1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31
32 #include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirGen.h" // requires math.h
36 #include "AudioResamplerDyn.h"
37
38 //#define DEBUG_RESAMPLER
39
40 namespace android {
41
42 /*
43 * InBuffer is a type agnostic input buffer.
44 *
45 * Layout of the state buffer for halfNumCoefs=8.
46 *
47 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
48 * S I R
49 *
50 * S = mState
51 * I = mImpulse
52 * R = mRingFull
53 * p = past samples, convoluted with the (p)ositive side of sinc()
54 * n = future samples, convoluted with the (n)egative side of sinc()
55 * r = extra space for implementing the ring buffer
56 */
57
58 template<typename TC, typename TI, typename TO>
InBuffer()59 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
60 : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
61 {
62 }
63
64 template<typename TC, typename TI, typename TO>
~InBuffer()65 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
66 {
67 init();
68 }
69
70 template<typename TC, typename TI, typename TO>
init()71 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
72 {
73 free(mState);
74 mState = NULL;
75 mImpulse = NULL;
76 mRingFull = NULL;
77 mStateCount = 0;
78 }
79
80 // resizes the state buffer to accommodate the appropriate filter length
81 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)82 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
83 {
84 // calculate desired state size
85 size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
86
87 // check if buffer needs resizing
88 if (mState
89 && stateCount == mStateCount
90 && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
91 return;
92 }
93
94 // create new buffer
95 TI* state = NULL;
96 (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
97 memset(state, 0, stateCount*sizeof(*state));
98
99 // attempt to preserve state
100 if (mState) {
101 TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
102 TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
103 TI* dst = state;
104
105 if (srcLo < mState) {
106 dst += mState-srcLo;
107 srcLo = mState;
108 }
109 if (srcHi > mState + mStateCount) {
110 srcHi = mState + mStateCount;
111 }
112 memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
113 free(mState);
114 }
115
116 // set class member vars
117 mState = state;
118 mStateCount = stateCount;
119 mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
120 mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
121 }
122
123 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
124 template<typename TC, typename TI, typename TO>
125 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)126 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
127 const TI* const in, const size_t inputIndex)
128 {
129 TI* head = impulse + halfNumCoefs*CHANNELS;
130 for (size_t i=0 ; i<CHANNELS ; i++) {
131 head[i] = in[inputIndex*CHANNELS + i];
132 }
133 }
134
135 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
136 template<typename TC, typename TI, typename TO>
137 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)138 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
139 const TI* const in, const size_t inputIndex)
140 {
141 impulse += CHANNELS;
142
143 if (CC_UNLIKELY(impulse >= mRingFull)) {
144 const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
145 memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
146 impulse -= shiftDown;
147 }
148 readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
149 }
150
151 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)152 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
153 int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
154 {
155 int bits = 0;
156 int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
157 static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
158 for (int i=lscale; i; ++bits, i>>=1)
159 ;
160 mL = L;
161 mShift = kNumPhaseBits - bits;
162 mHalfNumCoefs = halfNumCoefs;
163 }
164
165 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)166 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
167 int inChannelCount, int32_t sampleRate, src_quality quality)
168 : AudioResampler(inChannelCount, sampleRate, quality),
169 mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
170 mCoefBuffer(NULL)
171 {
172 mVolumeSimd[0] = mVolumeSimd[1] = 0;
173 // The AudioResampler base class assumes we are always ready for 1:1 resampling.
174 // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
175 // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
176 mInSampleRate = 0;
177 mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
178 }
179
180 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()181 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
182 {
183 free(mCoefBuffer);
184 }
185
186 template<typename TC, typename TI, typename TO>
init()187 void AudioResamplerDyn<TC, TI, TO>::init()
188 {
189 mFilterSampleRate = 0; // always trigger new filter generation
190 mInBuffer.init();
191 }
192
193 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)194 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
195 {
196 AudioResampler::setVolume(left, right);
197 if (is_same<TO, float>::value || is_same<TO, double>::value) {
198 mVolumeSimd[0] = static_cast<TO>(left);
199 mVolumeSimd[1] = static_cast<TO>(right);
200 } else { // integer requires scaling to U4_28 (rounding down)
201 // integer volumes are clamped to 0 to UNITY_GAIN so there
202 // are no issues with signed overflow.
203 mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
204 mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
205 }
206 }
207
max(T a,T b)208 template<typename T> T max(T a, T b) {return a > b ? a : b;}
209
absdiff(T a,T b)210 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
211
212 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)213 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
214 double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
215 {
216 TC* buf = NULL;
217 static const double atten = 0.9998; // to avoid ripple overflow
218 double fcr;
219 double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
220
221 (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
222 if (inSampleRate < outSampleRate) { // upsample
223 fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
224 } else { // downsample
225 fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
226 }
227 // create and set filter
228 firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
229 c.mFirCoefs = buf;
230 if (mCoefBuffer) {
231 free(mCoefBuffer);
232 }
233 mCoefBuffer = buf;
234 #ifdef DEBUG_RESAMPLER
235 // print basic filter stats
236 printf("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
237 c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
238 // test the filter and report results
239 double fp = (fcr - tbw/2)/c.mL;
240 double fs = (fcr + tbw/2)/c.mL;
241 double passMin, passMax, passRipple;
242 double stopMax, stopRipple;
243 testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
244 passMin, passMax, passRipple, stopMax, stopRipple);
245 printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
246 printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
247 #endif
248 }
249
250 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)251 static int gcd(int n, int m)
252 {
253 if (m == 0) {
254 return n;
255 }
256 return gcd(m, n % m);
257 }
258
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)259 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
260 int32_t filterSampleRate, int32_t outSampleRate)
261 {
262
263 // different upsampling ratios do not need a filter change.
264 if (filterSampleRate != 0
265 && filterSampleRate < outSampleRate
266 && newSampleRate < outSampleRate)
267 return true;
268
269 // check design criteria again if downsampling is detected.
270 int pdiff = absdiff(newSampleRate, prevSampleRate);
271 int adiff = absdiff(newSampleRate, filterSampleRate);
272
273 // allow up to 6% relative change increments.
274 // allow up to 12% absolute change increments (from filter design)
275 return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
276 }
277
278 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)279 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
280 {
281 if (mInSampleRate == inSampleRate) {
282 return;
283 }
284 int32_t oldSampleRate = mInSampleRate;
285 int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
286 uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
287 bool useS32 = false;
288
289 mInSampleRate = inSampleRate;
290
291 // TODO: Add precalculated Equiripple filters
292
293 if (mFilterQuality != getQuality() ||
294 !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
295 mFilterSampleRate = inSampleRate;
296 mFilterQuality = getQuality();
297
298 // Begin Kaiser Filter computation
299 //
300 // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
301 // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
302 //
303 // For s32 we keep the stop band attenuation at the same as 16b resolution, about
304 // 96-98dB
305 //
306
307 double stopBandAtten;
308 double tbwCheat = 1.; // how much we "cheat" into aliasing
309 int halfLength;
310 if (mFilterQuality == DYN_HIGH_QUALITY) {
311 // 32b coefficients, 64 length
312 useS32 = true;
313 stopBandAtten = 98.;
314 if (inSampleRate >= mSampleRate * 4) {
315 halfLength = 48;
316 } else if (inSampleRate >= mSampleRate * 2) {
317 halfLength = 40;
318 } else {
319 halfLength = 32;
320 }
321 } else if (mFilterQuality == DYN_LOW_QUALITY) {
322 // 16b coefficients, 16-32 length
323 useS32 = false;
324 stopBandAtten = 80.;
325 if (inSampleRate >= mSampleRate * 4) {
326 halfLength = 24;
327 } else if (inSampleRate >= mSampleRate * 2) {
328 halfLength = 16;
329 } else {
330 halfLength = 8;
331 }
332 if (inSampleRate <= mSampleRate) {
333 tbwCheat = 1.05;
334 } else {
335 tbwCheat = 1.03;
336 }
337 } else { // DYN_MED_QUALITY
338 // 16b coefficients, 32-64 length
339 // note: > 64 length filters with 16b coefs can have quantization noise problems
340 useS32 = false;
341 stopBandAtten = 84.;
342 if (inSampleRate >= mSampleRate * 4) {
343 halfLength = 32;
344 } else if (inSampleRate >= mSampleRate * 2) {
345 halfLength = 24;
346 } else {
347 halfLength = 16;
348 }
349 if (inSampleRate <= mSampleRate) {
350 tbwCheat = 1.03;
351 } else {
352 tbwCheat = 1.01;
353 }
354 }
355
356 // determine the number of polyphases in the filterbank.
357 // for 16b, it is desirable to have 2^(16/2) = 256 phases.
358 // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
359 //
360 // We are a bit more lax on this.
361
362 int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
363
364 // TODO: Once dynamic sample rate change is an option, the code below
365 // should be modified to execute only when dynamic sample rate change is enabled.
366 //
367 // as above, #phases less than 63 is too few phases for accurate linear interpolation.
368 // we increase the phases to compensate, but more phases means more memory per
369 // filter and more time to compute the filter.
370 //
371 // if we know that the filter will be used for dynamic sample rate changes,
372 // that would allow us skip this part for fixed sample rate resamplers.
373 //
374 while (phases<63) {
375 phases *= 2; // this code only needed to support dynamic rate changes
376 }
377
378 if (phases>=256) { // too many phases, always interpolate
379 phases = 127;
380 }
381
382 // create the filter
383 mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
384 createKaiserFir(mConstants, stopBandAtten,
385 inSampleRate, mSampleRate, tbwCheat);
386 } // End Kaiser filter
387
388 // update phase and state based on the new filter.
389 const Constants& c(mConstants);
390 mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
391 const uint32_t phaseWrapLimit = c.mL << c.mShift;
392 // try to preserve as much of the phase fraction as possible for on-the-fly changes
393 mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
394 * phaseWrapLimit / oldPhaseWrapLimit;
395 mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
396 mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
397 * inSampleRate / mSampleRate);
398
399 // determine which resampler to use
400 // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
401 int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
402 if (locked) {
403 mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
404 }
405
406 // stride is the minimum number of filter coefficients processed per loop iteration.
407 // We currently only allow a stride of 16 to match with SIMD processing.
408 // This means that the filter length must be a multiple of 16,
409 // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
410 //
411 // Note: A stride of 2 is achieved with non-SIMD processing.
412 int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
413 LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
414 LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
415 "Resampler channels(%d) must be between 1 to 8", mChannelCount);
416 // stride 16 (falls back to stride 2 for machines that do not support NEON)
417 if (locked) {
418 switch (mChannelCount) {
419 case 1:
420 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
421 break;
422 case 2:
423 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
424 break;
425 case 3:
426 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
427 break;
428 case 4:
429 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
430 break;
431 case 5:
432 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
433 break;
434 case 6:
435 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
436 break;
437 case 7:
438 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
439 break;
440 case 8:
441 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
442 break;
443 }
444 } else {
445 switch (mChannelCount) {
446 case 1:
447 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
448 break;
449 case 2:
450 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
451 break;
452 case 3:
453 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
454 break;
455 case 4:
456 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
457 break;
458 case 5:
459 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
460 break;
461 case 6:
462 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
463 break;
464 case 7:
465 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
466 break;
467 case 8:
468 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
469 break;
470 }
471 }
472 #ifdef DEBUG_RESAMPLER
473 printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
474 mChannelCount, locked ? "locked" : "interpolated",
475 stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
476 #endif
477 }
478
479 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)480 void AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
481 AudioBufferProvider* provider)
482 {
483 (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
484 }
485
486 template<typename TC, typename TI, typename TO>
487 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)488 void AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
489 AudioBufferProvider* provider)
490 {
491 // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
492 const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
493 const Constants& c(mConstants);
494 const TC* const coefs = mConstants.mFirCoefs;
495 TI* impulse = mInBuffer.getImpulse();
496 size_t inputIndex = 0;
497 uint32_t phaseFraction = mPhaseFraction;
498 const uint32_t phaseIncrement = mPhaseIncrement;
499 size_t outputIndex = 0;
500 size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
501 const uint32_t phaseWrapLimit = c.mL << c.mShift;
502 size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
503 / phaseWrapLimit;
504 // sanity check that inFrameCount is in signed 32 bit integer range.
505 ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
506
507 //ALOGV("inFrameCount:%d outFrameCount:%d"
508 // " phaseIncrement:%u phaseFraction:%u phaseWrapLimit:%u",
509 // inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
510
511 // NOTE: be very careful when modifying the code here. register
512 // pressure is very high and a small change might cause the compiler
513 // to generate far less efficient code.
514 // Always sanity check the result with objdump or test-resample.
515
516 // the following logic is a bit convoluted to keep the main processing loop
517 // as tight as possible with register allocation.
518 while (outputIndex < outputSampleCount) {
519 //ALOGV("LOOP: inFrameCount:%d outputIndex:%d outFrameCount:%d"
520 // " phaseFraction:%u phaseWrapLimit:%u",
521 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
522
523 // check inputIndex overflow
524 ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
525 inputIndex, mBuffer.frameCount);
526 // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
527 // We may not fetch a new buffer if the existing data is sufficient.
528 while (mBuffer.frameCount == 0 && inFrameCount > 0) {
529 mBuffer.frameCount = inFrameCount;
530 provider->getNextBuffer(&mBuffer,
531 calculateOutputPTS(outputIndex / OUTPUT_CHANNELS));
532 if (mBuffer.raw == NULL) {
533 goto resample_exit;
534 }
535 inFrameCount -= mBuffer.frameCount;
536 if (phaseFraction >= phaseWrapLimit) { // read in data
537 mInBuffer.template readAdvance<CHANNELS>(
538 impulse, c.mHalfNumCoefs,
539 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
540 inputIndex++;
541 phaseFraction -= phaseWrapLimit;
542 while (phaseFraction >= phaseWrapLimit) {
543 if (inputIndex >= mBuffer.frameCount) {
544 inputIndex = 0;
545 provider->releaseBuffer(&mBuffer);
546 break;
547 }
548 mInBuffer.template readAdvance<CHANNELS>(
549 impulse, c.mHalfNumCoefs,
550 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
551 inputIndex++;
552 phaseFraction -= phaseWrapLimit;
553 }
554 }
555 }
556 const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
557 const size_t frameCount = mBuffer.frameCount;
558 const int coefShift = c.mShift;
559 const int halfNumCoefs = c.mHalfNumCoefs;
560 const TO* const volumeSimd = mVolumeSimd;
561
562 // main processing loop
563 while (CC_LIKELY(outputIndex < outputSampleCount)) {
564 // caution: fir() is inlined and may be large.
565 // output will be loaded with the appropriate values
566 //
567 // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
568 // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
569 //
570 //ALOGV("LOOP2: inFrameCount:%d outputIndex:%d outFrameCount:%d"
571 // " phaseFraction:%u phaseWrapLimit:%u",
572 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
573 ALOG_ASSERT(phaseFraction < phaseWrapLimit);
574 fir<CHANNELS, LOCKED, STRIDE>(
575 &out[outputIndex],
576 phaseFraction, phaseWrapLimit,
577 coefShift, halfNumCoefs, coefs,
578 impulse, volumeSimd);
579
580 outputIndex += OUTPUT_CHANNELS;
581
582 phaseFraction += phaseIncrement;
583 while (phaseFraction >= phaseWrapLimit) {
584 if (inputIndex >= frameCount) {
585 goto done; // need a new buffer
586 }
587 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
588 inputIndex++;
589 phaseFraction -= phaseWrapLimit;
590 }
591 }
592 done:
593 // We arrive here when we're finished or when the input buffer runs out.
594 // Regardless we need to release the input buffer if we've acquired it.
595 if (inputIndex > 0) { // we've acquired a buffer (alternatively could check frameCount)
596 ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
597 inputIndex, frameCount); // must have been fully read.
598 inputIndex = 0;
599 provider->releaseBuffer(&mBuffer);
600 ALOG_ASSERT(mBuffer.frameCount == 0);
601 }
602 }
603
604 resample_exit:
605 // inputIndex must be zero in all three cases:
606 // (1) the buffer never was been acquired; (2) the buffer was
607 // released at "done:"; or (3) getNextBuffer() failed.
608 ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d phaseFraction:%u",
609 inputIndex, mBuffer.frameCount, phaseFraction);
610 ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
611 mInBuffer.setImpulse(impulse);
612 mPhaseFraction = phaseFraction;
613 }
614
615 /* instantiate templates used by AudioResampler::create */
616 template class AudioResamplerDyn<float, float, float>;
617 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
618 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
619
620 // ----------------------------------------------------------------------------
621 }; // namespace android
622