1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "heap.h"
18 
19 #define ATRACE_TAG ATRACE_TAG_DALVIK
20 #include <cutils/trace.h>
21 
22 #include <limits>
23 #include <memory>
24 #include <vector>
25 
26 #include "base/allocator.h"
27 #include "base/histogram-inl.h"
28 #include "base/stl_util.h"
29 #include "common_throws.h"
30 #include "cutils/sched_policy.h"
31 #include "debugger.h"
32 #include "gc/accounting/atomic_stack.h"
33 #include "gc/accounting/card_table-inl.h"
34 #include "gc/accounting/heap_bitmap-inl.h"
35 #include "gc/accounting/mod_union_table.h"
36 #include "gc/accounting/mod_union_table-inl.h"
37 #include "gc/accounting/remembered_set.h"
38 #include "gc/accounting/space_bitmap-inl.h"
39 #include "gc/collector/concurrent_copying.h"
40 #include "gc/collector/mark_compact.h"
41 #include "gc/collector/mark_sweep-inl.h"
42 #include "gc/collector/partial_mark_sweep.h"
43 #include "gc/collector/semi_space.h"
44 #include "gc/collector/sticky_mark_sweep.h"
45 #include "gc/reference_processor.h"
46 #include "gc/space/bump_pointer_space.h"
47 #include "gc/space/dlmalloc_space-inl.h"
48 #include "gc/space/image_space.h"
49 #include "gc/space/large_object_space.h"
50 #include "gc/space/rosalloc_space-inl.h"
51 #include "gc/space/space-inl.h"
52 #include "gc/space/zygote_space.h"
53 #include "entrypoints/quick/quick_alloc_entrypoints.h"
54 #include "heap-inl.h"
55 #include "image.h"
56 #include "intern_table.h"
57 #include "mirror/art_field-inl.h"
58 #include "mirror/class-inl.h"
59 #include "mirror/object.h"
60 #include "mirror/object-inl.h"
61 #include "mirror/object_array-inl.h"
62 #include "mirror/reference-inl.h"
63 #include "os.h"
64 #include "reflection.h"
65 #include "runtime.h"
66 #include "ScopedLocalRef.h"
67 #include "scoped_thread_state_change.h"
68 #include "handle_scope-inl.h"
69 #include "thread_list.h"
70 #include "well_known_classes.h"
71 
72 namespace art {
73 
74 namespace gc {
75 
76 static constexpr size_t kCollectorTransitionStressIterations = 0;
77 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
78 // Minimum amount of remaining bytes before a concurrent GC is triggered.
79 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
80 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
81 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
82 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
83 // threads (lower pauses, use less memory bandwidth).
84 static constexpr double kStickyGcThroughputAdjustment = 1.0;
85 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
86 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
87 #if USE_ART_LOW_4G_ALLOCATOR
88 static constexpr bool kUseFreeListSpaceForLOS = true;
89 #else
90 static constexpr bool kUseFreeListSpaceForLOS = false;
91 #endif
92 // Whether or not we compact the zygote in PreZygoteFork.
93 static constexpr bool kCompactZygote = kMovingCollector;
94 // How many reserve entries are at the end of the allocation stack, these are only needed if the
95 // allocation stack overflows.
96 static constexpr size_t kAllocationStackReserveSize = 1024;
97 // Default mark stack size in bytes.
98 static const size_t kDefaultMarkStackSize = 64 * KB;
99 // Define space name.
100 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
101 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
102 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
103 static const char* kNonMovingSpaceName = "non moving space";
104 static const char* kZygoteSpaceName = "zygote space";
105 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
106 static constexpr bool kGCALotMode = false;
107 // GC alot mode uses a small allocation stack to stress test a lot of GC.
108 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
109     sizeof(mirror::HeapReference<mirror::Object>);
110 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
111 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
112     sizeof(mirror::HeapReference<mirror::Object>);
113 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
114     sizeof(mirror::HeapReference<mirror::Object>);
115 
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_max_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool use_homogeneous_space_compaction_for_oom,uint64_t min_interval_homogeneous_space_compaction_by_oom)116 Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
117            double target_utilization, double foreground_heap_growth_multiplier,
118            size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
119            const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
120            CollectorType background_collector_type, size_t parallel_gc_threads,
121            size_t conc_gc_threads, bool low_memory_mode,
122            size_t long_pause_log_threshold, size_t long_gc_log_threshold,
123            bool ignore_max_footprint, bool use_tlab,
124            bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
125            bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
126            bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
127            uint64_t min_interval_homogeneous_space_compaction_by_oom)
128     : non_moving_space_(nullptr),
129       rosalloc_space_(nullptr),
130       dlmalloc_space_(nullptr),
131       main_space_(nullptr),
132       collector_type_(kCollectorTypeNone),
133       foreground_collector_type_(foreground_collector_type),
134       background_collector_type_(background_collector_type),
135       desired_collector_type_(foreground_collector_type_),
136       heap_trim_request_lock_(nullptr),
137       last_trim_time_(0),
138       heap_transition_or_trim_target_time_(0),
139       heap_trim_request_pending_(false),
140       parallel_gc_threads_(parallel_gc_threads),
141       conc_gc_threads_(conc_gc_threads),
142       low_memory_mode_(low_memory_mode),
143       long_pause_log_threshold_(long_pause_log_threshold),
144       long_gc_log_threshold_(long_gc_log_threshold),
145       ignore_max_footprint_(ignore_max_footprint),
146       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
147       have_zygote_space_(false),
148       large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
149       collector_type_running_(kCollectorTypeNone),
150       last_gc_type_(collector::kGcTypeNone),
151       next_gc_type_(collector::kGcTypePartial),
152       capacity_(capacity),
153       growth_limit_(growth_limit),
154       max_allowed_footprint_(initial_size),
155       native_footprint_gc_watermark_(initial_size),
156       native_need_to_run_finalization_(false),
157       // Initially assume we perceive jank in case the process state is never updated.
158       process_state_(kProcessStateJankPerceptible),
159       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
160       total_bytes_freed_ever_(0),
161       total_objects_freed_ever_(0),
162       num_bytes_allocated_(0),
163       native_bytes_allocated_(0),
164       verify_missing_card_marks_(false),
165       verify_system_weaks_(false),
166       verify_pre_gc_heap_(verify_pre_gc_heap),
167       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
168       verify_post_gc_heap_(verify_post_gc_heap),
169       verify_mod_union_table_(false),
170       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
171       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
172       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
173       last_gc_time_ns_(NanoTime()),
174       allocation_rate_(0),
175       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
176        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
177        * verification is enabled, we limit the size of allocation stacks to speed up their
178        * searching.
179        */
180       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
181           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
182           kDefaultAllocationStackSize),
183       current_allocator_(kAllocatorTypeDlMalloc),
184       current_non_moving_allocator_(kAllocatorTypeNonMoving),
185       bump_pointer_space_(nullptr),
186       temp_space_(nullptr),
187       min_free_(min_free),
188       max_free_(max_free),
189       target_utilization_(target_utilization),
190       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
191       total_wait_time_(0),
192       total_allocation_time_(0),
193       verify_object_mode_(kVerifyObjectModeDisabled),
194       disable_moving_gc_count_(0),
195       running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
196       use_tlab_(use_tlab),
197       main_space_backup_(nullptr),
198       min_interval_homogeneous_space_compaction_by_oom_(
199           min_interval_homogeneous_space_compaction_by_oom),
200       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
201       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
202   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
203     LOG(INFO) << "Heap() entering";
204   }
205   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
206   // entrypoints.
207   const bool is_zygote = Runtime::Current()->IsZygote();
208   if (!is_zygote) {
209     large_object_threshold_ = kDefaultLargeObjectThreshold;
210     // Background compaction is currently not supported for command line runs.
211     if (background_collector_type_ != foreground_collector_type_) {
212       VLOG(heap) << "Disabling background compaction for non zygote";
213       background_collector_type_ = foreground_collector_type_;
214     }
215   }
216   ChangeCollector(desired_collector_type_);
217   live_bitmap_.reset(new accounting::HeapBitmap(this));
218   mark_bitmap_.reset(new accounting::HeapBitmap(this));
219   // Requested begin for the alloc space, to follow the mapped image and oat files
220   byte* requested_alloc_space_begin = nullptr;
221   if (!image_file_name.empty()) {
222     std::string error_msg;
223     space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
224                                                                image_instruction_set,
225                                                                &error_msg);
226     if (image_space != nullptr) {
227       AddSpace(image_space);
228       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
229       // isn't going to get in the middle
230       byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
231       CHECK_GT(oat_file_end_addr, image_space->End());
232       requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
233     } else {
234       LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
235                    << "Attempting to fall back to imageless running. Error was: " << error_msg;
236     }
237   }
238   /*
239   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
240                                      +-  nonmoving space (non_moving_space_capacity)+-
241                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
242                                      +-????????????????????????????????????????????+-
243                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
244                                      +-main alloc space / bump space 1 (capacity_) +-
245                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
246                                      +-????????????????????????????????????????????+-
247                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
248                                      +-main alloc space2 / bump space 2 (capacity_)+-
249                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
250   */
251   // We don't have hspace compaction enabled with GSS.
252   if (foreground_collector_type_ == kCollectorTypeGSS) {
253     use_homogeneous_space_compaction_for_oom_ = false;
254   }
255   bool support_homogeneous_space_compaction =
256       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
257       use_homogeneous_space_compaction_for_oom_;
258   // We may use the same space the main space for the non moving space if we don't need to compact
259   // from the main space.
260   // This is not the case if we support homogeneous compaction or have a moving background
261   // collector type.
262   bool separate_non_moving_space = is_zygote ||
263       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
264       IsMovingGc(background_collector_type_);
265   if (foreground_collector_type == kCollectorTypeGSS) {
266     separate_non_moving_space = false;
267   }
268   std::unique_ptr<MemMap> main_mem_map_1;
269   std::unique_ptr<MemMap> main_mem_map_2;
270   byte* request_begin = requested_alloc_space_begin;
271   if (request_begin != nullptr && separate_non_moving_space) {
272     request_begin += non_moving_space_capacity;
273   }
274   std::string error_str;
275   std::unique_ptr<MemMap> non_moving_space_mem_map;
276   if (separate_non_moving_space) {
277     // If we are the zygote, the non moving space becomes the zygote space when we run
278     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
279     // rename the mem map later.
280     const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
281     // Reserve the non moving mem map before the other two since it needs to be at a specific
282     // address.
283     non_moving_space_mem_map.reset(
284         MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
285                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
286     CHECK(non_moving_space_mem_map != nullptr) << error_str;
287     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
288     request_begin = reinterpret_cast<byte*>(300 * MB);
289   }
290   // Attempt to create 2 mem maps at or after the requested begin.
291   main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
292                                                     PROT_READ | PROT_WRITE, &error_str));
293   CHECK(main_mem_map_1.get() != nullptr) << error_str;
294   if (support_homogeneous_space_compaction ||
295       background_collector_type_ == kCollectorTypeSS ||
296       foreground_collector_type_ == kCollectorTypeSS) {
297     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
298                                                       capacity_, PROT_READ | PROT_WRITE,
299                                                       &error_str));
300     CHECK(main_mem_map_2.get() != nullptr) << error_str;
301   }
302   // Create the non moving space first so that bitmaps don't take up the address range.
303   if (separate_non_moving_space) {
304     // Non moving space is always dlmalloc since we currently don't have support for multiple
305     // active rosalloc spaces.
306     const size_t size = non_moving_space_mem_map->Size();
307     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
308         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
309         initial_size, size, size, false);
310     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
311     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
312         << requested_alloc_space_begin;
313     AddSpace(non_moving_space_);
314   }
315   // Create other spaces based on whether or not we have a moving GC.
316   if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
317     // Create bump pointer spaces.
318     // We only to create the bump pointer if the foreground collector is a compacting GC.
319     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
320     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
321                                                                     main_mem_map_1.release());
322     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
323     AddSpace(bump_pointer_space_);
324     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
325                                                             main_mem_map_2.release());
326     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
327     AddSpace(temp_space_);
328     CHECK(separate_non_moving_space);
329   } else {
330     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
331     CHECK(main_space_ != nullptr);
332     AddSpace(main_space_);
333     if (!separate_non_moving_space) {
334       non_moving_space_ = main_space_;
335       CHECK(!non_moving_space_->CanMoveObjects());
336     }
337     if (foreground_collector_type_ == kCollectorTypeGSS) {
338       CHECK_EQ(foreground_collector_type_, background_collector_type_);
339       // Create bump pointer spaces instead of a backup space.
340       main_mem_map_2.release();
341       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
342                                                             kGSSBumpPointerSpaceCapacity, nullptr);
343       CHECK(bump_pointer_space_ != nullptr);
344       AddSpace(bump_pointer_space_);
345       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
346                                                     kGSSBumpPointerSpaceCapacity, nullptr);
347       CHECK(temp_space_ != nullptr);
348       AddSpace(temp_space_);
349     } else if (main_mem_map_2.get() != nullptr) {
350       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
351       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
352                                                            growth_limit_, capacity_, name, true));
353       CHECK(main_space_backup_.get() != nullptr);
354       // Add the space so its accounted for in the heap_begin and heap_end.
355       AddSpace(main_space_backup_.get());
356     }
357   }
358   CHECK(non_moving_space_ != nullptr);
359   CHECK(!non_moving_space_->CanMoveObjects());
360   // Allocate the large object space.
361   if (kUseFreeListSpaceForLOS) {
362     large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
363   } else {
364     large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
365   }
366   CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
367   AddSpace(large_object_space_);
368   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
369   CHECK(!continuous_spaces_.empty());
370   // Relies on the spaces being sorted.
371   byte* heap_begin = continuous_spaces_.front()->Begin();
372   byte* heap_end = continuous_spaces_.back()->Limit();
373   size_t heap_capacity = heap_end - heap_begin;
374   // Remove the main backup space since it slows down the GC to have unused extra spaces.
375   // TODO: Avoid needing to do this.
376   if (main_space_backup_.get() != nullptr) {
377     RemoveSpace(main_space_backup_.get());
378   }
379   // Allocate the card table.
380   card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
381   CHECK(card_table_.get() != NULL) << "Failed to create card table";
382   // Card cache for now since it makes it easier for us to update the references to the copying
383   // spaces.
384   accounting::ModUnionTable* mod_union_table =
385       new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
386                                                       GetImageSpace());
387   CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
388   AddModUnionTable(mod_union_table);
389   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
390     accounting::RememberedSet* non_moving_space_rem_set =
391         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
392     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
393     AddRememberedSet(non_moving_space_rem_set);
394   }
395   // TODO: Count objects in the image space here?
396   num_bytes_allocated_.StoreRelaxed(0);
397   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
398                                                     kDefaultMarkStackSize));
399   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
400   allocation_stack_.reset(accounting::ObjectStack::Create(
401       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
402   live_stack_.reset(accounting::ObjectStack::Create(
403       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
404   // It's still too early to take a lock because there are no threads yet, but we can create locks
405   // now. We don't create it earlier to make it clear that you can't use locks during heap
406   // initialization.
407   gc_complete_lock_ = new Mutex("GC complete lock");
408   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
409                                                 *gc_complete_lock_));
410   heap_trim_request_lock_ = new Mutex("Heap trim request lock");
411   last_gc_size_ = GetBytesAllocated();
412   if (ignore_max_footprint_) {
413     SetIdealFootprint(std::numeric_limits<size_t>::max());
414     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
415   }
416   CHECK_NE(max_allowed_footprint_, 0U);
417   // Create our garbage collectors.
418   for (size_t i = 0; i < 2; ++i) {
419     const bool concurrent = i != 0;
420     garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
421     garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
422     garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
423   }
424   if (kMovingCollector) {
425     // TODO: Clean this up.
426     const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
427     semi_space_collector_ = new collector::SemiSpace(this, generational,
428                                                      generational ? "generational" : "");
429     garbage_collectors_.push_back(semi_space_collector_);
430     concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
431     garbage_collectors_.push_back(concurrent_copying_collector_);
432     mark_compact_collector_ = new collector::MarkCompact(this);
433     garbage_collectors_.push_back(mark_compact_collector_);
434   }
435   if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
436     // Check that there's no gap between the image space and the non moving space so that the
437     // immune region won't break (eg. due to a large object allocated in the gap).
438     bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
439                                       non_moving_space_->GetMemMap());
440     if (!no_gap) {
441       MemMap::DumpMaps(LOG(ERROR));
442       LOG(FATAL) << "There's a gap between the image space and the main space";
443     }
444   }
445   if (running_on_valgrind_) {
446     Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
447   }
448   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
449     LOG(INFO) << "Heap() exiting";
450   }
451 }
452 
MapAnonymousPreferredAddress(const char * name,byte * request_begin,size_t capacity,int prot_flags,std::string * out_error_str)453 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
454                                            int prot_flags, std::string* out_error_str) {
455   while (true) {
456     MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
457                                        PROT_READ | PROT_WRITE, true, out_error_str);
458     if (map != nullptr || request_begin == nullptr) {
459       return map;
460     }
461     // Retry a  second time with no specified request begin.
462     request_begin = nullptr;
463   }
464   return nullptr;
465 }
466 
CreateMallocSpaceFromMemMap(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)467 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
468                                                       size_t growth_limit, size_t capacity,
469                                                       const char* name, bool can_move_objects) {
470   space::MallocSpace* malloc_space = nullptr;
471   if (kUseRosAlloc) {
472     // Create rosalloc space.
473     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
474                                                           initial_size, growth_limit, capacity,
475                                                           low_memory_mode_, can_move_objects);
476   } else {
477     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
478                                                           initial_size, growth_limit, capacity,
479                                                           can_move_objects);
480   }
481   if (collector::SemiSpace::kUseRememberedSet) {
482     accounting::RememberedSet* rem_set  =
483         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
484     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
485     AddRememberedSet(rem_set);
486   }
487   CHECK(malloc_space != nullptr) << "Failed to create " << name;
488   malloc_space->SetFootprintLimit(malloc_space->Capacity());
489   return malloc_space;
490 }
491 
CreateMainMallocSpace(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity)492 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
493                                  size_t capacity) {
494   // Is background compaction is enabled?
495   bool can_move_objects = IsMovingGc(background_collector_type_) !=
496       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
497   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
498   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
499   // from the main space to the zygote space. If background compaction is enabled, always pass in
500   // that we can move objets.
501   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
502     // After the zygote we want this to be false if we don't have background compaction enabled so
503     // that getting primitive array elements is faster.
504     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
505     can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
506   }
507   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
508     RemoveRememberedSet(main_space_);
509   }
510   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
511   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
512                                             can_move_objects);
513   SetSpaceAsDefault(main_space_);
514   VLOG(heap) << "Created main space " << main_space_;
515 }
516 
ChangeAllocator(AllocatorType allocator)517 void Heap::ChangeAllocator(AllocatorType allocator) {
518   if (current_allocator_ != allocator) {
519     // These two allocators are only used internally and don't have any entrypoints.
520     CHECK_NE(allocator, kAllocatorTypeLOS);
521     CHECK_NE(allocator, kAllocatorTypeNonMoving);
522     current_allocator_ = allocator;
523     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
524     SetQuickAllocEntryPointsAllocator(current_allocator_);
525     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
526   }
527 }
528 
DisableMovingGc()529 void Heap::DisableMovingGc() {
530   if (IsMovingGc(foreground_collector_type_)) {
531     foreground_collector_type_ = kCollectorTypeCMS;
532   }
533   if (IsMovingGc(background_collector_type_)) {
534     background_collector_type_ = foreground_collector_type_;
535   }
536   TransitionCollector(foreground_collector_type_);
537   ThreadList* tl = Runtime::Current()->GetThreadList();
538   Thread* self = Thread::Current();
539   ScopedThreadStateChange tsc(self, kSuspended);
540   tl->SuspendAll();
541   // Something may have caused the transition to fail.
542   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
543     CHECK(main_space_ != nullptr);
544     // The allocation stack may have non movable objects in it. We need to flush it since the GC
545     // can't only handle marking allocation stack objects of one non moving space and one main
546     // space.
547     {
548       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
549       FlushAllocStack();
550     }
551     main_space_->DisableMovingObjects();
552     non_moving_space_ = main_space_;
553     CHECK(!non_moving_space_->CanMoveObjects());
554   }
555   tl->ResumeAll();
556 }
557 
SafeGetClassDescriptor(mirror::Class * klass)558 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
559   if (!IsValidContinuousSpaceObjectAddress(klass)) {
560     return StringPrintf("<non heap address klass %p>", klass);
561   }
562   mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
563   if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
564     std::string result("[");
565     result += SafeGetClassDescriptor(component_type);
566     return result;
567   } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
568     return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
569   } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
570     return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
571   } else {
572     mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
573     if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
574       return StringPrintf("<non heap address dex_cache %p>", dex_cache);
575     }
576     const DexFile* dex_file = dex_cache->GetDexFile();
577     uint16_t class_def_idx = klass->GetDexClassDefIndex();
578     if (class_def_idx == DexFile::kDexNoIndex16) {
579       return "<class def not found>";
580     }
581     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
582     const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
583     return dex_file->GetTypeDescriptor(type_id);
584   }
585 }
586 
SafePrettyTypeOf(mirror::Object * obj)587 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
588   if (obj == nullptr) {
589     return "null";
590   }
591   mirror::Class* klass = obj->GetClass<kVerifyNone>();
592   if (klass == nullptr) {
593     return "(class=null)";
594   }
595   std::string result(SafeGetClassDescriptor(klass));
596   if (obj->IsClass()) {
597     result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
598   }
599   return result;
600 }
601 
DumpObject(std::ostream & stream,mirror::Object * obj)602 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
603   if (obj == nullptr) {
604     stream << "(obj=null)";
605     return;
606   }
607   if (IsAligned<kObjectAlignment>(obj)) {
608     space::Space* space = nullptr;
609     // Don't use find space since it only finds spaces which actually contain objects instead of
610     // spaces which may contain objects (e.g. cleared bump pointer spaces).
611     for (const auto& cur_space : continuous_spaces_) {
612       if (cur_space->HasAddress(obj)) {
613         space = cur_space;
614         break;
615       }
616     }
617     // Unprotect all the spaces.
618     for (const auto& space : continuous_spaces_) {
619       mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
620     }
621     stream << "Object " << obj;
622     if (space != nullptr) {
623       stream << " in space " << *space;
624     }
625     mirror::Class* klass = obj->GetClass<kVerifyNone>();
626     stream << "\nclass=" << klass;
627     if (klass != nullptr) {
628       stream << " type= " << SafePrettyTypeOf(obj);
629     }
630     // Re-protect the address we faulted on.
631     mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
632   }
633 }
634 
IsCompilingBoot() const635 bool Heap::IsCompilingBoot() const {
636   if (!Runtime::Current()->IsCompiler()) {
637     return false;
638   }
639   for (const auto& space : continuous_spaces_) {
640     if (space->IsImageSpace() || space->IsZygoteSpace()) {
641       return false;
642     }
643   }
644   return true;
645 }
646 
HasImageSpace() const647 bool Heap::HasImageSpace() const {
648   for (const auto& space : continuous_spaces_) {
649     if (space->IsImageSpace()) {
650       return true;
651     }
652   }
653   return false;
654 }
655 
IncrementDisableMovingGC(Thread * self)656 void Heap::IncrementDisableMovingGC(Thread* self) {
657   // Need to do this holding the lock to prevent races where the GC is about to run / running when
658   // we attempt to disable it.
659   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
660   MutexLock mu(self, *gc_complete_lock_);
661   ++disable_moving_gc_count_;
662   if (IsMovingGc(collector_type_running_)) {
663     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
664   }
665 }
666 
DecrementDisableMovingGC(Thread * self)667 void Heap::DecrementDisableMovingGC(Thread* self) {
668   MutexLock mu(self, *gc_complete_lock_);
669   CHECK_GE(disable_moving_gc_count_, 0U);
670   --disable_moving_gc_count_;
671 }
672 
UpdateProcessState(ProcessState process_state)673 void Heap::UpdateProcessState(ProcessState process_state) {
674   if (process_state_ != process_state) {
675     process_state_ = process_state;
676     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
677       // Start at index 1 to avoid "is always false" warning.
678       // Have iteration 1 always transition the collector.
679       TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
680                           ? foreground_collector_type_ : background_collector_type_);
681       usleep(kCollectorTransitionStressWait);
682     }
683     if (process_state_ == kProcessStateJankPerceptible) {
684       // Transition back to foreground right away to prevent jank.
685       RequestCollectorTransition(foreground_collector_type_, 0);
686     } else {
687       // Don't delay for debug builds since we may want to stress test the GC.
688       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
689       // special handling which does a homogenous space compaction once but then doesn't transition
690       // the collector.
691       RequestCollectorTransition(background_collector_type_,
692                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
693     }
694   }
695 }
696 
CreateThreadPool()697 void Heap::CreateThreadPool() {
698   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
699   if (num_threads != 0) {
700     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
701   }
702 }
703 
VisitObjects(ObjectCallback callback,void * arg)704 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
705   Thread* self = Thread::Current();
706   // GCs can move objects, so don't allow this.
707   const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
708   if (bump_pointer_space_ != nullptr) {
709     // Visit objects in bump pointer space.
710     bump_pointer_space_->Walk(callback, arg);
711   }
712   // TODO: Switch to standard begin and end to use ranged a based loop.
713   for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
714       it < end; ++it) {
715     mirror::Object* obj = *it;
716     if (obj != nullptr && obj->GetClass() != nullptr) {
717       // Avoid the race condition caused by the object not yet being written into the allocation
718       // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
719       // there can be nulls on the allocation stack.
720       callback(obj, arg);
721     }
722   }
723   GetLiveBitmap()->Walk(callback, arg);
724   self->EndAssertNoThreadSuspension(old_cause);
725 }
726 
MarkAllocStackAsLive(accounting::ObjectStack * stack)727 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
728   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
729   space::ContinuousSpace* space2 = non_moving_space_;
730   // TODO: Generalize this to n bitmaps?
731   CHECK(space1 != nullptr);
732   CHECK(space2 != nullptr);
733   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
734                  large_object_space_->GetLiveBitmap(), stack);
735 }
736 
DeleteThreadPool()737 void Heap::DeleteThreadPool() {
738   thread_pool_.reset(nullptr);
739 }
740 
AddSpace(space::Space * space)741 void Heap::AddSpace(space::Space* space) {
742   CHECK(space != nullptr);
743   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
744   if (space->IsContinuousSpace()) {
745     DCHECK(!space->IsDiscontinuousSpace());
746     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
747     // Continuous spaces don't necessarily have bitmaps.
748     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
749     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
750     if (live_bitmap != nullptr) {
751       CHECK(mark_bitmap != nullptr);
752       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
753       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
754     }
755     continuous_spaces_.push_back(continuous_space);
756     // Ensure that spaces remain sorted in increasing order of start address.
757     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
758               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
759       return a->Begin() < b->Begin();
760     });
761   } else {
762     CHECK(space->IsDiscontinuousSpace());
763     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
764     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
765     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
766     discontinuous_spaces_.push_back(discontinuous_space);
767   }
768   if (space->IsAllocSpace()) {
769     alloc_spaces_.push_back(space->AsAllocSpace());
770   }
771 }
772 
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)773 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
774   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
775   if (continuous_space->IsDlMallocSpace()) {
776     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
777   } else if (continuous_space->IsRosAllocSpace()) {
778     rosalloc_space_ = continuous_space->AsRosAllocSpace();
779   }
780 }
781 
RemoveSpace(space::Space * space)782 void Heap::RemoveSpace(space::Space* space) {
783   DCHECK(space != nullptr);
784   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
785   if (space->IsContinuousSpace()) {
786     DCHECK(!space->IsDiscontinuousSpace());
787     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
788     // Continuous spaces don't necessarily have bitmaps.
789     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
790     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
791     if (live_bitmap != nullptr) {
792       DCHECK(mark_bitmap != nullptr);
793       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
794       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
795     }
796     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
797     DCHECK(it != continuous_spaces_.end());
798     continuous_spaces_.erase(it);
799   } else {
800     DCHECK(space->IsDiscontinuousSpace());
801     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
802     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
803     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
804     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
805                         discontinuous_space);
806     DCHECK(it != discontinuous_spaces_.end());
807     discontinuous_spaces_.erase(it);
808   }
809   if (space->IsAllocSpace()) {
810     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
811     DCHECK(it != alloc_spaces_.end());
812     alloc_spaces_.erase(it);
813   }
814 }
815 
DumpGcPerformanceInfo(std::ostream & os)816 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
817   // Dump cumulative timings.
818   os << "Dumping cumulative Gc timings\n";
819   uint64_t total_duration = 0;
820   // Dump cumulative loggers for each GC type.
821   uint64_t total_paused_time = 0;
822   for (auto& collector : garbage_collectors_) {
823     const CumulativeLogger& logger = collector->GetCumulativeTimings();
824     const size_t iterations = logger.GetIterations();
825     const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
826     if (iterations != 0 && pause_histogram.SampleSize() != 0) {
827       os << ConstDumpable<CumulativeLogger>(logger);
828       const uint64_t total_ns = logger.GetTotalNs();
829       const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
830       double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
831       const uint64_t freed_bytes = collector->GetTotalFreedBytes();
832       const uint64_t freed_objects = collector->GetTotalFreedObjects();
833       Histogram<uint64_t>::CumulativeData cumulative_data;
834       pause_histogram.CreateHistogram(&cumulative_data);
835       pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
836       os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
837          << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
838          << collector->GetName() << " freed: " << freed_objects
839          << " objects with total size " << PrettySize(freed_bytes) << "\n"
840          << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
841          << PrettySize(freed_bytes / seconds) << "/s\n";
842       total_duration += total_ns;
843       total_paused_time += total_pause_ns;
844     }
845     collector->ResetMeasurements();
846   }
847   uint64_t allocation_time =
848       static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
849   if (total_duration != 0) {
850     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
851     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
852     os << "Mean GC size throughput: "
853        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
854     os << "Mean GC object throughput: "
855        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
856   }
857   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
858   os << "Total number of allocations " << total_objects_allocated << "\n";
859   uint64_t total_bytes_allocated = GetBytesAllocatedEver();
860   os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
861   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
862   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
863   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
864   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
865   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
866   if (kMeasureAllocationTime) {
867     os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
868     os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
869        << "\n";
870   }
871   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
872   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
873   BaseMutex::DumpAll(os);
874 }
875 
~Heap()876 Heap::~Heap() {
877   VLOG(heap) << "Starting ~Heap()";
878   STLDeleteElements(&garbage_collectors_);
879   // If we don't reset then the mark stack complains in its destructor.
880   allocation_stack_->Reset();
881   live_stack_->Reset();
882   STLDeleteValues(&mod_union_tables_);
883   STLDeleteValues(&remembered_sets_);
884   STLDeleteElements(&continuous_spaces_);
885   STLDeleteElements(&discontinuous_spaces_);
886   delete gc_complete_lock_;
887   delete heap_trim_request_lock_;
888   VLOG(heap) << "Finished ~Heap()";
889 }
890 
FindContinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const891 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
892                                                             bool fail_ok) const {
893   for (const auto& space : continuous_spaces_) {
894     if (space->Contains(obj)) {
895       return space;
896     }
897   }
898   if (!fail_ok) {
899     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
900   }
901   return NULL;
902 }
903 
FindDiscontinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const904 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
905                                                                   bool fail_ok) const {
906   for (const auto& space : discontinuous_spaces_) {
907     if (space->Contains(obj)) {
908       return space;
909     }
910   }
911   if (!fail_ok) {
912     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
913   }
914   return NULL;
915 }
916 
FindSpaceFromObject(const mirror::Object * obj,bool fail_ok) const917 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
918   space::Space* result = FindContinuousSpaceFromObject(obj, true);
919   if (result != NULL) {
920     return result;
921   }
922   return FindDiscontinuousSpaceFromObject(obj, true);
923 }
924 
GetImageSpace() const925 space::ImageSpace* Heap::GetImageSpace() const {
926   for (const auto& space : continuous_spaces_) {
927     if (space->IsImageSpace()) {
928       return space->AsImageSpace();
929     }
930   }
931   return NULL;
932 }
933 
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)934 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
935   std::ostringstream oss;
936   size_t total_bytes_free = GetFreeMemory();
937   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
938       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
939   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
940   if (total_bytes_free >= byte_count) {
941     space::AllocSpace* space = nullptr;
942     if (allocator_type == kAllocatorTypeNonMoving) {
943       space = non_moving_space_;
944     } else if (allocator_type == kAllocatorTypeRosAlloc ||
945                allocator_type == kAllocatorTypeDlMalloc) {
946       space = main_space_;
947     } else if (allocator_type == kAllocatorTypeBumpPointer ||
948                allocator_type == kAllocatorTypeTLAB) {
949       space = bump_pointer_space_;
950     }
951     if (space != nullptr) {
952       space->LogFragmentationAllocFailure(oss, byte_count);
953     }
954   }
955   self->ThrowOutOfMemoryError(oss.str().c_str());
956 }
957 
DoPendingTransitionOrTrim()958 void Heap::DoPendingTransitionOrTrim() {
959   Thread* self = Thread::Current();
960   CollectorType desired_collector_type;
961   // Wait until we reach the desired transition time.
962   while (true) {
963     uint64_t wait_time;
964     {
965       MutexLock mu(self, *heap_trim_request_lock_);
966       desired_collector_type = desired_collector_type_;
967       uint64_t current_time = NanoTime();
968       if (current_time >= heap_transition_or_trim_target_time_) {
969         break;
970       }
971       wait_time = heap_transition_or_trim_target_time_ - current_time;
972     }
973     ScopedThreadStateChange tsc(self, kSleeping);
974     usleep(wait_time / 1000);  // Usleep takes microseconds.
975   }
976   // Launch homogeneous space compaction if it is desired.
977   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
978     if (!CareAboutPauseTimes()) {
979       PerformHomogeneousSpaceCompact();
980     }
981     // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
982     desired_collector_type = collector_type_;
983     return;
984   }
985   // Transition the collector if the desired collector type is not the same as the current
986   // collector type.
987   TransitionCollector(desired_collector_type);
988   if (!CareAboutPauseTimes()) {
989     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
990     // about pauses.
991     Runtime* runtime = Runtime::Current();
992     runtime->GetThreadList()->SuspendAll();
993     uint64_t start_time = NanoTime();
994     size_t count = runtime->GetMonitorList()->DeflateMonitors();
995     VLOG(heap) << "Deflating " << count << " monitors took "
996         << PrettyDuration(NanoTime() - start_time);
997     runtime->GetThreadList()->ResumeAll();
998   }
999   // Do a heap trim if it is needed.
1000   Trim();
1001 }
1002 
1003 class TrimIndirectReferenceTableClosure : public Closure {
1004  public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1005   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1006   }
Run(Thread * thread)1007   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1008     ATRACE_BEGIN("Trimming reference table");
1009     thread->GetJniEnv()->locals.Trim();
1010     ATRACE_END();
1011     barrier_->Pass(Thread::Current());
1012   }
1013 
1014  private:
1015   Barrier* const barrier_;
1016 };
1017 
1018 
Trim()1019 void Heap::Trim() {
1020   Thread* self = Thread::Current();
1021   {
1022     MutexLock mu(self, *heap_trim_request_lock_);
1023     if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
1024       return;
1025     }
1026     last_trim_time_ = NanoTime();
1027     heap_trim_request_pending_ = false;
1028   }
1029   {
1030     // Need to do this before acquiring the locks since we don't want to get suspended while
1031     // holding any locks.
1032     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1033     // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1034     // trimming.
1035     MutexLock mu(self, *gc_complete_lock_);
1036     // Ensure there is only one GC at a time.
1037     WaitForGcToCompleteLocked(kGcCauseTrim, self);
1038     collector_type_running_ = kCollectorTypeHeapTrim;
1039   }
1040   // Trim reference tables.
1041   {
1042     ScopedObjectAccess soa(self);
1043     JavaVMExt* vm = soa.Vm();
1044     // Trim globals indirect reference table.
1045     {
1046       WriterMutexLock mu(self, vm->globals_lock);
1047       vm->globals.Trim();
1048     }
1049     // Trim locals indirect reference tables.
1050     Barrier barrier(0);
1051     TrimIndirectReferenceTableClosure closure(&barrier);
1052     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1053     size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1054     barrier.Increment(self, barrier_count);
1055   }
1056   uint64_t start_ns = NanoTime();
1057   // Trim the managed spaces.
1058   uint64_t total_alloc_space_allocated = 0;
1059   uint64_t total_alloc_space_size = 0;
1060   uint64_t managed_reclaimed = 0;
1061   for (const auto& space : continuous_spaces_) {
1062     if (space->IsMallocSpace()) {
1063       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1064       if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1065         // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1066         // for a long period of time.
1067         managed_reclaimed += malloc_space->Trim();
1068       }
1069       total_alloc_space_size += malloc_space->Size();
1070     }
1071   }
1072   total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
1073   if (bump_pointer_space_ != nullptr) {
1074     total_alloc_space_allocated -= bump_pointer_space_->Size();
1075   }
1076   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1077       static_cast<float>(total_alloc_space_size);
1078   uint64_t gc_heap_end_ns = NanoTime();
1079   // We never move things in the native heap, so we can finish the GC at this point.
1080   FinishGC(self, collector::kGcTypeNone);
1081   size_t native_reclaimed = 0;
1082   // Only trim the native heap if we don't care about pauses.
1083   if (!CareAboutPauseTimes()) {
1084 #if defined(USE_DLMALLOC)
1085     // Trim the native heap.
1086     dlmalloc_trim(0);
1087     dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1088 #elif defined(USE_JEMALLOC)
1089     // Jemalloc does it's own internal trimming.
1090 #else
1091     UNIMPLEMENTED(WARNING) << "Add trimming support";
1092 #endif
1093   }
1094   uint64_t end_ns = NanoTime();
1095   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1096       << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1097       << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1098       << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1099       << "%.";
1100 }
1101 
IsValidObjectAddress(const mirror::Object * obj) const1102 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1103   // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1104   // taking the lock.
1105   if (obj == nullptr) {
1106     return true;
1107   }
1108   return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1109 }
1110 
IsNonDiscontinuousSpaceHeapAddress(const mirror::Object * obj) const1111 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1112   return FindContinuousSpaceFromObject(obj, true) != nullptr;
1113 }
1114 
IsValidContinuousSpaceObjectAddress(const mirror::Object * obj) const1115 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1116   if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1117     return false;
1118   }
1119   for (const auto& space : continuous_spaces_) {
1120     if (space->HasAddress(obj)) {
1121       return true;
1122     }
1123   }
1124   return false;
1125 }
1126 
IsLiveObjectLocked(mirror::Object * obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1127 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1128                               bool search_live_stack, bool sorted) {
1129   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1130     return false;
1131   }
1132   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1133     mirror::Class* klass = obj->GetClass<kVerifyNone>();
1134     if (obj == klass) {
1135       // This case happens for java.lang.Class.
1136       return true;
1137     }
1138     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1139   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1140     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1141     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1142     return temp_space_->Contains(obj);
1143   }
1144   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1145   space::DiscontinuousSpace* d_space = nullptr;
1146   if (c_space != nullptr) {
1147     if (c_space->GetLiveBitmap()->Test(obj)) {
1148       return true;
1149     }
1150   } else {
1151     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1152     if (d_space != nullptr) {
1153       if (d_space->GetLiveBitmap()->Test(obj)) {
1154         return true;
1155       }
1156     }
1157   }
1158   // This is covering the allocation/live stack swapping that is done without mutators suspended.
1159   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1160     if (i > 0) {
1161       NanoSleep(MsToNs(10));
1162     }
1163     if (search_allocation_stack) {
1164       if (sorted) {
1165         if (allocation_stack_->ContainsSorted(obj)) {
1166           return true;
1167         }
1168       } else if (allocation_stack_->Contains(obj)) {
1169         return true;
1170       }
1171     }
1172 
1173     if (search_live_stack) {
1174       if (sorted) {
1175         if (live_stack_->ContainsSorted(obj)) {
1176           return true;
1177         }
1178       } else if (live_stack_->Contains(obj)) {
1179         return true;
1180       }
1181     }
1182   }
1183   // We need to check the bitmaps again since there is a race where we mark something as live and
1184   // then clear the stack containing it.
1185   if (c_space != nullptr) {
1186     if (c_space->GetLiveBitmap()->Test(obj)) {
1187       return true;
1188     }
1189   } else {
1190     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1191     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1192       return true;
1193     }
1194   }
1195   return false;
1196 }
1197 
DumpSpaces() const1198 std::string Heap::DumpSpaces() const {
1199   std::ostringstream oss;
1200   DumpSpaces(oss);
1201   return oss.str();
1202 }
1203 
DumpSpaces(std::ostream & stream) const1204 void Heap::DumpSpaces(std::ostream& stream) const {
1205   for (const auto& space : continuous_spaces_) {
1206     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1207     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1208     stream << space << " " << *space << "\n";
1209     if (live_bitmap != nullptr) {
1210       stream << live_bitmap << " " << *live_bitmap << "\n";
1211     }
1212     if (mark_bitmap != nullptr) {
1213       stream << mark_bitmap << " " << *mark_bitmap << "\n";
1214     }
1215   }
1216   for (const auto& space : discontinuous_spaces_) {
1217     stream << space << " " << *space << "\n";
1218   }
1219 }
1220 
VerifyObjectBody(mirror::Object * obj)1221 void Heap::VerifyObjectBody(mirror::Object* obj) {
1222   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1223     return;
1224   }
1225 
1226   // Ignore early dawn of the universe verifications.
1227   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1228     return;
1229   }
1230   CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1231   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1232   CHECK(c != nullptr) << "Null class in object " << obj;
1233   CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1234   CHECK(VerifyClassClass(c));
1235 
1236   if (verify_object_mode_ > kVerifyObjectModeFast) {
1237     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1238     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1239   }
1240 }
1241 
VerificationCallback(mirror::Object * obj,void * arg)1242 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1243   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1244 }
1245 
VerifyHeap()1246 void Heap::VerifyHeap() {
1247   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1248   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1249 }
1250 
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1251 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1252   // Use signed comparison since freed bytes can be negative when background compaction foreground
1253   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1254   // free list backed space typically increasing memory footprint due to padding and binning.
1255   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1256   // Note: This relies on 2s complement for handling negative freed_bytes.
1257   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1258   if (Runtime::Current()->HasStatsEnabled()) {
1259     RuntimeStats* thread_stats = Thread::Current()->GetStats();
1260     thread_stats->freed_objects += freed_objects;
1261     thread_stats->freed_bytes += freed_bytes;
1262     // TODO: Do this concurrently.
1263     RuntimeStats* global_stats = Runtime::Current()->GetStats();
1264     global_stats->freed_objects += freed_objects;
1265     global_stats->freed_bytes += freed_bytes;
1266   }
1267 }
1268 
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1269 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1270   for (const auto& space : continuous_spaces_) {
1271     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1272       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1273         return space->AsContinuousSpace()->AsRosAllocSpace();
1274       }
1275     }
1276   }
1277   return nullptr;
1278 }
1279 
AllocateInternalWithGc(Thread * self,AllocatorType allocator,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,mirror::Class ** klass)1280 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1281                                              size_t alloc_size, size_t* bytes_allocated,
1282                                              size_t* usable_size,
1283                                              mirror::Class** klass) {
1284   bool was_default_allocator = allocator == GetCurrentAllocator();
1285   // Make sure there is no pending exception since we may need to throw an OOME.
1286   self->AssertNoPendingException();
1287   DCHECK(klass != nullptr);
1288   StackHandleScope<1> hs(self);
1289   HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1290   klass = nullptr;  // Invalidate for safety.
1291   // The allocation failed. If the GC is running, block until it completes, and then retry the
1292   // allocation.
1293   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1294   if (last_gc != collector::kGcTypeNone) {
1295     // If we were the default allocator but the allocator changed while we were suspended,
1296     // abort the allocation.
1297     if (was_default_allocator && allocator != GetCurrentAllocator()) {
1298       return nullptr;
1299     }
1300     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1301     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1302                                                      usable_size);
1303     if (ptr != nullptr) {
1304       return ptr;
1305     }
1306   }
1307 
1308   collector::GcType tried_type = next_gc_type_;
1309   const bool gc_ran =
1310       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1311   if (was_default_allocator && allocator != GetCurrentAllocator()) {
1312     return nullptr;
1313   }
1314   if (gc_ran) {
1315     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1316                                                      usable_size);
1317     if (ptr != nullptr) {
1318       return ptr;
1319     }
1320   }
1321 
1322   // Loop through our different Gc types and try to Gc until we get enough free memory.
1323   for (collector::GcType gc_type : gc_plan_) {
1324     if (gc_type == tried_type) {
1325       continue;
1326     }
1327     // Attempt to run the collector, if we succeed, re-try the allocation.
1328     const bool gc_ran =
1329         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1330     if (was_default_allocator && allocator != GetCurrentAllocator()) {
1331       return nullptr;
1332     }
1333     if (gc_ran) {
1334       // Did we free sufficient memory for the allocation to succeed?
1335       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1336                                                        usable_size);
1337       if (ptr != nullptr) {
1338         return ptr;
1339       }
1340     }
1341   }
1342   // Allocations have failed after GCs;  this is an exceptional state.
1343   // Try harder, growing the heap if necessary.
1344   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1345                                                   usable_size);
1346   if (ptr != nullptr) {
1347     return ptr;
1348   }
1349   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1350   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1351   // VM spec requires that all SoftReferences have been collected and cleared before throwing
1352   // OOME.
1353   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1354            << " allocation";
1355   // TODO: Run finalization, but this may cause more allocations to occur.
1356   // We don't need a WaitForGcToComplete here either.
1357   DCHECK(!gc_plan_.empty());
1358   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1359   if (was_default_allocator && allocator != GetCurrentAllocator()) {
1360     return nullptr;
1361   }
1362   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1363   if (ptr == nullptr) {
1364     const uint64_t current_time = NanoTime();
1365     switch (allocator) {
1366       case kAllocatorTypeRosAlloc:
1367         // Fall-through.
1368       case kAllocatorTypeDlMalloc: {
1369         if (use_homogeneous_space_compaction_for_oom_ &&
1370             current_time - last_time_homogeneous_space_compaction_by_oom_ >
1371             min_interval_homogeneous_space_compaction_by_oom_) {
1372           last_time_homogeneous_space_compaction_by_oom_ = current_time;
1373           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1374           switch (result) {
1375             case HomogeneousSpaceCompactResult::kSuccess:
1376               // If the allocation succeeded, we delayed an oom.
1377               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1378                                               usable_size);
1379               if (ptr != nullptr) {
1380                 count_delayed_oom_++;
1381               }
1382               break;
1383             case HomogeneousSpaceCompactResult::kErrorReject:
1384               // Reject due to disabled moving GC.
1385               break;
1386             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1387               // Throw OOM by default.
1388               break;
1389             default: {
1390               LOG(FATAL) << "Unimplemented homogeneous space compaction result "
1391                          << static_cast<size_t>(result);
1392             }
1393           }
1394           // Always print that we ran homogeneous space compation since this can cause jank.
1395           VLOG(heap) << "Ran heap homogeneous space compaction, "
1396                     << " requested defragmentation "
1397                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1398                     << " performed defragmentation "
1399                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1400                     << " ignored homogeneous space compaction "
1401                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1402                     << " delayed count = "
1403                     << count_delayed_oom_.LoadSequentiallyConsistent();
1404         }
1405         break;
1406       }
1407       case kAllocatorTypeNonMoving: {
1408         // Try to transition the heap if the allocation failure was due to the space being full.
1409         if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1410           // If we aren't out of memory then the OOM was probably from the non moving space being
1411           // full. Attempt to disable compaction and turn the main space into a non moving space.
1412           DisableMovingGc();
1413           // If we are still a moving GC then something must have caused the transition to fail.
1414           if (IsMovingGc(collector_type_)) {
1415             MutexLock mu(self, *gc_complete_lock_);
1416             // If we couldn't disable moving GC, just throw OOME and return null.
1417             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1418                          << disable_moving_gc_count_;
1419           } else {
1420             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1421             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1422                                             usable_size);
1423           }
1424         }
1425         break;
1426       }
1427       default: {
1428         // Do nothing for others allocators.
1429       }
1430     }
1431   }
1432   // If the allocation hasn't succeeded by this point, throw an OOM error.
1433   if (ptr == nullptr) {
1434     ThrowOutOfMemoryError(self, alloc_size, allocator);
1435   }
1436   return ptr;
1437 }
1438 
SetTargetHeapUtilization(float target)1439 void Heap::SetTargetHeapUtilization(float target) {
1440   DCHECK_GT(target, 0.0f);  // asserted in Java code
1441   DCHECK_LT(target, 1.0f);
1442   target_utilization_ = target;
1443 }
1444 
GetObjectsAllocated() const1445 size_t Heap::GetObjectsAllocated() const {
1446   size_t total = 0;
1447   for (space::AllocSpace* space : alloc_spaces_) {
1448     total += space->GetObjectsAllocated();
1449   }
1450   return total;
1451 }
1452 
GetObjectsAllocatedEver() const1453 uint64_t Heap::GetObjectsAllocatedEver() const {
1454   return GetObjectsFreedEver() + GetObjectsAllocated();
1455 }
1456 
GetBytesAllocatedEver() const1457 uint64_t Heap::GetBytesAllocatedEver() const {
1458   return GetBytesFreedEver() + GetBytesAllocated();
1459 }
1460 
1461 class InstanceCounter {
1462  public:
InstanceCounter(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1463   InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1464       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1465       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1466   }
Callback(mirror::Object * obj,void * arg)1467   static void Callback(mirror::Object* obj, void* arg)
1468       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1469     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1470     mirror::Class* instance_class = obj->GetClass();
1471     CHECK(instance_class != nullptr);
1472     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1473       if (instance_counter->use_is_assignable_from_) {
1474         if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1475           ++instance_counter->counts_[i];
1476         }
1477       } else if (instance_class == instance_counter->classes_[i]) {
1478         ++instance_counter->counts_[i];
1479       }
1480     }
1481   }
1482 
1483  private:
1484   const std::vector<mirror::Class*>& classes_;
1485   bool use_is_assignable_from_;
1486   uint64_t* const counts_;
1487   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1488 };
1489 
CountInstances(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1490 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1491                           uint64_t* counts) {
1492   // Can't do any GC in this function since this may move classes.
1493   Thread* self = Thread::Current();
1494   auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1495   InstanceCounter counter(classes, use_is_assignable_from, counts);
1496   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1497   VisitObjects(InstanceCounter::Callback, &counter);
1498   self->EndAssertNoThreadSuspension(old_cause);
1499 }
1500 
1501 class InstanceCollector {
1502  public:
InstanceCollector(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1503   InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1504       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1505       : class_(c), max_count_(max_count), instances_(instances) {
1506   }
Callback(mirror::Object * obj,void * arg)1507   static void Callback(mirror::Object* obj, void* arg)
1508       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1509     DCHECK(arg != nullptr);
1510     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1511     mirror::Class* instance_class = obj->GetClass();
1512     if (instance_class == instance_collector->class_) {
1513       if (instance_collector->max_count_ == 0 ||
1514           instance_collector->instances_.size() < instance_collector->max_count_) {
1515         instance_collector->instances_.push_back(obj);
1516       }
1517     }
1518   }
1519 
1520  private:
1521   mirror::Class* class_;
1522   uint32_t max_count_;
1523   std::vector<mirror::Object*>& instances_;
1524   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1525 };
1526 
GetInstances(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1527 void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1528                         std::vector<mirror::Object*>& instances) {
1529   // Can't do any GC in this function since this may move classes.
1530   Thread* self = Thread::Current();
1531   auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1532   InstanceCollector collector(c, max_count, instances);
1533   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1534   VisitObjects(&InstanceCollector::Callback, &collector);
1535   self->EndAssertNoThreadSuspension(old_cause);
1536 }
1537 
1538 class ReferringObjectsFinder {
1539  public:
ReferringObjectsFinder(mirror::Object * object,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1540   ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1541                          std::vector<mirror::Object*>& referring_objects)
1542       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1543       : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1544   }
1545 
Callback(mirror::Object * obj,void * arg)1546   static void Callback(mirror::Object* obj, void* arg)
1547       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1548     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1549   }
1550 
1551   // For bitmap Visit.
1552   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1553   // annotalysis on visitors.
operator ()(mirror::Object * o) const1554   void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1555     o->VisitReferences<true>(*this, VoidFunctor());
1556   }
1557 
1558   // For Object::VisitReferences.
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1559   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1560       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1561     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1562     if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1563       referring_objects_.push_back(obj);
1564     }
1565   }
1566 
1567  private:
1568   mirror::Object* object_;
1569   uint32_t max_count_;
1570   std::vector<mirror::Object*>& referring_objects_;
1571   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1572 };
1573 
GetReferringObjects(mirror::Object * o,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1574 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1575                                std::vector<mirror::Object*>& referring_objects) {
1576   // Can't do any GC in this function since this may move the object o.
1577   Thread* self = Thread::Current();
1578   auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1579   ReferringObjectsFinder finder(o, max_count, referring_objects);
1580   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1581   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1582   self->EndAssertNoThreadSuspension(old_cause);
1583 }
1584 
CollectGarbage(bool clear_soft_references)1585 void Heap::CollectGarbage(bool clear_soft_references) {
1586   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1587   // last GC will not have necessarily been cleared.
1588   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1589 }
1590 
PerformHomogeneousSpaceCompact()1591 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1592   Thread* self = Thread::Current();
1593   // Inc requested homogeneous space compaction.
1594   count_requested_homogeneous_space_compaction_++;
1595   // Store performed homogeneous space compaction at a new request arrival.
1596   ThreadList* tl = Runtime::Current()->GetThreadList();
1597   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1598   Locks::mutator_lock_->AssertNotHeld(self);
1599   {
1600     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1601     MutexLock mu(self, *gc_complete_lock_);
1602     // Ensure there is only one GC at a time.
1603     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1604     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1605     // is non zero.
1606     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1607     // exit.
1608     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1609         !main_space_->CanMoveObjects()) {
1610       return HomogeneousSpaceCompactResult::kErrorReject;
1611     }
1612     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1613   }
1614   if (Runtime::Current()->IsShuttingDown(self)) {
1615     // Don't allow heap transitions to happen if the runtime is shutting down since these can
1616     // cause objects to get finalized.
1617     FinishGC(self, collector::kGcTypeNone);
1618     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1619   }
1620   // Suspend all threads.
1621   tl->SuspendAll();
1622   uint64_t start_time = NanoTime();
1623   // Launch compaction.
1624   space::MallocSpace* to_space = main_space_backup_.release();
1625   space::MallocSpace* from_space = main_space_;
1626   to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1627   const uint64_t space_size_before_compaction = from_space->Size();
1628   AddSpace(to_space);
1629   // Make sure that we will have enough room to copy.
1630   CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1631   Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1632   // Leave as prot read so that we can still run ROSAlloc verification on this space.
1633   from_space->GetMemMap()->Protect(PROT_READ);
1634   const uint64_t space_size_after_compaction = to_space->Size();
1635   main_space_ = to_space;
1636   main_space_backup_.reset(from_space);
1637   RemoveSpace(from_space);
1638   SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1639   // Update performed homogeneous space compaction count.
1640   count_performed_homogeneous_space_compaction_++;
1641   // Print statics log and resume all threads.
1642   uint64_t duration = NanoTime() - start_time;
1643   VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1644              << PrettySize(space_size_before_compaction) << " -> "
1645              << PrettySize(space_size_after_compaction) << " compact-ratio: "
1646              << std::fixed << static_cast<double>(space_size_after_compaction) /
1647              static_cast<double>(space_size_before_compaction);
1648   tl->ResumeAll();
1649   // Finish GC.
1650   reference_processor_.EnqueueClearedReferences(self);
1651   GrowForUtilization(semi_space_collector_);
1652   FinishGC(self, collector::kGcTypeFull);
1653   return HomogeneousSpaceCompactResult::kSuccess;
1654 }
1655 
1656 
TransitionCollector(CollectorType collector_type)1657 void Heap::TransitionCollector(CollectorType collector_type) {
1658   if (collector_type == collector_type_) {
1659     return;
1660   }
1661   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1662              << " -> " << static_cast<int>(collector_type);
1663   uint64_t start_time = NanoTime();
1664   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1665   Runtime* const runtime = Runtime::Current();
1666   ThreadList* const tl = runtime->GetThreadList();
1667   Thread* const self = Thread::Current();
1668   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1669   Locks::mutator_lock_->AssertNotHeld(self);
1670   // Busy wait until we can GC (StartGC can fail if we have a non-zero
1671   // compacting_gc_disable_count_, this should rarely occurs).
1672   for (;;) {
1673     {
1674       ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1675       MutexLock mu(self, *gc_complete_lock_);
1676       // Ensure there is only one GC at a time.
1677       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1678       // Currently we only need a heap transition if we switch from a moving collector to a
1679       // non-moving one, or visa versa.
1680       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1681       // If someone else beat us to it and changed the collector before we could, exit.
1682       // This is safe to do before the suspend all since we set the collector_type_running_ before
1683       // we exit the loop. If another thread attempts to do the heap transition before we exit,
1684       // then it would get blocked on WaitForGcToCompleteLocked.
1685       if (collector_type == collector_type_) {
1686         return;
1687       }
1688       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1689       if (!copying_transition || disable_moving_gc_count_ == 0) {
1690         // TODO: Not hard code in semi-space collector?
1691         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1692         break;
1693       }
1694     }
1695     usleep(1000);
1696   }
1697   if (runtime->IsShuttingDown(self)) {
1698     // Don't allow heap transitions to happen if the runtime is shutting down since these can
1699     // cause objects to get finalized.
1700     FinishGC(self, collector::kGcTypeNone);
1701     return;
1702   }
1703   tl->SuspendAll();
1704   switch (collector_type) {
1705     case kCollectorTypeSS: {
1706       if (!IsMovingGc(collector_type_)) {
1707         // Create the bump pointer space from the backup space.
1708         CHECK(main_space_backup_ != nullptr);
1709         std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1710         // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1711         // pointer space last transition it will be protected.
1712         CHECK(mem_map != nullptr);
1713         mem_map->Protect(PROT_READ | PROT_WRITE);
1714         bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1715                                                                         mem_map.release());
1716         AddSpace(bump_pointer_space_);
1717         Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1718         // Use the now empty main space mem map for the bump pointer temp space.
1719         mem_map.reset(main_space_->ReleaseMemMap());
1720         // Unset the pointers just in case.
1721         if (dlmalloc_space_ == main_space_) {
1722           dlmalloc_space_ = nullptr;
1723         } else if (rosalloc_space_ == main_space_) {
1724           rosalloc_space_ = nullptr;
1725         }
1726         // Remove the main space so that we don't try to trim it, this doens't work for debug
1727         // builds since RosAlloc attempts to read the magic number from a protected page.
1728         RemoveSpace(main_space_);
1729         RemoveRememberedSet(main_space_);
1730         delete main_space_;  // Delete the space since it has been removed.
1731         main_space_ = nullptr;
1732         RemoveRememberedSet(main_space_backup_.get());
1733         main_space_backup_.reset(nullptr);  // Deletes the space.
1734         temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1735                                                                 mem_map.release());
1736         AddSpace(temp_space_);
1737       }
1738       break;
1739     }
1740     case kCollectorTypeMS:
1741       // Fall through.
1742     case kCollectorTypeCMS: {
1743       if (IsMovingGc(collector_type_)) {
1744         CHECK(temp_space_ != nullptr);
1745         std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1746         RemoveSpace(temp_space_);
1747         temp_space_ = nullptr;
1748         mem_map->Protect(PROT_READ | PROT_WRITE);
1749         CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1750                               std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1751         mem_map.release();
1752         // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1753         AddSpace(main_space_);
1754         Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1755         mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1756         RemoveSpace(bump_pointer_space_);
1757         bump_pointer_space_ = nullptr;
1758         const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1759         // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1760         if (kIsDebugBuild && kUseRosAlloc) {
1761           mem_map->Protect(PROT_READ | PROT_WRITE);
1762         }
1763         main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1764             mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1765             mem_map->Size(), name, true));
1766         if (kIsDebugBuild && kUseRosAlloc) {
1767           mem_map->Protect(PROT_NONE);
1768         }
1769         mem_map.release();
1770       }
1771       break;
1772     }
1773     default: {
1774       LOG(FATAL) << "Attempted to transition to invalid collector type "
1775                  << static_cast<size_t>(collector_type);
1776       break;
1777     }
1778   }
1779   ChangeCollector(collector_type);
1780   tl->ResumeAll();
1781   // Can't call into java code with all threads suspended.
1782   reference_processor_.EnqueueClearedReferences(self);
1783   uint64_t duration = NanoTime() - start_time;
1784   GrowForUtilization(semi_space_collector_);
1785   FinishGC(self, collector::kGcTypeFull);
1786   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1787   int32_t delta_allocated = before_allocated - after_allocated;
1788   std::string saved_str;
1789   if (delta_allocated >= 0) {
1790     saved_str = " saved at least " + PrettySize(delta_allocated);
1791   } else {
1792     saved_str = " expanded " + PrettySize(-delta_allocated);
1793   }
1794   VLOG(heap) << "Heap transition to " << process_state_ << " took "
1795       << PrettyDuration(duration) << saved_str;
1796 }
1797 
ChangeCollector(CollectorType collector_type)1798 void Heap::ChangeCollector(CollectorType collector_type) {
1799   // TODO: Only do this with all mutators suspended to avoid races.
1800   if (collector_type != collector_type_) {
1801     if (collector_type == kCollectorTypeMC) {
1802       // Don't allow mark compact unless support is compiled in.
1803       CHECK(kMarkCompactSupport);
1804     }
1805     collector_type_ = collector_type;
1806     gc_plan_.clear();
1807     switch (collector_type_) {
1808       case kCollectorTypeCC:  // Fall-through.
1809       case kCollectorTypeMC:  // Fall-through.
1810       case kCollectorTypeSS:  // Fall-through.
1811       case kCollectorTypeGSS: {
1812         gc_plan_.push_back(collector::kGcTypeFull);
1813         if (use_tlab_) {
1814           ChangeAllocator(kAllocatorTypeTLAB);
1815         } else {
1816           ChangeAllocator(kAllocatorTypeBumpPointer);
1817         }
1818         break;
1819       }
1820       case kCollectorTypeMS: {
1821         gc_plan_.push_back(collector::kGcTypeSticky);
1822         gc_plan_.push_back(collector::kGcTypePartial);
1823         gc_plan_.push_back(collector::kGcTypeFull);
1824         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1825         break;
1826       }
1827       case kCollectorTypeCMS: {
1828         gc_plan_.push_back(collector::kGcTypeSticky);
1829         gc_plan_.push_back(collector::kGcTypePartial);
1830         gc_plan_.push_back(collector::kGcTypeFull);
1831         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1832         break;
1833       }
1834       default: {
1835         LOG(FATAL) << "Unimplemented";
1836       }
1837     }
1838     if (IsGcConcurrent()) {
1839       concurrent_start_bytes_ =
1840           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1841     } else {
1842       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1843     }
1844   }
1845 }
1846 
1847 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1848 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1849  public:
ZygoteCompactingCollector(gc::Heap * heap)1850   explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1851       bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1852   }
1853 
BuildBins(space::ContinuousSpace * space)1854   void BuildBins(space::ContinuousSpace* space) {
1855     bin_live_bitmap_ = space->GetLiveBitmap();
1856     bin_mark_bitmap_ = space->GetMarkBitmap();
1857     BinContext context;
1858     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1859     context.collector_ = this;
1860     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1861     // Note: This requires traversing the space in increasing order of object addresses.
1862     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1863     // Add the last bin which spans after the last object to the end of the space.
1864     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1865   }
1866 
1867  private:
1868   struct BinContext {
1869     uintptr_t prev_;  // The end of the previous object.
1870     ZygoteCompactingCollector* collector_;
1871   };
1872   // Maps from bin sizes to locations.
1873   std::multimap<size_t, uintptr_t> bins_;
1874   // Live bitmap of the space which contains the bins.
1875   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1876   // Mark bitmap of the space which contains the bins.
1877   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1878 
Callback(mirror::Object * obj,void * arg)1879   static void Callback(mirror::Object* obj, void* arg)
1880       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1881     DCHECK(arg != nullptr);
1882     BinContext* context = reinterpret_cast<BinContext*>(arg);
1883     ZygoteCompactingCollector* collector = context->collector_;
1884     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1885     size_t bin_size = object_addr - context->prev_;
1886     // Add the bin consisting of the end of the previous object to the start of the current object.
1887     collector->AddBin(bin_size, context->prev_);
1888     context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1889   }
1890 
AddBin(size_t size,uintptr_t position)1891   void AddBin(size_t size, uintptr_t position) {
1892     if (size != 0) {
1893       bins_.insert(std::make_pair(size, position));
1894     }
1895   }
1896 
ShouldSweepSpace(space::ContinuousSpace * space) const1897   virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1898     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1899     // allocator.
1900     return false;
1901   }
1902 
MarkNonForwardedObject(mirror::Object * obj)1903   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1904       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1905     size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1906     mirror::Object* forward_address;
1907     // Find the smallest bin which we can move obj in.
1908     auto it = bins_.lower_bound(object_size);
1909     if (it == bins_.end()) {
1910       // No available space in the bins, place it in the target space instead (grows the zygote
1911       // space).
1912       size_t bytes_allocated;
1913       forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1914       if (to_space_live_bitmap_ != nullptr) {
1915         to_space_live_bitmap_->Set(forward_address);
1916       } else {
1917         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1918         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1919       }
1920     } else {
1921       size_t size = it->first;
1922       uintptr_t pos = it->second;
1923       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1924       forward_address = reinterpret_cast<mirror::Object*>(pos);
1925       // Set the live and mark bits so that sweeping system weaks works properly.
1926       bin_live_bitmap_->Set(forward_address);
1927       bin_mark_bitmap_->Set(forward_address);
1928       DCHECK_GE(size, object_size);
1929       AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1930     }
1931     // Copy the object over to its new location.
1932     memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1933     if (kUseBakerOrBrooksReadBarrier) {
1934       obj->AssertReadBarrierPointer();
1935       if (kUseBrooksReadBarrier) {
1936         DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1937         forward_address->SetReadBarrierPointer(forward_address);
1938       }
1939       forward_address->AssertReadBarrierPointer();
1940     }
1941     return forward_address;
1942   }
1943 };
1944 
UnBindBitmaps()1945 void Heap::UnBindBitmaps() {
1946   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1947   for (const auto& space : GetContinuousSpaces()) {
1948     if (space->IsContinuousMemMapAllocSpace()) {
1949       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1950       if (alloc_space->HasBoundBitmaps()) {
1951         alloc_space->UnBindBitmaps();
1952       }
1953     }
1954   }
1955 }
1956 
PreZygoteFork()1957 void Heap::PreZygoteFork() {
1958   CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1959   Thread* self = Thread::Current();
1960   MutexLock mu(self, zygote_creation_lock_);
1961   // Try to see if we have any Zygote spaces.
1962   if (have_zygote_space_) {
1963     return;
1964   }
1965   Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
1966   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
1967   VLOG(heap) << "Starting PreZygoteFork";
1968   // Trim the pages at the end of the non moving space.
1969   non_moving_space_->Trim();
1970   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1971   // there.
1972   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1973   const bool same_space = non_moving_space_ == main_space_;
1974   if (kCompactZygote) {
1975     // Can't compact if the non moving space is the same as the main space.
1976     DCHECK(semi_space_collector_ != nullptr);
1977     // Temporarily disable rosalloc verification because the zygote
1978     // compaction will mess up the rosalloc internal metadata.
1979     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1980     ZygoteCompactingCollector zygote_collector(this);
1981     zygote_collector.BuildBins(non_moving_space_);
1982     // Create a new bump pointer space which we will compact into.
1983     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1984                                          non_moving_space_->Limit());
1985     // Compact the bump pointer space to a new zygote bump pointer space.
1986     bool reset_main_space = false;
1987     if (IsMovingGc(collector_type_)) {
1988       zygote_collector.SetFromSpace(bump_pointer_space_);
1989     } else {
1990       CHECK(main_space_ != nullptr);
1991       // Copy from the main space.
1992       zygote_collector.SetFromSpace(main_space_);
1993       reset_main_space = true;
1994     }
1995     zygote_collector.SetToSpace(&target_space);
1996     zygote_collector.SetSwapSemiSpaces(false);
1997     zygote_collector.Run(kGcCauseCollectorTransition, false);
1998     if (reset_main_space) {
1999       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2000       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2001       MemMap* mem_map = main_space_->ReleaseMemMap();
2002       RemoveSpace(main_space_);
2003       space::Space* old_main_space = main_space_;
2004       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2005                             mem_map->Size());
2006       delete old_main_space;
2007       AddSpace(main_space_);
2008     } else {
2009       bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2010     }
2011     if (temp_space_ != nullptr) {
2012       CHECK(temp_space_->IsEmpty());
2013     }
2014     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2015     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2016     // Update the end and write out image.
2017     non_moving_space_->SetEnd(target_space.End());
2018     non_moving_space_->SetLimit(target_space.Limit());
2019     VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
2020   }
2021   // Change the collector to the post zygote one.
2022   ChangeCollector(foreground_collector_type_);
2023   // Save the old space so that we can remove it after we complete creating the zygote space.
2024   space::MallocSpace* old_alloc_space = non_moving_space_;
2025   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2026   // the remaining available space.
2027   // Remove the old space before creating the zygote space since creating the zygote space sets
2028   // the old alloc space's bitmaps to nullptr.
2029   RemoveSpace(old_alloc_space);
2030   if (collector::SemiSpace::kUseRememberedSet) {
2031     // Sanity bound check.
2032     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2033     // Remove the remembered set for the now zygote space (the old
2034     // non-moving space). Note now that we have compacted objects into
2035     // the zygote space, the data in the remembered set is no longer
2036     // needed. The zygote space will instead have a mod-union table
2037     // from this point on.
2038     RemoveRememberedSet(old_alloc_space);
2039   }
2040   // Remaining space becomes the new non moving space.
2041   space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName,
2042                                                                         low_memory_mode_,
2043                                                                         &non_moving_space_);
2044   CHECK(!non_moving_space_->CanMoveObjects());
2045   if (same_space) {
2046     main_space_ = non_moving_space_;
2047     SetSpaceAsDefault(main_space_);
2048   }
2049   delete old_alloc_space;
2050   CHECK(zygote_space != nullptr) << "Failed creating zygote space";
2051   AddSpace(zygote_space);
2052   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2053   AddSpace(non_moving_space_);
2054   have_zygote_space_ = true;
2055   // Enable large object space allocations.
2056   large_object_threshold_ = kDefaultLargeObjectThreshold;
2057   // Create the zygote space mod union table.
2058   accounting::ModUnionTable* mod_union_table =
2059       new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
2060   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2061   AddModUnionTable(mod_union_table);
2062   if (collector::SemiSpace::kUseRememberedSet) {
2063     // Add a new remembered set for the post-zygote non-moving space.
2064     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2065         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2066                                       non_moving_space_);
2067     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2068         << "Failed to create post-zygote non-moving space remembered set";
2069     AddRememberedSet(post_zygote_non_moving_space_rem_set);
2070   }
2071 }
2072 
FlushAllocStack()2073 void Heap::FlushAllocStack() {
2074   MarkAllocStackAsLive(allocation_stack_.get());
2075   allocation_stack_->Reset();
2076 }
2077 
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2078 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2079                           accounting::ContinuousSpaceBitmap* bitmap2,
2080                           accounting::LargeObjectBitmap* large_objects,
2081                           accounting::ObjectStack* stack) {
2082   DCHECK(bitmap1 != nullptr);
2083   DCHECK(bitmap2 != nullptr);
2084   mirror::Object** limit = stack->End();
2085   for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2086     const mirror::Object* obj = *it;
2087     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2088       if (bitmap1->HasAddress(obj)) {
2089         bitmap1->Set(obj);
2090       } else if (bitmap2->HasAddress(obj)) {
2091         bitmap2->Set(obj);
2092       } else {
2093         large_objects->Set(obj);
2094       }
2095     }
2096   }
2097 }
2098 
SwapSemiSpaces()2099 void Heap::SwapSemiSpaces() {
2100   CHECK(bump_pointer_space_ != nullptr);
2101   CHECK(temp_space_ != nullptr);
2102   std::swap(bump_pointer_space_, temp_space_);
2103 }
2104 
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2105 void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2106                    space::ContinuousMemMapAllocSpace* source_space,
2107                    GcCause gc_cause) {
2108   CHECK(kMovingCollector);
2109   if (target_space != source_space) {
2110     // Don't swap spaces since this isn't a typical semi space collection.
2111     semi_space_collector_->SetSwapSemiSpaces(false);
2112     semi_space_collector_->SetFromSpace(source_space);
2113     semi_space_collector_->SetToSpace(target_space);
2114     semi_space_collector_->Run(gc_cause, false);
2115   } else {
2116     CHECK(target_space->IsBumpPointerSpace())
2117         << "In-place compaction is only supported for bump pointer spaces";
2118     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2119     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2120   }
2121 }
2122 
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2123 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2124                                                bool clear_soft_references) {
2125   Thread* self = Thread::Current();
2126   Runtime* runtime = Runtime::Current();
2127   // If the heap can't run the GC, silently fail and return that no GC was run.
2128   switch (gc_type) {
2129     case collector::kGcTypePartial: {
2130       if (!have_zygote_space_) {
2131         return collector::kGcTypeNone;
2132       }
2133       break;
2134     }
2135     default: {
2136       // Other GC types don't have any special cases which makes them not runnable. The main case
2137       // here is full GC.
2138     }
2139   }
2140   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2141   Locks::mutator_lock_->AssertNotHeld(self);
2142   if (self->IsHandlingStackOverflow()) {
2143     LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2144   }
2145   bool compacting_gc;
2146   {
2147     gc_complete_lock_->AssertNotHeld(self);
2148     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2149     MutexLock mu(self, *gc_complete_lock_);
2150     // Ensure there is only one GC at a time.
2151     WaitForGcToCompleteLocked(gc_cause, self);
2152     compacting_gc = IsMovingGc(collector_type_);
2153     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2154     if (compacting_gc && disable_moving_gc_count_ != 0) {
2155       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2156       return collector::kGcTypeNone;
2157     }
2158     collector_type_running_ = collector_type_;
2159   }
2160 
2161   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2162     ++runtime->GetStats()->gc_for_alloc_count;
2163     ++self->GetStats()->gc_for_alloc_count;
2164   }
2165   uint64_t gc_start_time_ns = NanoTime();
2166   uint64_t gc_start_size = GetBytesAllocated();
2167   // Approximate allocation rate in bytes / second.
2168   uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2169   // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2170   if (LIKELY(ms_delta != 0)) {
2171     allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2172     ATRACE_INT("Allocation rate KB/s", allocation_rate_ / KB);
2173     VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2174   }
2175 
2176   DCHECK_LT(gc_type, collector::kGcTypeMax);
2177   DCHECK_NE(gc_type, collector::kGcTypeNone);
2178 
2179   collector::GarbageCollector* collector = nullptr;
2180   // TODO: Clean this up.
2181   if (compacting_gc) {
2182     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2183            current_allocator_ == kAllocatorTypeTLAB);
2184     switch (collector_type_) {
2185       case kCollectorTypeSS:
2186         // Fall-through.
2187       case kCollectorTypeGSS:
2188         semi_space_collector_->SetFromSpace(bump_pointer_space_);
2189         semi_space_collector_->SetToSpace(temp_space_);
2190         semi_space_collector_->SetSwapSemiSpaces(true);
2191         collector = semi_space_collector_;
2192         break;
2193       case kCollectorTypeCC:
2194         collector = concurrent_copying_collector_;
2195         break;
2196       case kCollectorTypeMC:
2197         mark_compact_collector_->SetSpace(bump_pointer_space_);
2198         collector = mark_compact_collector_;
2199         break;
2200       default:
2201         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2202     }
2203     if (collector != mark_compact_collector_) {
2204       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2205       CHECK(temp_space_->IsEmpty());
2206     }
2207     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2208   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2209       current_allocator_ == kAllocatorTypeDlMalloc) {
2210     collector = FindCollectorByGcType(gc_type);
2211   } else {
2212     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2213   }
2214   if (IsGcConcurrent()) {
2215     // Disable concurrent GC check so that we don't have spammy JNI requests.
2216     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2217     // calculated in the same thread so that there aren't any races that can cause it to become
2218     // permanantly disabled. b/17942071
2219     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2220   }
2221   CHECK(collector != nullptr)
2222       << "Could not find garbage collector with collector_type="
2223       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2224   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2225   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2226   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2227   RequestHeapTrim();
2228   // Enqueue cleared references.
2229   reference_processor_.EnqueueClearedReferences(self);
2230   // Grow the heap so that we know when to perform the next GC.
2231   GrowForUtilization(collector);
2232   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2233   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2234   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2235   // (mutator time blocked >= long_pause_log_threshold_).
2236   bool log_gc = gc_cause == kGcCauseExplicit;
2237   if (!log_gc && CareAboutPauseTimes()) {
2238     // GC for alloc pauses the allocating thread, so consider it as a pause.
2239     log_gc = duration > long_gc_log_threshold_ ||
2240         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2241     for (uint64_t pause : pause_times) {
2242       log_gc = log_gc || pause >= long_pause_log_threshold_;
2243     }
2244   }
2245   if (log_gc) {
2246     const size_t percent_free = GetPercentFree();
2247     const size_t current_heap_size = GetBytesAllocated();
2248     const size_t total_memory = GetTotalMemory();
2249     std::ostringstream pause_string;
2250     for (size_t i = 0; i < pause_times.size(); ++i) {
2251         pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2252                      << ((i != pause_times.size() - 1) ? "," : "");
2253     }
2254     LOG(INFO) << gc_cause << " " << collector->GetName()
2255               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2256               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2257               << current_gc_iteration_.GetFreedLargeObjects() << "("
2258               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2259               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2260               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2261               << " total " << PrettyDuration((duration / 1000) * 1000);
2262     VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2263   }
2264   FinishGC(self, gc_type);
2265   // Inform DDMS that a GC completed.
2266   Dbg::GcDidFinish();
2267   return gc_type;
2268 }
2269 
FinishGC(Thread * self,collector::GcType gc_type)2270 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2271   MutexLock mu(self, *gc_complete_lock_);
2272   collector_type_running_ = kCollectorTypeNone;
2273   if (gc_type != collector::kGcTypeNone) {
2274     last_gc_type_ = gc_type;
2275   }
2276   // Wake anyone who may have been waiting for the GC to complete.
2277   gc_complete_cond_->Broadcast(self);
2278 }
2279 
RootMatchesObjectVisitor(mirror::Object ** root,void * arg,const RootInfo &)2280 static void RootMatchesObjectVisitor(mirror::Object** root, void* arg,
2281                                      const RootInfo& /*root_info*/) {
2282   mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2283   if (*root == obj) {
2284     LOG(INFO) << "Object " << obj << " is a root";
2285   }
2286 }
2287 
2288 class ScanVisitor {
2289  public:
operator ()(const mirror::Object * obj) const2290   void operator()(const mirror::Object* obj) const {
2291     LOG(ERROR) << "Would have rescanned object " << obj;
2292   }
2293 };
2294 
2295 // Verify a reference from an object.
2296 class VerifyReferenceVisitor {
2297  public:
VerifyReferenceVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2298   explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2299       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2300       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2301 
GetFailureCount() const2302   size_t GetFailureCount() const {
2303     return fail_count_->LoadSequentiallyConsistent();
2304   }
2305 
operator ()(mirror::Class * klass,mirror::Reference * ref) const2306   void operator()(mirror::Class* klass, mirror::Reference* ref) const
2307       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2308     if (verify_referent_) {
2309       VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2310     }
2311   }
2312 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const2313   void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2314       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2315     VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2316   }
2317 
IsLive(mirror::Object * obj) const2318   bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2319     return heap_->IsLiveObjectLocked(obj, true, false, true);
2320   }
2321 
VerifyRootCallback(mirror::Object ** root,void * arg,const RootInfo & root_info)2322   static void VerifyRootCallback(mirror::Object** root, void* arg, const RootInfo& root_info)
2323       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2324     VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2325     if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2326       LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2327           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2328     }
2329   }
2330 
2331  private:
2332   // TODO: Fix the no thread safety analysis.
2333   // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2334   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2335       NO_THREAD_SAFETY_ANALYSIS {
2336     if (ref == nullptr || IsLive(ref)) {
2337       // Verify that the reference is live.
2338       return true;
2339     }
2340     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2341       // Print message on only on first failure to prevent spam.
2342       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2343     }
2344     if (obj != nullptr) {
2345       // Only do this part for non roots.
2346       accounting::CardTable* card_table = heap_->GetCardTable();
2347       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2348       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2349       byte* card_addr = card_table->CardFromAddr(obj);
2350       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2351                  << offset << "\n card value = " << static_cast<int>(*card_addr);
2352       if (heap_->IsValidObjectAddress(obj->GetClass())) {
2353         LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2354       } else {
2355         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2356       }
2357 
2358       // Attempt to find the class inside of the recently freed objects.
2359       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2360       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2361         space::MallocSpace* space = ref_space->AsMallocSpace();
2362         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2363         if (ref_class != nullptr) {
2364           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2365                      << PrettyClass(ref_class);
2366         } else {
2367           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2368         }
2369       }
2370 
2371       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2372           ref->GetClass()->IsClass()) {
2373         LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2374       } else {
2375         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2376                    << ") is not a valid heap address";
2377       }
2378 
2379       card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2380       void* cover_begin = card_table->AddrFromCard(card_addr);
2381       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2382           accounting::CardTable::kCardSize);
2383       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2384           << "-" << cover_end;
2385       accounting::ContinuousSpaceBitmap* bitmap =
2386           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2387 
2388       if (bitmap == nullptr) {
2389         LOG(ERROR) << "Object " << obj << " has no bitmap";
2390         if (!VerifyClassClass(obj->GetClass())) {
2391           LOG(ERROR) << "Object " << obj << " failed class verification!";
2392         }
2393       } else {
2394         // Print out how the object is live.
2395         if (bitmap->Test(obj)) {
2396           LOG(ERROR) << "Object " << obj << " found in live bitmap";
2397         }
2398         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2399           LOG(ERROR) << "Object " << obj << " found in allocation stack";
2400         }
2401         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2402           LOG(ERROR) << "Object " << obj << " found in live stack";
2403         }
2404         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2405           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2406         }
2407         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2408           LOG(ERROR) << "Ref " << ref << " found in live stack";
2409         }
2410         // Attempt to see if the card table missed the reference.
2411         ScanVisitor scan_visitor;
2412         byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2413         card_table->Scan(bitmap, byte_cover_begin,
2414                          byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2415       }
2416 
2417       // Search to see if any of the roots reference our object.
2418       void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2419       Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2420 
2421       // Search to see if any of the roots reference our reference.
2422       arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2423       Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2424     }
2425     return false;
2426   }
2427 
2428   Heap* const heap_;
2429   Atomic<size_t>* const fail_count_;
2430   const bool verify_referent_;
2431 };
2432 
2433 // Verify all references within an object, for use with HeapBitmap::Visit.
2434 class VerifyObjectVisitor {
2435  public:
VerifyObjectVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2436   explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2437       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2438   }
2439 
operator ()(mirror::Object * obj) const2440   void operator()(mirror::Object* obj) const
2441       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2442     // Note: we are verifying the references in obj but not obj itself, this is because obj must
2443     // be live or else how did we find it in the live bitmap?
2444     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2445     // The class doesn't count as a reference but we should verify it anyways.
2446     obj->VisitReferences<true>(visitor, visitor);
2447   }
2448 
VisitCallback(mirror::Object * obj,void * arg)2449   static void VisitCallback(mirror::Object* obj, void* arg)
2450       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2451     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2452     visitor->operator()(obj);
2453   }
2454 
GetFailureCount() const2455   size_t GetFailureCount() const {
2456     return fail_count_->LoadSequentiallyConsistent();
2457   }
2458 
2459  private:
2460   Heap* const heap_;
2461   Atomic<size_t>* const fail_count_;
2462   const bool verify_referent_;
2463 };
2464 
PushOnAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2465 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2466   // Slow path, the allocation stack push back must have already failed.
2467   DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2468   do {
2469     // TODO: Add handle VerifyObject.
2470     StackHandleScope<1> hs(self);
2471     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2472     // Push our object into the reserve region of the allocaiton stack. This is only required due
2473     // to heap verification requiring that roots are live (either in the live bitmap or in the
2474     // allocation stack).
2475     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2476     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2477   } while (!allocation_stack_->AtomicPushBack(*obj));
2478 }
2479 
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2480 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2481   // Slow path, the allocation stack push back must have already failed.
2482   DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2483   mirror::Object** start_address;
2484   mirror::Object** end_address;
2485   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2486                                             &end_address)) {
2487     // TODO: Add handle VerifyObject.
2488     StackHandleScope<1> hs(self);
2489     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2490     // Push our object into the reserve region of the allocaiton stack. This is only required due
2491     // to heap verification requiring that roots are live (either in the live bitmap or in the
2492     // allocation stack).
2493     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2494     // Push into the reserve allocation stack.
2495     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2496   }
2497   self->SetThreadLocalAllocationStack(start_address, end_address);
2498   // Retry on the new thread-local allocation stack.
2499   CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2500 }
2501 
2502 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)2503 size_t Heap::VerifyHeapReferences(bool verify_referents) {
2504   Thread* self = Thread::Current();
2505   Locks::mutator_lock_->AssertExclusiveHeld(self);
2506   // Lets sort our allocation stacks so that we can efficiently binary search them.
2507   allocation_stack_->Sort();
2508   live_stack_->Sort();
2509   // Since we sorted the allocation stack content, need to revoke all
2510   // thread-local allocation stacks.
2511   RevokeAllThreadLocalAllocationStacks(self);
2512   Atomic<size_t> fail_count_(0);
2513   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2514   // Verify objects in the allocation stack since these will be objects which were:
2515   // 1. Allocated prior to the GC (pre GC verification).
2516   // 2. Allocated during the GC (pre sweep GC verification).
2517   // We don't want to verify the objects in the live stack since they themselves may be
2518   // pointing to dead objects if they are not reachable.
2519   VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2520   // Verify the roots:
2521   Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2522   if (visitor.GetFailureCount() > 0) {
2523     // Dump mod-union tables.
2524     for (const auto& table_pair : mod_union_tables_) {
2525       accounting::ModUnionTable* mod_union_table = table_pair.second;
2526       mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2527     }
2528     // Dump remembered sets.
2529     for (const auto& table_pair : remembered_sets_) {
2530       accounting::RememberedSet* remembered_set = table_pair.second;
2531       remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2532     }
2533     DumpSpaces(LOG(ERROR));
2534   }
2535   return visitor.GetFailureCount();
2536 }
2537 
2538 class VerifyReferenceCardVisitor {
2539  public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)2540   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2541       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2542                             Locks::heap_bitmap_lock_)
2543       : heap_(heap), failed_(failed) {
2544   }
2545 
2546   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2547   // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const2548   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2549       NO_THREAD_SAFETY_ANALYSIS {
2550     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2551     // Filter out class references since changing an object's class does not mark the card as dirty.
2552     // Also handles large objects, since the only reference they hold is a class reference.
2553     if (ref != nullptr && !ref->IsClass()) {
2554       accounting::CardTable* card_table = heap_->GetCardTable();
2555       // If the object is not dirty and it is referencing something in the live stack other than
2556       // class, then it must be on a dirty card.
2557       if (!card_table->AddrIsInCardTable(obj)) {
2558         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2559         *failed_ = true;
2560       } else if (!card_table->IsDirty(obj)) {
2561         // TODO: Check mod-union tables.
2562         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2563         // kCardDirty - 1 if it didnt get touched since we aged it.
2564         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2565         if (live_stack->ContainsSorted(ref)) {
2566           if (live_stack->ContainsSorted(obj)) {
2567             LOG(ERROR) << "Object " << obj << " found in live stack";
2568           }
2569           if (heap_->GetLiveBitmap()->Test(obj)) {
2570             LOG(ERROR) << "Object " << obj << " found in live bitmap";
2571           }
2572           LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2573                     << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2574 
2575           // Print which field of the object is dead.
2576           if (!obj->IsObjectArray()) {
2577             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2578             CHECK(klass != NULL);
2579             mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2580                                                                       : klass->GetIFields();
2581             CHECK(fields != NULL);
2582             for (int32_t i = 0; i < fields->GetLength(); ++i) {
2583               mirror::ArtField* cur = fields->Get(i);
2584               if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2585                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2586                           << PrettyField(cur);
2587                 break;
2588               }
2589             }
2590           } else {
2591             mirror::ObjectArray<mirror::Object>* object_array =
2592                 obj->AsObjectArray<mirror::Object>();
2593             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2594               if (object_array->Get(i) == ref) {
2595                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2596               }
2597             }
2598           }
2599 
2600           *failed_ = true;
2601         }
2602       }
2603     }
2604   }
2605 
2606  private:
2607   Heap* const heap_;
2608   bool* const failed_;
2609 };
2610 
2611 class VerifyLiveStackReferences {
2612  public:
VerifyLiveStackReferences(Heap * heap)2613   explicit VerifyLiveStackReferences(Heap* heap)
2614       : heap_(heap),
2615         failed_(false) {}
2616 
operator ()(mirror::Object * obj) const2617   void operator()(mirror::Object* obj) const
2618       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2619     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2620     obj->VisitReferences<true>(visitor, VoidFunctor());
2621   }
2622 
Failed() const2623   bool Failed() const {
2624     return failed_;
2625   }
2626 
2627  private:
2628   Heap* const heap_;
2629   bool failed_;
2630 };
2631 
VerifyMissingCardMarks()2632 bool Heap::VerifyMissingCardMarks() {
2633   Thread* self = Thread::Current();
2634   Locks::mutator_lock_->AssertExclusiveHeld(self);
2635   // We need to sort the live stack since we binary search it.
2636   live_stack_->Sort();
2637   // Since we sorted the allocation stack content, need to revoke all
2638   // thread-local allocation stacks.
2639   RevokeAllThreadLocalAllocationStacks(self);
2640   VerifyLiveStackReferences visitor(this);
2641   GetLiveBitmap()->Visit(visitor);
2642   // We can verify objects in the live stack since none of these should reference dead objects.
2643   for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2644     if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2645       visitor(*it);
2646     }
2647   }
2648   return !visitor.Failed();
2649 }
2650 
SwapStacks(Thread * self)2651 void Heap::SwapStacks(Thread* self) {
2652   if (kUseThreadLocalAllocationStack) {
2653     live_stack_->AssertAllZero();
2654   }
2655   allocation_stack_.swap(live_stack_);
2656 }
2657 
RevokeAllThreadLocalAllocationStacks(Thread * self)2658 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2659   // This must be called only during the pause.
2660   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2661   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2662   MutexLock mu2(self, *Locks::thread_list_lock_);
2663   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2664   for (Thread* t : thread_list) {
2665     t->RevokeThreadLocalAllocationStack();
2666   }
2667 }
2668 
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()2669 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2670   if (kIsDebugBuild) {
2671     if (bump_pointer_space_ != nullptr) {
2672       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2673     }
2674   }
2675 }
2676 
FindModUnionTableFromSpace(space::Space * space)2677 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2678   auto it = mod_union_tables_.find(space);
2679   if (it == mod_union_tables_.end()) {
2680     return nullptr;
2681   }
2682   return it->second;
2683 }
2684 
FindRememberedSetFromSpace(space::Space * space)2685 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2686   auto it = remembered_sets_.find(space);
2687   if (it == remembered_sets_.end()) {
2688     return nullptr;
2689   }
2690   return it->second;
2691 }
2692 
ProcessCards(TimingLogger * timings,bool use_rem_sets)2693 void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2694   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2695   // Clear cards and keep track of cards cleared in the mod-union table.
2696   for (const auto& space : continuous_spaces_) {
2697     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2698     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2699     if (table != nullptr) {
2700       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2701           "ImageModUnionClearCards";
2702       TimingLogger::ScopedTiming t(name, timings);
2703       table->ClearCards();
2704     } else if (use_rem_sets && rem_set != nullptr) {
2705       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2706           << static_cast<int>(collector_type_);
2707       TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2708       rem_set->ClearCards();
2709     } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2710       TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2711       // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2712       // were dirty before the GC started.
2713       // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2714       // -> clean(cleaning thread).
2715       // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2716       // roots and then we scan / update mod union tables after. We will always scan either card.
2717       // If we end up with the non aged card, we scan it it in the pause.
2718       card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2719                                      VoidFunctor());
2720     }
2721   }
2722 }
2723 
IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> *,void *)2724 static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2725 }
2726 
PreGcVerificationPaused(collector::GarbageCollector * gc)2727 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2728   Thread* const self = Thread::Current();
2729   TimingLogger* const timings = current_gc_iteration_.GetTimings();
2730   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2731   if (verify_pre_gc_heap_) {
2732     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2733     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2734     size_t failures = VerifyHeapReferences();
2735     if (failures > 0) {
2736       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2737           << " failures";
2738     }
2739   }
2740   // Check that all objects which reference things in the live stack are on dirty cards.
2741   if (verify_missing_card_marks_) {
2742     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2743     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2744     SwapStacks(self);
2745     // Sort the live stack so that we can quickly binary search it later.
2746     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2747                                     << " missing card mark verification failed\n" << DumpSpaces();
2748     SwapStacks(self);
2749   }
2750   if (verify_mod_union_table_) {
2751     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2752     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2753     for (const auto& table_pair : mod_union_tables_) {
2754       accounting::ModUnionTable* mod_union_table = table_pair.second;
2755       mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2756       mod_union_table->Verify();
2757     }
2758   }
2759 }
2760 
PreGcVerification(collector::GarbageCollector * gc)2761 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2762   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2763     collector::GarbageCollector::ScopedPause pause(gc);
2764     PreGcVerificationPaused(gc);
2765   }
2766 }
2767 
PrePauseRosAllocVerification(collector::GarbageCollector * gc)2768 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2769   // TODO: Add a new runtime option for this?
2770   if (verify_pre_gc_rosalloc_) {
2771     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2772   }
2773 }
2774 
PreSweepingGcVerification(collector::GarbageCollector * gc)2775 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2776   Thread* const self = Thread::Current();
2777   TimingLogger* const timings = current_gc_iteration_.GetTimings();
2778   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2779   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2780   // reachable objects.
2781   if (verify_pre_sweeping_heap_) {
2782     TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2783     CHECK_NE(self->GetState(), kRunnable);
2784     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2785     // Swapping bound bitmaps does nothing.
2786     gc->SwapBitmaps();
2787     // Pass in false since concurrent reference processing can mean that the reference referents
2788     // may point to dead objects at the point which PreSweepingGcVerification is called.
2789     size_t failures = VerifyHeapReferences(false);
2790     if (failures > 0) {
2791       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2792           << " failures";
2793     }
2794     gc->SwapBitmaps();
2795   }
2796   if (verify_pre_sweeping_rosalloc_) {
2797     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2798   }
2799 }
2800 
PostGcVerificationPaused(collector::GarbageCollector * gc)2801 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2802   // Only pause if we have to do some verification.
2803   Thread* const self = Thread::Current();
2804   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2805   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2806   if (verify_system_weaks_) {
2807     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2808     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2809     mark_sweep->VerifySystemWeaks();
2810   }
2811   if (verify_post_gc_rosalloc_) {
2812     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2813   }
2814   if (verify_post_gc_heap_) {
2815     TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2816     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2817     size_t failures = VerifyHeapReferences();
2818     if (failures > 0) {
2819       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2820           << " failures";
2821     }
2822   }
2823 }
2824 
PostGcVerification(collector::GarbageCollector * gc)2825 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2826   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2827     collector::GarbageCollector::ScopedPause pause(gc);
2828     PostGcVerificationPaused(gc);
2829   }
2830 }
2831 
RosAllocVerification(TimingLogger * timings,const char * name)2832 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2833   TimingLogger::ScopedTiming t(name, timings);
2834   for (const auto& space : continuous_spaces_) {
2835     if (space->IsRosAllocSpace()) {
2836       VLOG(heap) << name << " : " << space->GetName();
2837       space->AsRosAllocSpace()->Verify();
2838     }
2839   }
2840 }
2841 
WaitForGcToComplete(GcCause cause,Thread * self)2842 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2843   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2844   MutexLock mu(self, *gc_complete_lock_);
2845   return WaitForGcToCompleteLocked(cause, self);
2846 }
2847 
WaitForGcToCompleteLocked(GcCause cause,Thread * self)2848 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2849   collector::GcType last_gc_type = collector::kGcTypeNone;
2850   uint64_t wait_start = NanoTime();
2851   while (collector_type_running_ != kCollectorTypeNone) {
2852     ATRACE_BEGIN("GC: Wait For Completion");
2853     // We must wait, change thread state then sleep on gc_complete_cond_;
2854     gc_complete_cond_->Wait(self);
2855     last_gc_type = last_gc_type_;
2856     ATRACE_END();
2857   }
2858   uint64_t wait_time = NanoTime() - wait_start;
2859   total_wait_time_ += wait_time;
2860   if (wait_time > long_pause_log_threshold_) {
2861     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2862         << " for cause " << cause;
2863   }
2864   return last_gc_type;
2865 }
2866 
DumpForSigQuit(std::ostream & os)2867 void Heap::DumpForSigQuit(std::ostream& os) {
2868   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2869      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2870   DumpGcPerformanceInfo(os);
2871 }
2872 
GetPercentFree()2873 size_t Heap::GetPercentFree() {
2874   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2875 }
2876 
SetIdealFootprint(size_t max_allowed_footprint)2877 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2878   if (max_allowed_footprint > GetMaxMemory()) {
2879     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2880              << PrettySize(GetMaxMemory());
2881     max_allowed_footprint = GetMaxMemory();
2882   }
2883   max_allowed_footprint_ = max_allowed_footprint;
2884 }
2885 
IsMovableObject(const mirror::Object * obj) const2886 bool Heap::IsMovableObject(const mirror::Object* obj) const {
2887   if (kMovingCollector) {
2888     space::Space* space = FindContinuousSpaceFromObject(obj, true);
2889     if (space != nullptr) {
2890       // TODO: Check large object?
2891       return space->CanMoveObjects();
2892     }
2893   }
2894   return false;
2895 }
2896 
UpdateMaxNativeFootprint()2897 void Heap::UpdateMaxNativeFootprint() {
2898   size_t native_size = native_bytes_allocated_.LoadRelaxed();
2899   // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2900   size_t target_size = native_size / GetTargetHeapUtilization();
2901   if (target_size > native_size + max_free_) {
2902     target_size = native_size + max_free_;
2903   } else if (target_size < native_size + min_free_) {
2904     target_size = native_size + min_free_;
2905   }
2906   native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2907 }
2908 
FindCollectorByGcType(collector::GcType gc_type)2909 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2910   for (const auto& collector : garbage_collectors_) {
2911     if (collector->GetCollectorType() == collector_type_ &&
2912         collector->GetGcType() == gc_type) {
2913       return collector;
2914     }
2915   }
2916   return nullptr;
2917 }
2918 
HeapGrowthMultiplier() const2919 double Heap::HeapGrowthMultiplier() const {
2920   // If we don't care about pause times we are background, so return 1.0.
2921   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2922     return 1.0;
2923   }
2924   return foreground_heap_growth_multiplier_;
2925 }
2926 
GrowForUtilization(collector::GarbageCollector * collector_ran)2927 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2928   // We know what our utilization is at this moment.
2929   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2930   const uint64_t bytes_allocated = GetBytesAllocated();
2931   last_gc_size_ = bytes_allocated;
2932   last_gc_time_ns_ = NanoTime();
2933   uint64_t target_size;
2934   collector::GcType gc_type = collector_ran->GetGcType();
2935   if (gc_type != collector::kGcTypeSticky) {
2936     // Grow the heap for non sticky GC.
2937     const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2938     // foreground.
2939     intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2940     CHECK_GE(delta, 0);
2941     target_size = bytes_allocated + delta * multiplier;
2942     target_size = std::min(target_size,
2943                            bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2944     target_size = std::max(target_size,
2945                            bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2946     native_need_to_run_finalization_ = true;
2947     next_gc_type_ = collector::kGcTypeSticky;
2948   } else {
2949     collector::GcType non_sticky_gc_type =
2950         have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2951     // Find what the next non sticky collector will be.
2952     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2953     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2954     // do another sticky collection next.
2955     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2956     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2957     // if the sticky GC throughput always remained >= the full/partial throughput.
2958     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2959         non_sticky_collector->GetEstimatedMeanThroughput() &&
2960         non_sticky_collector->NumberOfIterations() > 0 &&
2961         bytes_allocated <= max_allowed_footprint_) {
2962       next_gc_type_ = collector::kGcTypeSticky;
2963     } else {
2964       next_gc_type_ = non_sticky_gc_type;
2965     }
2966     // If we have freed enough memory, shrink the heap back down.
2967     if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2968       target_size = bytes_allocated + max_free_;
2969     } else {
2970       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2971     }
2972   }
2973   if (!ignore_max_footprint_) {
2974     SetIdealFootprint(target_size);
2975     if (IsGcConcurrent()) {
2976       // Calculate when to perform the next ConcurrentGC.
2977       // Calculate the estimated GC duration.
2978       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2979       // Estimate how many remaining bytes we will have when we need to start the next GC.
2980       size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2981       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2982       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2983       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2984         // A never going to happen situation that from the estimated allocation rate we will exceed
2985         // the applications entire footprint with the given estimated allocation rate. Schedule
2986         // another GC nearly straight away.
2987         remaining_bytes = kMinConcurrentRemainingBytes;
2988       }
2989       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2990       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2991       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2992       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2993       // right away.
2994       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2995                                          static_cast<size_t>(bytes_allocated));
2996     }
2997   }
2998 }
2999 
ClearGrowthLimit()3000 void Heap::ClearGrowthLimit() {
3001   growth_limit_ = capacity_;
3002   for (const auto& space : continuous_spaces_) {
3003     if (space->IsMallocSpace()) {
3004       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3005       malloc_space->ClearGrowthLimit();
3006       malloc_space->SetFootprintLimit(malloc_space->Capacity());
3007     }
3008   }
3009   // This space isn't added for performance reasons.
3010   if (main_space_backup_.get() != nullptr) {
3011     main_space_backup_->ClearGrowthLimit();
3012     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3013   }
3014 }
3015 
AddFinalizerReference(Thread * self,mirror::Object ** object)3016 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3017   ScopedObjectAccess soa(self);
3018   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3019   jvalue args[1];
3020   args[0].l = arg.get();
3021   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3022   // Restore object in case it gets moved.
3023   *object = soa.Decode<mirror::Object*>(arg.get());
3024 }
3025 
RequestConcurrentGCAndSaveObject(Thread * self,mirror::Object ** obj)3026 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
3027   StackHandleScope<1> hs(self);
3028   HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3029   RequestConcurrentGC(self);
3030 }
3031 
RequestConcurrentGC(Thread * self)3032 void Heap::RequestConcurrentGC(Thread* self) {
3033   // Make sure that we can do a concurrent GC.
3034   Runtime* runtime = Runtime::Current();
3035   if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
3036       self->IsHandlingStackOverflow()) {
3037     return;
3038   }
3039   JNIEnv* env = self->GetJniEnv();
3040   DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
3041   DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
3042   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
3043                             WellKnownClasses::java_lang_Daemons_requestGC);
3044   CHECK(!env->ExceptionCheck());
3045 }
3046 
ConcurrentGC(Thread * self)3047 void Heap::ConcurrentGC(Thread* self) {
3048   if (Runtime::Current()->IsShuttingDown(self)) {
3049     return;
3050   }
3051   // Wait for any GCs currently running to finish.
3052   if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3053     // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3054     // instead. E.g. can't do partial, so do full instead.
3055     if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
3056         collector::kGcTypeNone) {
3057       for (collector::GcType gc_type : gc_plan_) {
3058         // Attempt to run the collector, if we succeed, we are done.
3059         if (gc_type > next_gc_type_ &&
3060             CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
3061           break;
3062         }
3063       }
3064     }
3065   }
3066 }
3067 
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3068 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3069   Thread* self = Thread::Current();
3070   {
3071     MutexLock mu(self, *heap_trim_request_lock_);
3072     if (desired_collector_type_ == desired_collector_type) {
3073       return;
3074     }
3075     heap_transition_or_trim_target_time_ =
3076         std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
3077     desired_collector_type_ = desired_collector_type;
3078   }
3079   SignalHeapTrimDaemon(self);
3080 }
3081 
RequestHeapTrim()3082 void Heap::RequestHeapTrim() {
3083   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3084   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3085   // a space it will hold its lock and can become a cause of jank.
3086   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3087   // forking.
3088 
3089   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3090   // because that only marks object heads, so a large array looks like lots of empty space. We
3091   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3092   // to utilization (which is probably inversely proportional to how much benefit we can expect).
3093   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3094   // not how much use we're making of those pages.
3095 
3096   Thread* self = Thread::Current();
3097   Runtime* runtime = Runtime::Current();
3098   if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
3099       runtime->IsZygote()) {
3100     // Ignore the request if we are the zygote to prevent app launching lag due to sleep in heap
3101     // trimmer daemon. b/17310019
3102     // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
3103     // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
3104     // as we don't hold the lock while requesting the trim).
3105     return;
3106   }
3107   {
3108     MutexLock mu(self, *heap_trim_request_lock_);
3109     if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
3110       // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
3111       // just yet.
3112       return;
3113     }
3114     heap_trim_request_pending_ = true;
3115     uint64_t current_time = NanoTime();
3116     if (heap_transition_or_trim_target_time_ < current_time) {
3117       heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
3118     }
3119   }
3120   // Notify the daemon thread which will actually do the heap trim.
3121   SignalHeapTrimDaemon(self);
3122 }
3123 
SignalHeapTrimDaemon(Thread * self)3124 void Heap::SignalHeapTrimDaemon(Thread* self) {
3125   JNIEnv* env = self->GetJniEnv();
3126   DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
3127   DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
3128   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
3129                             WellKnownClasses::java_lang_Daemons_requestHeapTrim);
3130   CHECK(!env->ExceptionCheck());
3131 }
3132 
RevokeThreadLocalBuffers(Thread * thread)3133 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3134   if (rosalloc_space_ != nullptr) {
3135     rosalloc_space_->RevokeThreadLocalBuffers(thread);
3136   }
3137   if (bump_pointer_space_ != nullptr) {
3138     bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3139   }
3140 }
3141 
RevokeRosAllocThreadLocalBuffers(Thread * thread)3142 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3143   if (rosalloc_space_ != nullptr) {
3144     rosalloc_space_->RevokeThreadLocalBuffers(thread);
3145   }
3146 }
3147 
RevokeAllThreadLocalBuffers()3148 void Heap::RevokeAllThreadLocalBuffers() {
3149   if (rosalloc_space_ != nullptr) {
3150     rosalloc_space_->RevokeAllThreadLocalBuffers();
3151   }
3152   if (bump_pointer_space_ != nullptr) {
3153     bump_pointer_space_->RevokeAllThreadLocalBuffers();
3154   }
3155 }
3156 
IsGCRequestPending() const3157 bool Heap::IsGCRequestPending() const {
3158   return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3159 }
3160 
RunFinalization(JNIEnv * env)3161 void Heap::RunFinalization(JNIEnv* env) {
3162   // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3163   if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3164     CHECK(WellKnownClasses::java_lang_System != nullptr);
3165     WellKnownClasses::java_lang_System_runFinalization =
3166         CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3167     CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3168   }
3169   env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3170                             WellKnownClasses::java_lang_System_runFinalization);
3171   env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3172                             WellKnownClasses::java_lang_System_runFinalization);
3173 }
3174 
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3175 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3176   Thread* self = ThreadForEnv(env);
3177   if (native_need_to_run_finalization_) {
3178     RunFinalization(env);
3179     UpdateMaxNativeFootprint();
3180     native_need_to_run_finalization_ = false;
3181   }
3182   // Total number of native bytes allocated.
3183   size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3184   new_native_bytes_allocated += bytes;
3185   if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3186     collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3187         collector::kGcTypeFull;
3188 
3189     // The second watermark is higher than the gc watermark. If you hit this it means you are
3190     // allocating native objects faster than the GC can keep up with.
3191     if (new_native_bytes_allocated > growth_limit_) {
3192       if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3193         // Just finished a GC, attempt to run finalizers.
3194         RunFinalization(env);
3195         CHECK(!env->ExceptionCheck());
3196       }
3197       // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3198       if (new_native_bytes_allocated > growth_limit_) {
3199         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3200         RunFinalization(env);
3201         native_need_to_run_finalization_ = false;
3202         CHECK(!env->ExceptionCheck());
3203       }
3204       // We have just run finalizers, update the native watermark since it is very likely that
3205       // finalizers released native managed allocations.
3206       UpdateMaxNativeFootprint();
3207     } else if (!IsGCRequestPending()) {
3208       if (IsGcConcurrent()) {
3209         RequestConcurrentGC(self);
3210       } else {
3211         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3212       }
3213     }
3214   }
3215 }
3216 
RegisterNativeFree(JNIEnv * env,size_t bytes)3217 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3218   size_t expected_size;
3219   do {
3220     expected_size = native_bytes_allocated_.LoadRelaxed();
3221     if (UNLIKELY(bytes > expected_size)) {
3222       ScopedObjectAccess soa(env);
3223       env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3224                     StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3225                                  "registered as allocated", bytes, expected_size).c_str());
3226       break;
3227     }
3228   } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3229                                                                expected_size - bytes));
3230 }
3231 
GetTotalMemory() const3232 size_t Heap::GetTotalMemory() const {
3233   return std::max(max_allowed_footprint_, GetBytesAllocated());
3234 }
3235 
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3236 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3237   DCHECK(mod_union_table != nullptr);
3238   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3239 }
3240 
CheckPreconditionsForAllocObject(mirror::Class * c,size_t byte_count)3241 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3242   CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3243         (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3244   CHECK_GE(byte_count, sizeof(mirror::Object));
3245 }
3246 
AddRememberedSet(accounting::RememberedSet * remembered_set)3247 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3248   CHECK(remembered_set != nullptr);
3249   space::Space* space = remembered_set->GetSpace();
3250   CHECK(space != nullptr);
3251   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3252   remembered_sets_.Put(space, remembered_set);
3253   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3254 }
3255 
RemoveRememberedSet(space::Space * space)3256 void Heap::RemoveRememberedSet(space::Space* space) {
3257   CHECK(space != nullptr);
3258   auto it = remembered_sets_.find(space);
3259   CHECK(it != remembered_sets_.end());
3260   delete it->second;
3261   remembered_sets_.erase(it);
3262   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3263 }
3264 
ClearMarkedObjects()3265 void Heap::ClearMarkedObjects() {
3266   // Clear all of the spaces' mark bitmaps.
3267   for (const auto& space : GetContinuousSpaces()) {
3268     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3269     if (space->GetLiveBitmap() != mark_bitmap) {
3270       mark_bitmap->Clear();
3271     }
3272   }
3273   // Clear the marked objects in the discontinous space object sets.
3274   for (const auto& space : GetDiscontinuousSpaces()) {
3275     space->GetMarkBitmap()->Clear();
3276   }
3277 }
3278 
3279 }  // namespace gc
3280 }  // namespace art
3281