     int i = low, j = high;
280     int p = low + (high - low) / 2;
281     float pivot = points[p].x;
282     while (i <= j) {
283         while (points[i].x < pivot) {
284             i++;
285         }
286         while (points[j].x > pivot) {
287             j--;
288         }
289 
290         if (i <= j) {
291             swap(points, i, j);
292             i++;
293             j--;
294         }
295     }
296     if (low < j) quicksortX(points, low, j);
297     if (i < high) quicksortX(points, i, high);
298 }
299 
300 /**
301  * Test whether a point is inside the polygon.
302  *
303  * @param testPoint the point to test
304  * @param poly the polygon
305  * @return true if the testPoint is inside the poly.
306  */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)307 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
308         const Vector2* poly, int len) {
309     bool c = false;
310     float testx = testPoint.x;
311     float testy = testPoint.y;
312     for (int i = 0, j = len - 1; i < len; j = i++) {
313         float startX = poly[j].x;
314         float startY = poly[j].y;
315         float endX = poly[i].x;
316         float endY = poly[i].y;
317 
318         if (((endY > testy) != (startY > testy))
319             && (testx < (startX - endX) * (testy - endY)
320              / (startY - endY) + endX)) {
321             c = !c;
322         }
323     }
324     return c;
325 }
326 
327 /**
328  * Make the polygon turn clockwise.
329  *
330  * @param polygon the polygon as a Vector2 array.
331  * @param len the number of points of the polygon
332  */
makeClockwise(Vector2 * polygon,int len)333 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
334     if (polygon == 0  || len == 0) {
335         return;
336     }
337     if (!ShadowTessellator::isClockwise(polygon, len)) {
338         reverse(polygon, len);
339     }
340 }
341 
342 /**
343  * Reverse the polygon
344  *
345  * @param polygon the polygon as a Vector2 array
346  * @param len the number of points of the polygon
347  */
reverse(Vector2 * polygon,int len)348 void SpotShadow::reverse(Vector2* polygon, int len) {
349     int n = len / 2;
350     for (int i = 0; i < n; i++) {
351         Vector2 tmp = polygon[i];
352         int k = len - 1 - i;
353         polygon[i] = polygon[k];
354         polygon[k] = tmp;
355     }
356 }
357 
358 /**
359  * Compute a horizontal circular polygon about point (x , y , height) of radius
360  * (size)
361  *
362  * @param points number of the points of the output polygon.
363  * @param lightCenter the center of the light.
364  * @param size the light size.
365  * @param ret result polygon.
366  */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)367 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
368         float size, Vector3* ret) {
369     // TODO: Caching all the sin / cos values and store them in a look up table.
370     for (int i = 0; i < points; i++) {
371         float angle = 2 * i * M_PI / points;
372         ret[i].x = cosf(angle) * size + lightCenter.x;
373         ret[i].y = sinf(angle) * size + lightCenter.y;
374         ret[i].z = lightCenter.z;
375     }
376 }
377 
378 /**
379  * From light center, project one vertex to the z=0 surface and get the outline.
380  *
381  * @param outline The result which is the outline position.
382  * @param lightCenter The center of light.
383  * @param polyVertex The input polygon's vertex.
384  *
385  * @return float The ratio of (polygon.z / light.z - polygon.z)
386  */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)387 float SpotShadow::projectCasterToOutline(Vector2& outline,
388         const Vector3& lightCenter, const Vector3& polyVertex) {
389     float lightToPolyZ = lightCenter.z - polyVertex.z;
390     float ratioZ = CASTER_Z_CAP_RATIO;
391     if (lightToPolyZ != 0) {
392         // If any caster's vertex is almost above the light, we just keep it as 95%
393         // of the height of the light.
394         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
395     }
396 
397     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
398     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
399     return ratioZ;
400 }
401 
402 /**
403  * Generate the shadow spot light of shape lightPoly and a object poly
404  *
405  * @param isCasterOpaque whether the caster is opaque
406  * @param lightCenter the center of the light
407  * @param lightSize the radius of the light
408  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
409  * @param polyLength number of vertexes of the occluding polygon
410  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
411  *                            empty strip if error.
412  */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)413 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
414         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
415         VertexBuffer& shadowTriangleStrip) {
416     if (CC_UNLIKELY(lightCenter.z <= 0)) {
417         ALOGW("Relative Light Z is not positive. No spot shadow!");
418         return;
419     }
420     if (CC_UNLIKELY(polyLength < 3)) {
421 #if DEBUG_SHADOW
422         ALOGW("Invalid polygon length. No spot shadow!");
423 #endif
424         return;
425     }
426     OutlineData outlineData[polyLength];
427     Vector2 outlineCentroid;
428     // Calculate the projected outline for each polygon's vertices from the light center.
429     //
430     //                       O     Light
431     //                      /
432     //                    /
433     //                   .     Polygon vertex
434     //                 /
435     //               /
436     //              O     Outline vertices
437     //
438     // Ratio = (Poly - Outline) / (Light - Poly)
439     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
440     // Outline's radius / Light's radius = Ratio
441 
442     // Compute the last outline vertex to make sure we can get the normal and outline
443     // in one single loop.
444     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
445             poly[polyLength - 1]);
446 
447     // Take the outline's polygon, calculate the normal for each outline edge.
448     int currentNormalIndex = polyLength - 1;
449     int nextNormalIndex = 0;
450 
451     for (int i = 0; i < polyLength; i++) {
452         float ratioZ = projectCasterToOutline(outlineData[i].position,
453                 lightCenter, poly[i]);
454         outlineData[i].radius = ratioZ * lightSize;
455 
456         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
457                 outlineData[currentNormalIndex].position,
458                 outlineData[nextNormalIndex].position);
459         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
460         nextNormalIndex++;
461     }
462 
463     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
464 
465     int penumbraIndex = 0;
466     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
467     // Since the size can be dynamic here, we keep track of the size and update
468     // the real size at the end.
469     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
470     Vector2 penumbra[allocatedPenumbraLength];
471     int totalExtraCornerSliceNumber = 0;
472 
473     Vector2 umbra[polyLength];
474 
475     // When centroid is covered by all circles from outline, then we consider
476     // the umbra is invalid, and we will tune down the shadow strength.
477     bool hasValidUmbra = true;
478     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
479     float minRaitoVI = FLT_MAX;
480 
481     for (int i = 0; i < polyLength; i++) {
482         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
483         // There is no guarantee that the penumbra is still convex, but for
484         // each outline vertex, it will connect to all its corresponding penumbra vertices as
485         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
486         //
487         // Penumbra Vertices marked as Pi
488         // Outline Vertices marked as Vi
489         //                                            (P3)
490         //          (P2)                               |     ' (P4)
491         //   (P1)'   |                                 |   '
492         //         ' |                                 | '
493         // (P0)  ------------------------------------------------(P5)
494         //           | (V0)                            |(V1)
495         //           |                                 |
496         //           |                                 |
497         //           |                                 |
498         //           |                                 |
499         //           |                                 |
500         //           |                                 |
501         //           |                                 |
502         //           |                                 |
503         //       (V3)-----------------------------------(V2)
504         int preNormalIndex = (i + polyLength - 1) % polyLength;
505 
506         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
507         const Vector2& currentNormal = outlineData[i].normal;
508 
509         // Depending on how roundness we want for each corner, we can subdivide
510         // further here and/or introduce some heuristic to decide how much the
511         // subdivision should be.
512         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
513                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
514 
515         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
516         totalExtraCornerSliceNumber += currentExtraSliceNumber;
517 #if DEBUG_SHADOW
518         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
519         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
520         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
521 #endif
522         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
523             currentCornerSliceNumber = 1;
524         }
525         for (int k = 0; k <= currentCornerSliceNumber; k++) {
526             Vector2 avgNormal =
527                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
528                     currentCornerSliceNumber;
529             avgNormal.normalize();
530             penumbra[penumbraIndex++] = outlineData[i].position +
531                     avgNormal * outlineData[i].radius;
532         }
533 
534 
535         // Compute the umbra by the intersection from the outline's centroid!
536         //
537         //       (V) ------------------------------------
538         //           |          '                       |
539         //           |         '                        |
540         //           |       ' (I)                      |
541         //           |    '                             |
542         //           | '             (C)                |
543         //           |                                  |
544         //           |                                  |
545         //           |                                  |
546         //           |                                  |
547         //           ------------------------------------
548         //
549         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
550         // intersect with the outline vertex's circle at point (I).
551         // Now, ratioVI = VI / VC, ratioIC = IC / VC
552         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
553         //
554         // When all of the outline circles cover the the outline centroid, (like I is
555         // on the other side of C), there is no real umbra any more, so we just fake
556         // a small area around the centroid as the umbra, and tune down the spot
557         // shadow's umbra strength to simulate the effect the whole shadow will
558         // become lighter in this case.
559         // The ratio can be simulated by using the inverse of maximum of ratioVI for
560         // all (V).
561         float distOutline = (outlineData[i].position - outlineCentroid).length();
562         if (CC_UNLIKELY(distOutline == 0)) {
563             // If the outline has 0 area, then there is no spot shadow anyway.
564             ALOGW("Outline has 0 area, no spot shadow!");
565             return;
566         }
567 
568         float ratioVI = outlineData[i].radius / distOutline;
569         minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
570         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
571             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
572         }
573         // When we know we don't have valid umbra, don't bother to compute the
574         // values below. But we can't skip the loop yet since we want to know the
575         // maximum ratio.
576         float ratioIC = 1 - ratioVI;
577         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
578     }
579 
580     hasValidUmbra = (minRaitoVI <= 1.0);
581     float shadowStrengthScale = 1.0;
582     if (!hasValidUmbra) {
583 #if DEBUG_SHADOW
584         ALOGW("The object is too close to the light or too small, no real umbra!");
585 #endif
586         for (int i = 0; i < polyLength; i++) {
587             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
588                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
589         }
590         shadowStrengthScale = 1.0 / minRaitoVI;
591     }
592 
593     int penumbraLength = penumbraIndex;
594     int umbraLength = polyLength;
595 
596 #if DEBUG_SHADOW
597     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
598     dumpPolygon(poly, polyLength, "input poly");
599     dumpPolygon(penumbra, penumbraLength, "penumbra");
600     dumpPolygon(umbra, umbraLength, "umbra");
601     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
602 #endif
603 
604     // The penumbra and umbra needs to be in convex shape to keep consistency
605     // and quality.
606     // Since we are still shooting rays to penumbra, it needs to be convex.
607     // Umbra can be represented as a fan from the centroid, but visually umbra
608     // looks nicer when it is convex.
609     Vector2 finalUmbra[umbraLength];
610     Vector2 finalPenumbra[penumbraLength];
611     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
612     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
613 
614     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
615             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
616             shadowTriangleStrip, outlineCentroid);
617 
618 }
619 
620 /**
621  * This is only for experimental purpose.
622  * After intersections are calculated, we could smooth the polygon if needed.
623  * So far, we don't think it is more appealing yet.
624  *
625  * @param level The level of smoothness.
626  * @param rays The total number of rays.
627  * @param rayDist (In and Out) The distance for each ray.
628  *
629  */
smoothPolygon(int level,int rays,float * rayDist)630 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
631     for (int k = 0; k < level; k++) {
632         for (int i = 0; i < rays; i++) {
633             float p1 = rayDist[(rays - 1 + i) % rays];
634             float p2 = rayDist[i];
635             float p3 = rayDist[(i + 1) % rays];
636             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
637         }
638     }
639 }
640 
641 // Index pair is meant for storing the tessellation information for the penumbra
642 // area. One index must come from exterior tangent of the circles, the other one
643 // must come from the interior tangent of the circles.
644 struct IndexPair {
645     int outerIndex;
646     int innerIndex;
647 };
648 
649 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)650 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
651     float minLengthSquared = FLT_MAX;
652     int resultIndex = -1;
653     bool hasDecreased = false;
654     // Starting with some negative offset, assuming both umbra and penumbra are starting
655     // at the same angle, this can help to find the result faster.
656     // Normally, loop 3 times, we can find the closest point.
657     int offset = polygonLength - 2;
658     for (int i = 0; i < polygonLength; i++) {
659         int currentIndex = (i + offset) % polygonLength;
660         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
661         if (currentLengthSquared < minLengthSquared) {
662             if (minLengthSquared != FLT_MAX) {
663                 hasDecreased = true;
664             }
665             minLengthSquared = currentLengthSquared;
666             resultIndex = currentIndex;
667         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
668             // Early break b/c we have found the closet one and now the length
669             // is increasing again.
670             break;
671         }
672     }
673     if(resultIndex == -1) {
674         ALOGE("resultIndex is -1, the polygon must be invalid!");
675         resultIndex = 0;
676     }
677     return resultIndex;
678 }
679 
680 // Allow some epsilon here since the later ray intersection did allow for some small
681 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)682 inline bool sameDirections(bool isPositiveCross, float a, float b) {
683     if (isPositiveCross) {
684         return a >= -EPSILON && b >= -EPSILON;
685     } else {
686         return a <= EPSILON && b <= EPSILON;
687     }
688 }
689 
690 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)691 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
692         const Vector2* polyToCentroid, int polyLength) {
693     // Make sure we loop with a bound.
694     for (int i = 0; i < polyLength; i++) {
695         int currentIndex = (i + startPolyIndex) % polyLength;
696         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
697         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
698 
699         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
700         float umbraCrossNext = umbraDir.cross(nextToCentroid);
701         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
702 #if DEBUG_SHADOW
703             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
704 #endif
705             return currentIndex;
706         }
707     }
708     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
709     return -1;
710 }
711 
712 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
713 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)714 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
715         const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
716         IndexPair* verticesPair, int& verticesPairIndex) {
717     // In order to keep everything in just one loop, we need to pre-compute the
718     // closest umbra vertex for the last penumbra vertex.
719     int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
720             umbra, umbraLength);
721     for (int i = 0; i < penumbraLength; i++) {
722         const Vector2& currentPenumbraVertex = penumbra[i];
723         // For current penumbra vertex, starting from previousClosestUmbraIndex,
724         // then check the next one until the distance increase.
725         // The last one before the increase is the umbra vertex we need to pair with.
726         float currentLengthSquared =
727                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
728         int currentClosestUmbraIndex = previousClosestUmbraIndex;
729         int indexDelta = 0;
730         for (int j = 1; j < umbraLength; j++) {
731             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
732             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
733             if (newLengthSquared > currentLengthSquared) {
734                 // currentClosestUmbraIndex is the umbra vertex's index which has
735                 // currently found smallest distance, so we can simply break here.
736                 break;
737             } else {
738                 currentLengthSquared = newLengthSquared;
739                 indexDelta++;
740                 currentClosestUmbraIndex = newUmbraIndex;
741             }
742         }
743 
744         if (indexDelta > 1) {
745             // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
746             //
747             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
748             // In the case like below P1 paired with U1 and P2 paired with  U5.
749             // U2 to U4 are unpaired umbra vertices.
750             //
751             // P1                                        P2
752             // |                                          |
753             // U1     U2                   U3     U4     U5
754             //
755             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
756             // to pair with U2 to U4.
757             //
758             // P1     P1.1                P1.2   P1.3    P2
759             // |       |                   |      |      |
760             // U1     U2                   U3     U4     U5
761             //
762             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
763             // vertex's location.
764             int newPenumbraNumber = indexDelta - 1;
765 
766             float accumulatedDeltaLength[newPenumbraNumber];
767             float totalDeltaLength = 0;
768 
769             // To save time, cache the previous umbra vertex info outside the loop
770             // and update each loop.
771             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
772             Vector2 skippedUmbra;
773             // Use umbra data to precompute the length b/t unpaired umbra vertices,
774             // and its ratio against the total length.
775             for (int k = 0; k < indexDelta; k++) {
776                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
777                 skippedUmbra = umbra[skippedUmbraIndex];
778                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
779 
780                 totalDeltaLength += currentDeltaLength;
781                 accumulatedDeltaLength[k] = totalDeltaLength;
782 
783                 previousClosestUmbra = skippedUmbra;
784             }
785 
786             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
787             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
788             // and pair them togehter.
789             for (int k = 0; k < newPenumbraNumber; k++) {
790                 float weightForCurrentPenumbra = 1.0f;
791                 if (totalDeltaLength != 0.0f) {
792                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
793                 }
794                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
795 
796                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
797                     previousPenumbra * weightForPreviousPenumbra;
798 
799                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
800                 verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex};
801                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
802             }
803         }
804         verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex};
805         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
806 
807         previousClosestUmbraIndex = currentClosestUmbraIndex;
808     }
809 }
810 
811 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)812 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
813         const Vector2& centroid, Vector2* polyToCentroid) {
814     for (int j = 0; j < polyLength; j++) {
815         polyToCentroid[j] = poly2d[j] - centroid;
816         // Normalize these vectors such that we can use epsilon comparison after
817         // computing their cross products with another normalized vector.
818         polyToCentroid[j].normalize();
819     }
820     float refCrossProduct = 0;
821     for (int j = 0; j < polyLength; j++) {
822         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
823         if (refCrossProduct != 0) {
824             break;
825         }
826     }
827 
828     return refCrossProduct > 0;
829 }
830 
831 // For one umbra vertex, shoot an ray from centroid to it.
832 // If the ray hit the polygon first, then return the intersection point as the
833 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)834 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
835         const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
836         bool isPositiveCross, int& previousPolyIndex) {
837     Vector2 umbraToCentroid = umbraVertex - centroid;
838     float distanceToUmbra = umbraToCentroid.length();
839     umbraToCentroid = umbraToCentroid / distanceToUmbra;
840 
841     // previousPolyIndex is updated for each item such that we can minimize the
842     // looping inside findPolyIndex();
843     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
844             umbraToCentroid, polyToCentroid, polyLength);
845 
846     float dx = umbraToCentroid.x;
847     float dy = umbraToCentroid.y;
848     float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
849             poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
850     if (distanceToIntersectPoly < 0) {
851         distanceToIntersectPoly = 0;
852     }
853 
854     // Pick the closer one as the occluded area vertex.
855     Vector2 closerVertex;
856     if (distanceToIntersectPoly < distanceToUmbra) {
857         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
858         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
859     } else {
860         closerVertex = umbraVertex;
861     }
862 
863     return closerVertex;
864 }
865 
866 /**
867  * Generate a triangle strip given two convex polygon
868 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)869 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
870         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
871         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
872         const Vector2& centroid) {
873     bool hasOccludedUmbraArea = false;
874     Vector2 poly2d[polyLength];
875 
876     if (isCasterOpaque) {
877         for (int i = 0; i < polyLength; i++) {
878             poly2d[i].x = poly[i].x;
879             poly2d[i].y = poly[i].y;
880         }
881         // Make sure the centroid is inside the umbra, otherwise, fall back to the
882         // approach as if there is no occluded umbra area.
883         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
884             hasOccludedUmbraArea = true;
885         }
886     }
887 
888     // For each penumbra vertex, find its corresponding closest umbra vertex index.
889     //
890     // Penumbra Vertices marked as Pi
891     // Umbra Vertices marked as Ui
892     //                                            (P3)
893     //          (P2)                               |     ' (P4)
894     //   (P1)'   |                                 |   '
895     //         ' |                                 | '
896     // (P0)  ------------------------------------------------(P5)
897     //           | (U0)                            |(U1)
898     //           |                                 |
899     //           |                                 |(U2)     (P5.1)
900     //           |                                 |
901     //           |                                 |
902     //           |                                 |
903     //           |                                 |
904     //           |                                 |
905     //           |                                 |
906     //       (U4)-----------------------------------(U3)      (P6)
907     //
908     // At least, like P0, P1, P2, they will find the matching umbra as U0.
909     // If we jump over some umbra vertex without matching penumbra vertex, then
910     // we will generate some new penumbra vertex by interpolation. Like P6 is
911     // matching U3, but U2 is not matched with any penumbra vertex.
912     // So interpolate P5.1 out and match U2.
913     // In this way, every umbra vertex will have a matching penumbra vertex.
914     //
915     // The total pair number can be as high as umbraLength + penumbraLength.
916     const int maxNewPenumbraLength = umbraLength + penumbraLength;
917     IndexPair verticesPair[maxNewPenumbraLength];
918     int verticesPairIndex = 0;
919 
920     // Cache all the existing penumbra vertices and newly interpolated vertices into a
921     // a new array.
922     Vector2 newPenumbra[maxNewPenumbraLength];
923     int newPenumbraIndex = 0;
924 
925     // For each penumbra vertex, find its closet umbra vertex by comparing the
926     // neighbor umbra vertices.
927     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
928             newPenumbraIndex, verticesPair, verticesPairIndex);
929     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
930     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
931 #if DEBUG_SHADOW
932     for (int i = 0; i < umbraLength; i++) {
933         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
934     }
935     for (int i = 0; i < newPenumbraIndex; i++) {
936         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
937     }
938     for (int i = 0; i < verticesPairIndex; i++) {
939         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
940     }
941 #endif
942 
943     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
944     // one has umbraLength, the last one has at most umbraLength.
945     //
946     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
947     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
948     // And 2 more for jumping between penumbra to umbra.
949     const int newPenumbraLength = newPenumbraIndex;
950     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
951     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
952     AlphaVertex* shadowVertices =
953             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
954     uint16_t* indexBuffer =
955             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
956     int vertexBufferIndex = 0;
957     int indexBufferIndex = 0;
958 
959     // Fill the IB and VB for the penumbra area.
960     for (int i = 0; i < newPenumbraLength; i++) {
961         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
962                 newPenumbra[i].y, 0.0f);
963     }
964     for (int i = 0; i < umbraLength; i++) {
965         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
966                 M_PI);
967     }
968 
969     for (int i = 0; i < verticesPairIndex; i++) {
970         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
971         // All umbra index need to be offseted by newPenumbraSize.
972         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
973     }
974     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
975     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
976 
977     // Now fill the IB and VB for the umbra area.
978     // First duplicated the index from previous strip and the first one for the
979     // degenerated triangles.
980     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
981     indexBufferIndex++;
982     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
983     // Save the first VB index for umbra area in order to close the loop.
984     int savedStartIndex = vertexBufferIndex;
985 
986     if (hasOccludedUmbraArea) {
987         // Precompute all the polygon's vector, and the reference cross product,
988         // in order to find the right polygon edge for the ray to intersect.
989         Vector2 polyToCentroid[polyLength];
990         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
991 
992         // Because both the umbra and polygon are going in the same direction,
993         // we can save the previous polygon index to make sure we have less polygon
994         // vertex to compute for each ray.
995         int previousPolyIndex = 0;
996         for (int i = 0; i < umbraLength; i++) {
997             // Shoot a ray from centroid to each umbra vertices and pick the one with
998             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
999             Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
1000                     polyToCentroid, isPositiveCross, previousPolyIndex);
1001 
1002             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
1003             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1004             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1005             AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1006                     closerVertex.x, closerVertex.y, M_PI);
1007         }
1008     } else {
1009         // If there is no occluded umbra at all, then draw the triangle fan
1010         // starting from the centroid to all umbra vertices.
1011         int lastCentroidIndex = vertexBufferIndex;
1012         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1013                 centroid.y, M_PI);
1014         for (int i = 0; i < umbraLength; i++) {
1015             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1016             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1017         }
1018     }
1019     // Closing the umbra area triangle's loop here.
1020     indexBuffer[indexBufferIndex++] = newPenumbraLength;
1021     indexBuffer[indexBufferIndex++] = savedStartIndex;
1022 
1023     // At the end, update the real index and vertex buffer size.
1024     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1025     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1026     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1027     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1028 
1029     shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1030     shadowTriangleStrip.computeBounds<AlphaVertex>();
1031 }
1032 
1033 #if DEBUG_SHADOW
1034 
1035 #define TEST_POINT_NUMBER 128
1036 /**
1037  * Calculate the bounds for generating random test points.
1038  */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1039 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1040         Vector2& upperBound) {
1041     if (inVector.x < lowerBound.x) {
1042         lowerBound.x = inVector.x;
1043     }
1044 
1045     if (inVector.y < lowerBound.y) {
1046         lowerBound.y = inVector.y;
1047     }
1048 
1049     if (inVector.x > upperBound.x) {
1050         upperBound.x = inVector.x;
1051     }
1052 
1053     if (inVector.y > upperBound.y) {
1054         upperBound.y = inVector.y;
1055     }
1056 }
1057 
1058 /**
1059  * For debug purpose, when things go wrong, dump the whole polygon data.
1060  */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1061 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1062     for (int i = 0; i < polyLength; i++) {
1063         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1064     }
1065 }
1066 
1067 /**
1068  * For debug purpose, when things go wrong, dump the whole polygon data.
1069  */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1070 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1071     for (int i = 0; i < polyLength; i++) {
1072         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1073     }
1074 }
1075 
1076 /**
1077  * Test whether the polygon is convex.
1078  */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1079 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1080         const char* name) {
1081     bool isConvex = true;
1082     for (int i = 0; i < polygonLength; i++) {
1083         Vector2 start = polygon[i];
1084         Vector2 middle = polygon[(i + 1) % polygonLength];
1085         Vector2 end = polygon[(i + 2) % polygonLength];
1086 
1087         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1088                 (float(middle.y) - start.y) * (float(end.x) - start.x);
1089         bool isCCWOrCoLinear = (delta >= EPSILON);
1090 
1091         if (isCCWOrCoLinear) {
1092             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1093                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1094                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1095             isConvex = false;
1096             break;
1097         }
1098     }
1099     return isConvex;
1100 }
1101 
1102 /**
1103  * Test whether or not the polygon (intersection) is within the 2 input polygons.
1104  * Using Marte Carlo method, we generate a random point, and if it is inside the
1105  * intersection, then it must be inside both source polygons.
1106  */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1107 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1108         const Vector2* poly2, int poly2Length,
1109         const Vector2* intersection, int intersectionLength) {
1110     // Find the min and max of x and y.
1111     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1112     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1113     for (int i = 0; i < poly1Length; i++) {
1114         updateBound(poly1[i], lowerBound, upperBound);
1115     }
1116     for (int i = 0; i < poly2Length; i++) {
1117         updateBound(poly2[i], lowerBound, upperBound);
1118     }
1119 
1120     bool dumpPoly = false;
1121     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1122         // Generate a random point between minX, minY and maxX, maxY.
1123         float randomX = rand() / float(RAND_MAX);
1124         float randomY = rand() / float(RAND_MAX);
1125 
1126         Vector2 testPoint;
1127         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1128         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1129 
1130         // If the random point is in both poly 1 and 2, then it must be intersection.
1131         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1132             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1133                 dumpPoly = true;
1134                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1135                         " not in the poly1",
1136                         testPoint.x, testPoint.y);
1137             }
1138 
1139             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1140                 dumpPoly = true;
1141                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1142                         " not in the poly2",
1143                         testPoint.x, testPoint.y);
1144             }
1145         }
1146     }
1147 
1148     if (dumpPoly) {
1149         dumpPolygon(intersection, intersectionLength, "intersection");
1150         for (int i = 1; i < intersectionLength; i++) {
1151             Vector2 delta = intersection[i] - intersection[i - 1];
1152             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1153         }
1154 
1155         dumpPolygon(poly1, poly1Length, "poly 1");
1156         dumpPolygon(poly2, poly2Length, "poly 2");
1157     }
1158 }
1159 #endif
1160 
1161 }; // namespace uirenderer
1162 }; // namespace android
1163