• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mir_graph.h"
18 
19 #include <inttypes.h>
20 #include <queue>
21 
22 #include "base/stl_util.h"
23 #include "compiler_internals.h"
24 #include "dex_file-inl.h"
25 #include "dex_instruction-inl.h"
26 #include "dex/global_value_numbering.h"
27 #include "dex/quick/dex_file_to_method_inliner_map.h"
28 #include "dex/quick/dex_file_method_inliner.h"
29 #include "leb128.h"
30 #include "pass_driver_me_post_opt.h"
31 #include "utils/scoped_arena_containers.h"
32 
33 namespace art {
34 
35 #define MAX_PATTERN_LEN 5
36 
37 const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
38   "Phi",
39   "Copy",
40   "FusedCmplFloat",
41   "FusedCmpgFloat",
42   "FusedCmplDouble",
43   "FusedCmpgDouble",
44   "FusedCmpLong",
45   "Nop",
46   "OpNullCheck",
47   "OpRangeCheck",
48   "OpDivZeroCheck",
49   "Check1",
50   "Check2",
51   "Select",
52   "ConstVector",
53   "MoveVector",
54   "PackedMultiply",
55   "PackedAddition",
56   "PackedSubtract",
57   "PackedShiftLeft",
58   "PackedSignedShiftRight",
59   "PackedUnsignedShiftRight",
60   "PackedAnd",
61   "PackedOr",
62   "PackedXor",
63   "PackedAddReduce",
64   "PackedReduce",
65   "PackedSet",
66   "ReserveVectorRegisters",
67   "ReturnVectorRegisters",
68 };
69 
MIRGraph(CompilationUnit * cu,ArenaAllocator * arena)70 MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
71     : reg_location_(NULL),
72       block_id_map_(std::less<unsigned int>(), arena->Adapter()),
73       cu_(cu),
74       ssa_base_vregs_(NULL),
75       ssa_subscripts_(NULL),
76       vreg_to_ssa_map_(NULL),
77       ssa_last_defs_(NULL),
78       is_constant_v_(NULL),
79       constant_values_(NULL),
80       use_counts_(arena, 256, kGrowableArrayMisc),
81       raw_use_counts_(arena, 256, kGrowableArrayMisc),
82       num_reachable_blocks_(0),
83       max_num_reachable_blocks_(0),
84       dfs_order_(NULL),
85       dfs_post_order_(NULL),
86       dom_post_order_traversal_(NULL),
87       topological_order_(nullptr),
88       topological_order_loop_ends_(nullptr),
89       topological_order_indexes_(nullptr),
90       topological_order_loop_head_stack_(nullptr),
91       i_dom_list_(NULL),
92       def_block_matrix_(NULL),
93       temp_scoped_alloc_(),
94       temp_insn_data_(nullptr),
95       temp_bit_vector_size_(0u),
96       temp_bit_vector_(nullptr),
97       temp_gvn_(),
98       block_list_(arena, 100, kGrowableArrayBlockList),
99       try_block_addr_(NULL),
100       entry_block_(NULL),
101       exit_block_(NULL),
102       num_blocks_(0),
103       current_code_item_(NULL),
104       dex_pc_to_block_map_(arena, 0, kGrowableArrayMisc),
105       m_units_(arena->Adapter()),
106       method_stack_(arena->Adapter()),
107       current_method_(kInvalidEntry),
108       current_offset_(kInvalidEntry),
109       def_count_(0),
110       opcode_count_(NULL),
111       num_ssa_regs_(0),
112       extended_basic_blocks_(arena->Adapter()),
113       method_sreg_(0),
114       attributes_(METHOD_IS_LEAF),  // Start with leaf assumption, change on encountering invoke.
115       checkstats_(NULL),
116       arena_(arena),
117       backward_branches_(0),
118       forward_branches_(0),
119       compiler_temps_(arena, 6, kGrowableArrayMisc),
120       num_non_special_compiler_temps_(0),
121       max_available_non_special_compiler_temps_(0),
122       punt_to_interpreter_(false),
123       merged_df_flags_(0u),
124       ifield_lowering_infos_(arena, 0u),
125       sfield_lowering_infos_(arena, 0u),
126       method_lowering_infos_(arena, 0u),
127       gen_suspend_test_list_(arena, 0u) {
128   try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
129   max_available_special_compiler_temps_ = std::abs(static_cast<int>(kVRegNonSpecialTempBaseReg))
130       - std::abs(static_cast<int>(kVRegTempBaseReg));
131 }
132 
~MIRGraph()133 MIRGraph::~MIRGraph() {
134   STLDeleteElements(&m_units_);
135 }
136 
137 /*
138  * Parse an instruction, return the length of the instruction
139  */
ParseInsn(const uint16_t * code_ptr,MIR::DecodedInstruction * decoded_instruction)140 int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
141   const Instruction* inst = Instruction::At(code_ptr);
142   decoded_instruction->opcode = inst->Opcode();
143   decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
144   decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
145   decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
146   decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;
147   if (inst->HasVarArgs()) {
148     inst->GetVarArgs(decoded_instruction->arg);
149   }
150   return inst->SizeInCodeUnits();
151 }
152 
153 
154 /* Split an existing block from the specified code offset into two */
SplitBlock(DexOffset code_offset,BasicBlock * orig_block,BasicBlock ** immed_pred_block_p)155 BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
156                                  BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
157   DCHECK_GT(code_offset, orig_block->start_offset);
158   MIR* insn = orig_block->first_mir_insn;
159   MIR* prev = NULL;
160   while (insn) {
161     if (insn->offset == code_offset) break;
162     prev = insn;
163     insn = insn->next;
164   }
165   if (insn == NULL) {
166     LOG(FATAL) << "Break split failed";
167   }
168   BasicBlock* bottom_block = NewMemBB(kDalvikByteCode, num_blocks_++);
169   block_list_.Insert(bottom_block);
170 
171   bottom_block->start_offset = code_offset;
172   bottom_block->first_mir_insn = insn;
173   bottom_block->last_mir_insn = orig_block->last_mir_insn;
174 
175   /* If this block was terminated by a return, the flag needs to go with the bottom block */
176   bottom_block->terminated_by_return = orig_block->terminated_by_return;
177   orig_block->terminated_by_return = false;
178 
179   /* Handle the taken path */
180   bottom_block->taken = orig_block->taken;
181   if (bottom_block->taken != NullBasicBlockId) {
182     orig_block->taken = NullBasicBlockId;
183     BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
184     bb_taken->predecessors->Delete(orig_block->id);
185     bb_taken->predecessors->Insert(bottom_block->id);
186   }
187 
188   /* Handle the fallthrough path */
189   bottom_block->fall_through = orig_block->fall_through;
190   orig_block->fall_through = bottom_block->id;
191   bottom_block->predecessors->Insert(orig_block->id);
192   if (bottom_block->fall_through != NullBasicBlockId) {
193     BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
194     bb_fall_through->predecessors->Delete(orig_block->id);
195     bb_fall_through->predecessors->Insert(bottom_block->id);
196   }
197 
198   /* Handle the successor list */
199   if (orig_block->successor_block_list_type != kNotUsed) {
200     bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
201     bottom_block->successor_blocks = orig_block->successor_blocks;
202     orig_block->successor_block_list_type = kNotUsed;
203     orig_block->successor_blocks = nullptr;
204     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bottom_block->successor_blocks);
205     while (true) {
206       SuccessorBlockInfo* successor_block_info = iterator.Next();
207       if (successor_block_info == nullptr) break;
208       BasicBlock* bb = GetBasicBlock(successor_block_info->block);
209       if (bb != nullptr) {
210         bb->predecessors->Delete(orig_block->id);
211         bb->predecessors->Insert(bottom_block->id);
212       }
213     }
214   }
215 
216   orig_block->last_mir_insn = prev;
217   prev->next = nullptr;
218 
219   /*
220    * Update the immediate predecessor block pointer so that outgoing edges
221    * can be applied to the proper block.
222    */
223   if (immed_pred_block_p) {
224     DCHECK_EQ(*immed_pred_block_p, orig_block);
225     *immed_pred_block_p = bottom_block;
226   }
227 
228   // Associate dex instructions in the bottom block with the new container.
229   DCHECK(insn != nullptr);
230   DCHECK(insn != orig_block->first_mir_insn);
231   DCHECK(insn == bottom_block->first_mir_insn);
232   DCHECK_EQ(insn->offset, bottom_block->start_offset);
233   DCHECK(static_cast<int>(insn->dalvikInsn.opcode) == kMirOpCheck ||
234          !MIR::DecodedInstruction::IsPseudoMirOp(insn->dalvikInsn.opcode));
235   DCHECK_EQ(dex_pc_to_block_map_.Get(insn->offset), orig_block->id);
236   MIR* p = insn;
237   dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
238   while (p != bottom_block->last_mir_insn) {
239     p = p->next;
240     DCHECK(p != nullptr);
241     p->bb = bottom_block->id;
242     int opcode = p->dalvikInsn.opcode;
243     /*
244      * Some messiness here to ensure that we only enter real opcodes and only the
245      * first half of a potentially throwing instruction that has been split into
246      * CHECK and work portions. Since the 2nd half of a split operation is always
247      * the first in a BasicBlock, we can't hit it here.
248      */
249     if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
250       DCHECK_EQ(dex_pc_to_block_map_.Get(p->offset), orig_block->id);
251       dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
252     }
253   }
254 
255   return bottom_block;
256 }
257 
258 /*
259  * Given a code offset, find out the block that starts with it. If the offset
260  * is in the middle of an existing block, split it into two.  If immed_pred_block_p
261  * is not non-null and is the block being split, update *immed_pred_block_p to
262  * point to the bottom block so that outgoing edges can be set up properly
263  * (by the caller)
264  * Utilizes a map for fast lookup of the typical cases.
265  */
FindBlock(DexOffset code_offset,bool split,bool create,BasicBlock ** immed_pred_block_p)266 BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool split, bool create,
267                                 BasicBlock** immed_pred_block_p) {
268   if (code_offset >= cu_->code_item->insns_size_in_code_units_) {
269     return NULL;
270   }
271 
272   int block_id = dex_pc_to_block_map_.Get(code_offset);
273   BasicBlock* bb = (block_id == 0) ? NULL : block_list_.Get(block_id);
274 
275   if ((bb != NULL) && (bb->start_offset == code_offset)) {
276     // Does this containing block start with the desired instruction?
277     return bb;
278   }
279 
280   // No direct hit.
281   if (!create) {
282     return NULL;
283   }
284 
285   if (bb != NULL) {
286     // The target exists somewhere in an existing block.
287     return SplitBlock(code_offset, bb, bb == *immed_pred_block_p ?  immed_pred_block_p : NULL);
288   }
289 
290   // Create a new block.
291   bb = NewMemBB(kDalvikByteCode, num_blocks_++);
292   block_list_.Insert(bb);
293   bb->start_offset = code_offset;
294   dex_pc_to_block_map_.Put(bb->start_offset, bb->id);
295   return bb;
296 }
297 
298 
299 /* Identify code range in try blocks and set up the empty catch blocks */
ProcessTryCatchBlocks()300 void MIRGraph::ProcessTryCatchBlocks() {
301   int tries_size = current_code_item_->tries_size_;
302   DexOffset offset;
303 
304   if (tries_size == 0) {
305     return;
306   }
307 
308   for (int i = 0; i < tries_size; i++) {
309     const DexFile::TryItem* pTry =
310         DexFile::GetTryItems(*current_code_item_, i);
311     DexOffset start_offset = pTry->start_addr_;
312     DexOffset end_offset = start_offset + pTry->insn_count_;
313     for (offset = start_offset; offset < end_offset; offset++) {
314       try_block_addr_->SetBit(offset);
315     }
316   }
317 
318   // Iterate over each of the handlers to enqueue the empty Catch blocks.
319   const byte* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
320   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
321   for (uint32_t idx = 0; idx < handlers_size; idx++) {
322     CatchHandlerIterator iterator(handlers_ptr);
323     for (; iterator.HasNext(); iterator.Next()) {
324       uint32_t address = iterator.GetHandlerAddress();
325       FindBlock(address, false /* split */, true /*create*/,
326                 /* immed_pred_block_p */ NULL);
327     }
328     handlers_ptr = iterator.EndDataPointer();
329   }
330 }
331 
IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,NarrowDexOffset catch_offset)332 bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
333                                      NarrowDexOffset catch_offset) {
334   // Catches for monitor-exit during stack unwinding have the pattern
335   //   move-exception (move)* (goto)? monitor-exit throw
336   // In the currently generated dex bytecode we see these catching a bytecode range including
337   // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
338   // it's the case for a given monitor-exit and catch block so that we can ignore it.
339   // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
340   // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
341   // even though a throwing monitor-exit certainly indicates a bytecode error.)
342   const Instruction* monitor_exit = Instruction::At(cu_->code_item->insns_ + monitor_exit_offset);
343   DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
344   int monitor_reg = monitor_exit->VRegA_11x();
345   const Instruction* check_insn = Instruction::At(cu_->code_item->insns_ + catch_offset);
346   DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
347   if (check_insn->VRegA_11x() == monitor_reg) {
348     // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
349     return false;
350   }
351   check_insn = check_insn->Next();
352   while (true) {
353     int dest = -1;
354     bool wide = false;
355     switch (check_insn->Opcode()) {
356       case Instruction::MOVE_WIDE:
357         wide = true;
358         // Intentional fall-through.
359       case Instruction::MOVE_OBJECT:
360       case Instruction::MOVE:
361         dest = check_insn->VRegA_12x();
362         break;
363 
364       case Instruction::MOVE_WIDE_FROM16:
365         wide = true;
366         // Intentional fall-through.
367       case Instruction::MOVE_OBJECT_FROM16:
368       case Instruction::MOVE_FROM16:
369         dest = check_insn->VRegA_22x();
370         break;
371 
372       case Instruction::MOVE_WIDE_16:
373         wide = true;
374         // Intentional fall-through.
375       case Instruction::MOVE_OBJECT_16:
376       case Instruction::MOVE_16:
377         dest = check_insn->VRegA_32x();
378         break;
379 
380       case Instruction::GOTO:
381       case Instruction::GOTO_16:
382       case Instruction::GOTO_32:
383         check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
384         // Intentional fall-through.
385       default:
386         return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
387             check_insn->VRegA_11x() == monitor_reg;
388     }
389 
390     if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
391       return false;
392     }
393 
394     check_insn = check_insn->Next();
395   }
396 }
397 
398 /* Process instructions with the kBranch flag */
ProcessCanBranch(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags,const uint16_t * code_ptr,const uint16_t * code_end)399 BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
400                                        int width, int flags, const uint16_t* code_ptr,
401                                        const uint16_t* code_end) {
402   DexOffset target = cur_offset;
403   switch (insn->dalvikInsn.opcode) {
404     case Instruction::GOTO:
405     case Instruction::GOTO_16:
406     case Instruction::GOTO_32:
407       target += insn->dalvikInsn.vA;
408       break;
409     case Instruction::IF_EQ:
410     case Instruction::IF_NE:
411     case Instruction::IF_LT:
412     case Instruction::IF_GE:
413     case Instruction::IF_GT:
414     case Instruction::IF_LE:
415       cur_block->conditional_branch = true;
416       target += insn->dalvikInsn.vC;
417       break;
418     case Instruction::IF_EQZ:
419     case Instruction::IF_NEZ:
420     case Instruction::IF_LTZ:
421     case Instruction::IF_GEZ:
422     case Instruction::IF_GTZ:
423     case Instruction::IF_LEZ:
424       cur_block->conditional_branch = true;
425       target += insn->dalvikInsn.vB;
426       break;
427     default:
428       LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
429   }
430   CountBranch(target);
431   BasicBlock* taken_block = FindBlock(target, /* split */ true, /* create */ true,
432                                       /* immed_pred_block_p */ &cur_block);
433   cur_block->taken = taken_block->id;
434   taken_block->predecessors->Insert(cur_block->id);
435 
436   /* Always terminate the current block for conditional branches */
437   if (flags & Instruction::kContinue) {
438     BasicBlock* fallthrough_block = FindBlock(cur_offset +  width,
439                                              /*
440                                               * If the method is processed
441                                               * in sequential order from the
442                                               * beginning, we don't need to
443                                               * specify split for continue
444                                               * blocks. However, this
445                                               * routine can be called by
446                                               * compileLoop, which starts
447                                               * parsing the method from an
448                                               * arbitrary address in the
449                                               * method body.
450                                               */
451                                              true,
452                                              /* create */
453                                              true,
454                                              /* immed_pred_block_p */
455                                              &cur_block);
456     cur_block->fall_through = fallthrough_block->id;
457     fallthrough_block->predecessors->Insert(cur_block->id);
458   } else if (code_ptr < code_end) {
459     FindBlock(cur_offset + width, /* split */ false, /* create */ true,
460                 /* immed_pred_block_p */ NULL);
461   }
462   return cur_block;
463 }
464 
465 /* Process instructions with the kSwitch flag */
ProcessCanSwitch(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags)466 BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
467                                        int width, int flags) {
468   const uint16_t* switch_data =
469       reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
470   int size;
471   const int* keyTable;
472   const int* target_table;
473   int i;
474   int first_key;
475 
476   /*
477    * Packed switch data format:
478    *  ushort ident = 0x0100   magic value
479    *  ushort size             number of entries in the table
480    *  int first_key           first (and lowest) switch case value
481    *  int targets[size]       branch targets, relative to switch opcode
482    *
483    * Total size is (4+size*2) 16-bit code units.
484    */
485   if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
486     DCHECK_EQ(static_cast<int>(switch_data[0]),
487               static_cast<int>(Instruction::kPackedSwitchSignature));
488     size = switch_data[1];
489     first_key = switch_data[2] | (switch_data[3] << 16);
490     target_table = reinterpret_cast<const int*>(&switch_data[4]);
491     keyTable = NULL;        // Make the compiler happy.
492   /*
493    * Sparse switch data format:
494    *  ushort ident = 0x0200   magic value
495    *  ushort size             number of entries in the table; > 0
496    *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
497    *  int targets[size]       branch targets, relative to switch opcode
498    *
499    * Total size is (2+size*4) 16-bit code units.
500    */
501   } else {
502     DCHECK_EQ(static_cast<int>(switch_data[0]),
503               static_cast<int>(Instruction::kSparseSwitchSignature));
504     size = switch_data[1];
505     keyTable = reinterpret_cast<const int*>(&switch_data[2]);
506     target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
507     first_key = 0;   // To make the compiler happy.
508   }
509 
510   if (cur_block->successor_block_list_type != kNotUsed) {
511     LOG(FATAL) << "Successor block list already in use: "
512                << static_cast<int>(cur_block->successor_block_list_type);
513   }
514   cur_block->successor_block_list_type =
515       (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?  kPackedSwitch : kSparseSwitch;
516   cur_block->successor_blocks =
517       new (arena_) GrowableArray<SuccessorBlockInfo*>(arena_, size, kGrowableArraySuccessorBlocks);
518 
519   for (i = 0; i < size; i++) {
520     BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* split */ true,
521                                       /* create */ true, /* immed_pred_block_p */ &cur_block);
522     SuccessorBlockInfo* successor_block_info =
523         static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
524                                                        kArenaAllocSuccessor));
525     successor_block_info->block = case_block->id;
526     successor_block_info->key =
527         (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
528         first_key + i : keyTable[i];
529     cur_block->successor_blocks->Insert(successor_block_info);
530     case_block->predecessors->Insert(cur_block->id);
531   }
532 
533   /* Fall-through case */
534   BasicBlock* fallthrough_block = FindBlock(cur_offset +  width, /* split */ false,
535                                             /* create */ true, /* immed_pred_block_p */ NULL);
536   cur_block->fall_through = fallthrough_block->id;
537   fallthrough_block->predecessors->Insert(cur_block->id);
538   return cur_block;
539 }
540 
541 /* Process instructions with the kThrow flag */
ProcessCanThrow(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags,ArenaBitVector * try_block_addr,const uint16_t * code_ptr,const uint16_t * code_end)542 BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
543                                       int width, int flags, ArenaBitVector* try_block_addr,
544                                       const uint16_t* code_ptr, const uint16_t* code_end) {
545   bool in_try_block = try_block_addr->IsBitSet(cur_offset);
546   bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
547   bool build_all_edges =
548       (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
549 
550   /* In try block */
551   if (in_try_block) {
552     CatchHandlerIterator iterator(*current_code_item_, cur_offset);
553 
554     if (cur_block->successor_block_list_type != kNotUsed) {
555       LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
556       LOG(FATAL) << "Successor block list already in use: "
557                  << static_cast<int>(cur_block->successor_block_list_type);
558     }
559 
560     for (; iterator.HasNext(); iterator.Next()) {
561       BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* split*/,
562                                          false /* creat */, NULL  /* immed_pred_block_p */);
563       if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
564           IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
565         // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
566         continue;
567       }
568       if (cur_block->successor_block_list_type == kNotUsed) {
569         cur_block->successor_block_list_type = kCatch;
570         cur_block->successor_blocks = new (arena_) GrowableArray<SuccessorBlockInfo*>(
571             arena_, 2, kGrowableArraySuccessorBlocks);
572       }
573       catch_block->catch_entry = true;
574       if (kIsDebugBuild) {
575         catches_.insert(catch_block->start_offset);
576       }
577       SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
578           (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
579       successor_block_info->block = catch_block->id;
580       successor_block_info->key = iterator.GetHandlerTypeIndex();
581       cur_block->successor_blocks->Insert(successor_block_info);
582       catch_block->predecessors->Insert(cur_block->id);
583     }
584     in_try_block = (cur_block->successor_block_list_type != kNotUsed);
585   }
586   if (!in_try_block && build_all_edges) {
587     BasicBlock* eh_block = NewMemBB(kExceptionHandling, num_blocks_++);
588     cur_block->taken = eh_block->id;
589     block_list_.Insert(eh_block);
590     eh_block->start_offset = cur_offset;
591     eh_block->predecessors->Insert(cur_block->id);
592   }
593 
594   if (is_throw) {
595     cur_block->explicit_throw = true;
596     if (code_ptr < code_end) {
597       // Force creation of new block following THROW via side-effect.
598       FindBlock(cur_offset + width, /* split */ false, /* create */ true,
599                 /* immed_pred_block_p */ NULL);
600     }
601     if (!in_try_block) {
602        // Don't split a THROW that can't rethrow - we're done.
603       return cur_block;
604     }
605   }
606 
607   if (!build_all_edges) {
608     /*
609      * Even though there is an exception edge here, control cannot return to this
610      * method.  Thus, for the purposes of dataflow analysis and optimization, we can
611      * ignore the edge.  Doing this reduces compile time, and increases the scope
612      * of the basic-block level optimization pass.
613      */
614     return cur_block;
615   }
616 
617   /*
618    * Split the potentially-throwing instruction into two parts.
619    * The first half will be a pseudo-op that captures the exception
620    * edges and terminates the basic block.  It always falls through.
621    * Then, create a new basic block that begins with the throwing instruction
622    * (minus exceptions).  Note: this new basic block must NOT be entered into
623    * the block_map.  If the potentially-throwing instruction is the target of a
624    * future branch, we need to find the check psuedo half.  The new
625    * basic block containing the work portion of the instruction should
626    * only be entered via fallthrough from the block containing the
627    * pseudo exception edge MIR.  Note also that this new block is
628    * not automatically terminated after the work portion, and may
629    * contain following instructions.
630    *
631    * Note also that the dex_pc_to_block_map_ entry for the potentially
632    * throwing instruction will refer to the original basic block.
633    */
634   BasicBlock* new_block = NewMemBB(kDalvikByteCode, num_blocks_++);
635   block_list_.Insert(new_block);
636   new_block->start_offset = insn->offset;
637   cur_block->fall_through = new_block->id;
638   new_block->predecessors->Insert(cur_block->id);
639   MIR* new_insn = NewMIR();
640   *new_insn = *insn;
641   insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
642   // Associate the two halves.
643   insn->meta.throw_insn = new_insn;
644   new_block->AppendMIR(new_insn);
645   return new_block;
646 }
647 
648 /* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
InlineMethod(const DexFile::CodeItem * code_item,uint32_t access_flags,InvokeType invoke_type,uint16_t class_def_idx,uint32_t method_idx,jobject class_loader,const DexFile & dex_file)649 void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
650                            InvokeType invoke_type, uint16_t class_def_idx,
651                            uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
652   current_code_item_ = code_item;
653   method_stack_.push_back(std::make_pair(current_method_, current_offset_));
654   current_method_ = m_units_.size();
655   current_offset_ = 0;
656   // TODO: will need to snapshot stack image and use that as the mir context identification.
657   m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
658                      dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
659                      cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
660   const uint16_t* code_ptr = current_code_item_->insns_;
661   const uint16_t* code_end =
662       current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
663 
664   // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
665   // TUNING: use better estimate of basic blocks for following resize.
666   block_list_.Resize(block_list_.Size() + current_code_item_->insns_size_in_code_units_);
667   dex_pc_to_block_map_.SetSize(dex_pc_to_block_map_.Size() + current_code_item_->insns_size_in_code_units_);
668 
669   // TODO: replace with explicit resize routine.  Using automatic extension side effect for now.
670   try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
671   try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
672 
673   // If this is the first method, set up default entry and exit blocks.
674   if (current_method_ == 0) {
675     DCHECK(entry_block_ == NULL);
676     DCHECK(exit_block_ == NULL);
677     DCHECK_EQ(num_blocks_, 0U);
678     // Use id 0 to represent a null block.
679     BasicBlock* null_block = NewMemBB(kNullBlock, num_blocks_++);
680     DCHECK_EQ(null_block->id, NullBasicBlockId);
681     null_block->hidden = true;
682     block_list_.Insert(null_block);
683     entry_block_ = NewMemBB(kEntryBlock, num_blocks_++);
684     block_list_.Insert(entry_block_);
685     exit_block_ = NewMemBB(kExitBlock, num_blocks_++);
686     block_list_.Insert(exit_block_);
687     // TODO: deprecate all "cu->" fields; move what's left to wherever CompilationUnit is allocated.
688     cu_->dex_file = &dex_file;
689     cu_->class_def_idx = class_def_idx;
690     cu_->method_idx = method_idx;
691     cu_->access_flags = access_flags;
692     cu_->invoke_type = invoke_type;
693     cu_->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
694     cu_->num_ins = current_code_item_->ins_size_;
695     cu_->num_regs = current_code_item_->registers_size_ - cu_->num_ins;
696     cu_->num_outs = current_code_item_->outs_size_;
697     cu_->num_dalvik_registers = current_code_item_->registers_size_;
698     cu_->insns = current_code_item_->insns_;
699     cu_->code_item = current_code_item_;
700   } else {
701     UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
702     /*
703      * Will need to manage storage for ins & outs, push prevous state and update
704      * insert point.
705      */
706   }
707 
708   /* Current block to record parsed instructions */
709   BasicBlock* cur_block = NewMemBB(kDalvikByteCode, num_blocks_++);
710   DCHECK_EQ(current_offset_, 0U);
711   cur_block->start_offset = current_offset_;
712   block_list_.Insert(cur_block);
713   // TODO: for inlining support, insert at the insert point rather than entry block.
714   entry_block_->fall_through = cur_block->id;
715   cur_block->predecessors->Insert(entry_block_->id);
716 
717   /* Identify code range in try blocks and set up the empty catch blocks */
718   ProcessTryCatchBlocks();
719 
720   uint64_t merged_df_flags = 0u;
721 
722   /* Parse all instructions and put them into containing basic blocks */
723   while (code_ptr < code_end) {
724     MIR *insn = NewMIR();
725     insn->offset = current_offset_;
726     insn->m_unit_index = current_method_;
727     int width = ParseInsn(code_ptr, &insn->dalvikInsn);
728     Instruction::Code opcode = insn->dalvikInsn.opcode;
729     if (opcode_count_ != NULL) {
730       opcode_count_[static_cast<int>(opcode)]++;
731     }
732 
733     int flags = Instruction::FlagsOf(insn->dalvikInsn.opcode);
734     int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
735 
736     uint64_t df_flags = GetDataFlowAttributes(insn);
737     merged_df_flags |= df_flags;
738 
739     if (df_flags & DF_HAS_DEFS) {
740       def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
741     }
742 
743     if (df_flags & DF_LVN) {
744       cur_block->use_lvn = true;  // Run local value numbering on this basic block.
745     }
746 
747     // Check for inline data block signatures.
748     if (opcode == Instruction::NOP) {
749       // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
750       if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
751         // Could be an aligning nop.  If an embedded data NOP follows, treat pair as single unit.
752         uint16_t following_raw_instruction = code_ptr[1];
753         if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
754             (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
755             (following_raw_instruction == Instruction::kArrayDataSignature)) {
756           width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
757         }
758       }
759       if (width == 1) {
760         // It is a simple nop - treat normally.
761         cur_block->AppendMIR(insn);
762       } else {
763         DCHECK(cur_block->fall_through == NullBasicBlockId);
764         DCHECK(cur_block->taken == NullBasicBlockId);
765         // Unreachable instruction, mark for no continuation and end basic block.
766         flags &= ~Instruction::kContinue;
767         FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
768                   /* immed_pred_block_p */ NULL);
769       }
770     } else {
771       cur_block->AppendMIR(insn);
772     }
773 
774     // Associate the starting dex_pc for this opcode with its containing basic block.
775     dex_pc_to_block_map_.Put(insn->offset, cur_block->id);
776 
777     code_ptr += width;
778 
779     if (flags & Instruction::kBranch) {
780       cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
781                                    width, flags, code_ptr, code_end);
782     } else if (flags & Instruction::kReturn) {
783       cur_block->terminated_by_return = true;
784       cur_block->fall_through = exit_block_->id;
785       exit_block_->predecessors->Insert(cur_block->id);
786       /*
787        * Terminate the current block if there are instructions
788        * afterwards.
789        */
790       if (code_ptr < code_end) {
791         /*
792          * Create a fallthrough block for real instructions
793          * (incl. NOP).
794          */
795          FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
796                    /* immed_pred_block_p */ NULL);
797       }
798     } else if (flags & Instruction::kThrow) {
799       cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
800                                   code_ptr, code_end);
801     } else if (flags & Instruction::kSwitch) {
802       cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags);
803     }
804     if (verify_flags & Instruction::kVerifyVarArgRange ||
805         verify_flags & Instruction::kVerifyVarArgRangeNonZero) {
806       /*
807        * The Quick backend's runtime model includes a gap between a method's
808        * argument ("in") vregs and the rest of its vregs.  Handling a range instruction
809        * which spans the gap is somewhat complicated, and should not happen
810        * in normal usage of dx.  Punt to the interpreter.
811        */
812       int first_reg_in_range = insn->dalvikInsn.vC;
813       int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
814       if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
815         punt_to_interpreter_ = true;
816       }
817     }
818     current_offset_ += width;
819     BasicBlock* next_block = FindBlock(current_offset_, /* split */ false, /* create */
820                                       false, /* immed_pred_block_p */ NULL);
821     if (next_block) {
822       /*
823        * The next instruction could be the target of a previously parsed
824        * forward branch so a block is already created. If the current
825        * instruction is not an unconditional branch, connect them through
826        * the fall-through link.
827        */
828       DCHECK(cur_block->fall_through == NullBasicBlockId ||
829              GetBasicBlock(cur_block->fall_through) == next_block ||
830              GetBasicBlock(cur_block->fall_through) == exit_block_);
831 
832       if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
833         cur_block->fall_through = next_block->id;
834         next_block->predecessors->Insert(cur_block->id);
835       }
836       cur_block = next_block;
837     }
838   }
839   merged_df_flags_ = merged_df_flags;
840 
841   if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
842     DumpCFG("/sdcard/1_post_parse_cfg/", true);
843   }
844 
845   if (cu_->verbose) {
846     DumpMIRGraph();
847   }
848 }
849 
ShowOpcodeStats()850 void MIRGraph::ShowOpcodeStats() {
851   DCHECK(opcode_count_ != NULL);
852   LOG(INFO) << "Opcode Count";
853   for (int i = 0; i < kNumPackedOpcodes; i++) {
854     if (opcode_count_[i] != 0) {
855       LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
856                 << " " << opcode_count_[i];
857     }
858   }
859 }
860 
GetDataFlowAttributes(Instruction::Code opcode)861 uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
862   DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
863   return oat_data_flow_attributes_[opcode];
864 }
865 
GetDataFlowAttributes(MIR * mir)866 uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
867   DCHECK(mir != nullptr);
868   Instruction::Code opcode = mir->dalvikInsn.opcode;
869   return GetDataFlowAttributes(opcode);
870 }
871 
872 // TODO: use a configurable base prefix, and adjust callers to supply pass name.
873 /* Dump the CFG into a DOT graph */
DumpCFG(const char * dir_prefix,bool all_blocks,const char * suffix)874 void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
875   FILE* file;
876   static AtomicInteger cnt(0);
877 
878   // Increment counter to get a unique file number.
879   cnt++;
880 
881   std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
882   ReplaceSpecialChars(fname);
883   fname = StringPrintf("%s%s%x%s_%d.dot", dir_prefix, fname.c_str(),
884                       GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
885                       suffix == nullptr ? "" : suffix,
886                       cnt.LoadRelaxed());
887   file = fopen(fname.c_str(), "w");
888   if (file == NULL) {
889     return;
890   }
891   fprintf(file, "digraph G {\n");
892 
893   fprintf(file, "  rankdir=TB\n");
894 
895   int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
896   int idx;
897 
898   for (idx = 0; idx < num_blocks; idx++) {
899     int block_idx = all_blocks ? idx : dfs_order_->Get(idx);
900     BasicBlock* bb = GetBasicBlock(block_idx);
901     if (bb == NULL) continue;
902     if (bb->block_type == kDead) continue;
903     if (bb->hidden) continue;
904     if (bb->block_type == kEntryBlock) {
905       fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
906     } else if (bb->block_type == kExitBlock) {
907       fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
908     } else if (bb->block_type == kDalvikByteCode) {
909       fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
910               bb->start_offset, bb->id);
911       const MIR* mir;
912         fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
913                 bb->first_mir_insn ? " | " : " ");
914         for (mir = bb->first_mir_insn; mir; mir = mir->next) {
915             int opcode = mir->dalvikInsn.opcode;
916             if (opcode > kMirOpSelect && opcode < kMirOpLast) {
917               if (opcode == kMirOpConstVector) {
918                 fprintf(file, "    {%04x %s %d %d %d %d %d %d\\l}%s\\\n", mir->offset,
919                         extended_mir_op_names_[kMirOpConstVector - kMirOpFirst],
920                         mir->dalvikInsn.vA,
921                         mir->dalvikInsn.vB,
922                         mir->dalvikInsn.arg[0],
923                         mir->dalvikInsn.arg[1],
924                         mir->dalvikInsn.arg[2],
925                         mir->dalvikInsn.arg[3],
926                         mir->next ? " | " : " ");
927               } else {
928                 fprintf(file, "    {%04x %s %d %d %d\\l}%s\\\n", mir->offset,
929                         extended_mir_op_names_[opcode - kMirOpFirst],
930                         mir->dalvikInsn.vA,
931                         mir->dalvikInsn.vB,
932                         mir->dalvikInsn.vC,
933                         mir->next ? " | " : " ");
934               }
935             } else {
936               fprintf(file, "    {%04x %s %s %s %s\\l}%s\\\n", mir->offset,
937                       mir->ssa_rep ? GetDalvikDisassembly(mir) :
938                       !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
939                         Instruction::Name(mir->dalvikInsn.opcode) :
940                         extended_mir_op_names_[opcode - kMirOpFirst],
941                       (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
942                       (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
943                       (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
944                       mir->next ? " | " : " ");
945             }
946         }
947         fprintf(file, "  }\"];\n\n");
948     } else if (bb->block_type == kExceptionHandling) {
949       char block_name[BLOCK_NAME_LEN];
950 
951       GetBlockName(bb, block_name);
952       fprintf(file, "  %s [shape=invhouse];\n", block_name);
953     }
954 
955     char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
956 
957     if (bb->taken != NullBasicBlockId) {
958       GetBlockName(bb, block_name1);
959       GetBlockName(GetBasicBlock(bb->taken), block_name2);
960       fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
961               block_name1, block_name2);
962     }
963     if (bb->fall_through != NullBasicBlockId) {
964       GetBlockName(bb, block_name1);
965       GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
966       fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
967     }
968 
969     if (bb->successor_block_list_type != kNotUsed) {
970       fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
971               bb->start_offset, bb->id,
972               (bb->successor_block_list_type == kCatch) ?  "Mrecord" : "record");
973       GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bb->successor_blocks);
974       SuccessorBlockInfo* successor_block_info = iterator.Next();
975 
976       int succ_id = 0;
977       while (true) {
978         if (successor_block_info == NULL) break;
979 
980         BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
981         SuccessorBlockInfo *next_successor_block_info = iterator.Next();
982 
983         fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
984                 succ_id++,
985                 successor_block_info->key,
986                 dest_block->start_offset,
987                 (next_successor_block_info != NULL) ? " | " : " ");
988 
989         successor_block_info = next_successor_block_info;
990       }
991       fprintf(file, "  }\"];\n\n");
992 
993       GetBlockName(bb, block_name1);
994       fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
995               block_name1, bb->start_offset, bb->id);
996 
997       // Link the successor pseudo-block with all of its potential targets.
998       GrowableArray<SuccessorBlockInfo*>::Iterator iter(bb->successor_blocks);
999 
1000       succ_id = 0;
1001       while (true) {
1002         SuccessorBlockInfo* successor_block_info = iter.Next();
1003         if (successor_block_info == NULL) break;
1004 
1005         BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
1006 
1007         GetBlockName(dest_block, block_name2);
1008         fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
1009                 bb->id, succ_id++, block_name2);
1010       }
1011     }
1012     fprintf(file, "\n");
1013 
1014     if (cu_->verbose) {
1015       /* Display the dominator tree */
1016       GetBlockName(bb, block_name1);
1017       fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
1018               block_name1, block_name1);
1019       if (bb->i_dom) {
1020         GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
1021         fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
1022       }
1023     }
1024   }
1025   fprintf(file, "}\n");
1026   fclose(file);
1027 }
1028 
1029 /* Insert an MIR instruction to the end of a basic block. */
AppendMIR(MIR * mir)1030 void BasicBlock::AppendMIR(MIR* mir) {
1031   // Insert it after the last MIR.
1032   InsertMIRListAfter(last_mir_insn, mir, mir);
1033 }
1034 
AppendMIRList(MIR * first_list_mir,MIR * last_list_mir)1035 void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1036   // Insert it after the last MIR.
1037   InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
1038 }
1039 
AppendMIRList(const std::vector<MIR * > & insns)1040 void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
1041   for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
1042     MIR* new_mir = *it;
1043 
1044     // Add a copy of each MIR.
1045     InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
1046   }
1047 }
1048 
1049 /* Insert a MIR instruction after the specified MIR. */
InsertMIRAfter(MIR * current_mir,MIR * new_mir)1050 void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
1051   InsertMIRListAfter(current_mir, new_mir, new_mir);
1052 }
1053 
InsertMIRListAfter(MIR * insert_after,MIR * first_list_mir,MIR * last_list_mir)1054 void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
1055   // If no MIR, we are done.
1056   if (first_list_mir == nullptr || last_list_mir == nullptr) {
1057     return;
1058   }
1059 
1060   // If insert_after is null, assume BB is empty.
1061   if (insert_after == nullptr) {
1062     first_mir_insn = first_list_mir;
1063     last_mir_insn = last_list_mir;
1064     last_list_mir->next = nullptr;
1065   } else {
1066     MIR* after_list = insert_after->next;
1067     insert_after->next = first_list_mir;
1068     last_list_mir->next = after_list;
1069     if (after_list == nullptr) {
1070       last_mir_insn = last_list_mir;
1071     }
1072   }
1073 
1074   // Set this BB to be the basic block of the MIRs.
1075   MIR* last = last_list_mir->next;
1076   for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
1077     mir->bb = id;
1078   }
1079 }
1080 
1081 /* Insert an MIR instruction to the head of a basic block. */
PrependMIR(MIR * mir)1082 void BasicBlock::PrependMIR(MIR* mir) {
1083   InsertMIRListBefore(first_mir_insn, mir, mir);
1084 }
1085 
PrependMIRList(MIR * first_list_mir,MIR * last_list_mir)1086 void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1087   // Insert it before the first MIR.
1088   InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
1089 }
1090 
PrependMIRList(const std::vector<MIR * > & to_add)1091 void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
1092   for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
1093     MIR* mir = *it;
1094 
1095     InsertMIRListBefore(first_mir_insn, mir, mir);
1096   }
1097 }
1098 
1099 /* Insert a MIR instruction before the specified MIR. */
InsertMIRBefore(MIR * current_mir,MIR * new_mir)1100 void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
1101   // Insert as a single element list.
1102   return InsertMIRListBefore(current_mir, new_mir, new_mir);
1103 }
1104 
FindPreviousMIR(MIR * mir)1105 MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
1106   MIR* current = first_mir_insn;
1107 
1108   while (current != nullptr) {
1109     MIR* next = current->next;
1110 
1111     if (next == mir) {
1112       return current;
1113     }
1114 
1115     current = next;
1116   }
1117 
1118   return nullptr;
1119 }
1120 
InsertMIRListBefore(MIR * insert_before,MIR * first_list_mir,MIR * last_list_mir)1121 void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
1122   // If no MIR, we are done.
1123   if (first_list_mir == nullptr || last_list_mir == nullptr) {
1124     return;
1125   }
1126 
1127   // If insert_before is null, assume BB is empty.
1128   if (insert_before == nullptr) {
1129     first_mir_insn = first_list_mir;
1130     last_mir_insn = last_list_mir;
1131     last_list_mir->next = nullptr;
1132   } else {
1133     if (first_mir_insn == insert_before) {
1134       last_list_mir->next = first_mir_insn;
1135       first_mir_insn = first_list_mir;
1136     } else {
1137       // Find the preceding MIR.
1138       MIR* before_list = FindPreviousMIR(insert_before);
1139       DCHECK(before_list != nullptr);
1140       before_list->next = first_list_mir;
1141       last_list_mir->next = insert_before;
1142     }
1143   }
1144 
1145   // Set this BB to be the basic block of the MIRs.
1146   for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1147     mir->bb = id;
1148   }
1149 }
1150 
RemoveMIR(MIR * mir)1151 bool BasicBlock::RemoveMIR(MIR* mir) {
1152   // Remove as a single element list.
1153   return RemoveMIRList(mir, mir);
1154 }
1155 
RemoveMIRList(MIR * first_list_mir,MIR * last_list_mir)1156 bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1157   if (first_list_mir == nullptr) {
1158     return false;
1159   }
1160 
1161   // Try to find the MIR.
1162   MIR* before_list = nullptr;
1163   MIR* after_list = nullptr;
1164 
1165   // If we are removing from the beginning of the MIR list.
1166   if (first_mir_insn == first_list_mir) {
1167     before_list = nullptr;
1168   } else {
1169     before_list = FindPreviousMIR(first_list_mir);
1170     if (before_list == nullptr) {
1171       // We did not find the mir.
1172       return false;
1173     }
1174   }
1175 
1176   // Remove the BB information and also find the after_list.
1177   for (MIR* mir = first_list_mir; mir != last_list_mir; mir = mir->next) {
1178     mir->bb = NullBasicBlockId;
1179   }
1180 
1181   after_list = last_list_mir->next;
1182 
1183   // If there is nothing before the list, after_list is the first_mir.
1184   if (before_list == nullptr) {
1185     first_mir_insn = after_list;
1186   } else {
1187     before_list->next = after_list;
1188   }
1189 
1190   // If there is nothing after the list, before_list is last_mir.
1191   if (after_list == nullptr) {
1192     last_mir_insn = before_list;
1193   }
1194 
1195   return true;
1196 }
1197 
GetNextUnconditionalMir(MIRGraph * mir_graph,MIR * current)1198 MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
1199   MIR* next_mir = nullptr;
1200 
1201   if (current != nullptr) {
1202     next_mir = current->next;
1203   }
1204 
1205   if (next_mir == nullptr) {
1206     // Only look for next MIR that follows unconditionally.
1207     if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
1208       next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
1209     }
1210   }
1211 
1212   return next_mir;
1213 }
1214 
GetDalvikDisassembly(const MIR * mir)1215 char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
1216   MIR::DecodedInstruction insn = mir->dalvikInsn;
1217   std::string str;
1218   int flags = 0;
1219   int opcode = insn.opcode;
1220   char* ret;
1221   bool nop = false;
1222   SSARepresentation* ssa_rep = mir->ssa_rep;
1223   Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format.
1224   int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
1225   int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
1226 
1227   // Handle special cases.
1228   if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
1229     str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1230     str.append(": ");
1231     // Recover the original Dex instruction.
1232     insn = mir->meta.throw_insn->dalvikInsn;
1233     ssa_rep = mir->meta.throw_insn->ssa_rep;
1234     defs = ssa_rep->num_defs;
1235     uses = ssa_rep->num_uses;
1236     opcode = insn.opcode;
1237   } else if (opcode == kMirOpNop) {
1238     str.append("[");
1239     // Recover original opcode.
1240     insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
1241     opcode = insn.opcode;
1242     nop = true;
1243   }
1244 
1245   if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
1246     str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1247   } else {
1248     dalvik_format = Instruction::FormatOf(insn.opcode);
1249     flags = Instruction::FlagsOf(insn.opcode);
1250     str.append(Instruction::Name(insn.opcode));
1251   }
1252 
1253   if (opcode == kMirOpPhi) {
1254     BasicBlockId* incoming = mir->meta.phi_incoming;
1255     str.append(StringPrintf(" %s = (%s",
1256                GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
1257                GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
1258     str.append(StringPrintf(":%d", incoming[0]));
1259     int i;
1260     for (i = 1; i < uses; i++) {
1261       str.append(StringPrintf(", %s:%d",
1262                               GetSSANameWithConst(ssa_rep->uses[i], true).c_str(),
1263                               incoming[i]));
1264     }
1265     str.append(")");
1266   } else if ((flags & Instruction::kBranch) != 0) {
1267     // For branches, decode the instructions to print out the branch targets.
1268     int offset = 0;
1269     switch (dalvik_format) {
1270       case Instruction::k21t:
1271         str.append(StringPrintf(" %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1272         offset = insn.vB;
1273         break;
1274       case Instruction::k22t:
1275         str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
1276                    GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
1277         offset = insn.vC;
1278         break;
1279       case Instruction::k10t:
1280       case Instruction::k20t:
1281       case Instruction::k30t:
1282         offset = insn.vA;
1283         break;
1284       default:
1285         LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
1286     }
1287     str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset,
1288                             offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
1289   } else {
1290     // For invokes-style formats, treat wide regs as a pair of singles.
1291     bool show_singles = ((dalvik_format == Instruction::k35c) ||
1292                          (dalvik_format == Instruction::k3rc));
1293     if (defs != 0) {
1294       str.append(StringPrintf(" %s", GetSSANameWithConst(ssa_rep->defs[0], false).c_str()));
1295       if (uses != 0) {
1296         str.append(", ");
1297       }
1298     }
1299     for (int i = 0; i < uses; i++) {
1300       str.append(
1301           StringPrintf(" %s", GetSSANameWithConst(ssa_rep->uses[i], show_singles).c_str()));
1302       if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
1303         // For the listing, skip the high sreg.
1304         i++;
1305       }
1306       if (i != (uses -1)) {
1307         str.append(",");
1308       }
1309     }
1310     switch (dalvik_format) {
1311       case Instruction::k11n:  // Add one immediate from vB.
1312       case Instruction::k21s:
1313       case Instruction::k31i:
1314       case Instruction::k21h:
1315         str.append(StringPrintf(", #%d", insn.vB));
1316         break;
1317       case Instruction::k51l:  // Add one wide immediate.
1318         str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
1319         break;
1320       case Instruction::k21c:  // One register, one string/type/method index.
1321       case Instruction::k31c:
1322         str.append(StringPrintf(", index #%d", insn.vB));
1323         break;
1324       case Instruction::k22c:  // Two registers, one string/type/method index.
1325         str.append(StringPrintf(", index #%d", insn.vC));
1326         break;
1327       case Instruction::k22s:  // Add one immediate from vC.
1328       case Instruction::k22b:
1329         str.append(StringPrintf(", #%d", insn.vC));
1330         break;
1331       default: {
1332         // Nothing left to print.
1333       }
1334     }
1335   }
1336   if (nop) {
1337     str.append("]--optimized away");
1338   }
1339   int length = str.length() + 1;
1340   ret = static_cast<char*>(arena_->Alloc(length, kArenaAllocDFInfo));
1341   strncpy(ret, str.c_str(), length);
1342   return ret;
1343 }
1344 
1345 /* Turn method name into a legal Linux file name */
ReplaceSpecialChars(std::string & str)1346 void MIRGraph::ReplaceSpecialChars(std::string& str) {
1347   static const struct { const char before; const char after; } match[] = {
1348     {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
1349     {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
1350   };
1351   for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
1352     std::replace(str.begin(), str.end(), match[i].before, match[i].after);
1353   }
1354 }
1355 
GetSSAName(int ssa_reg)1356 std::string MIRGraph::GetSSAName(int ssa_reg) {
1357   // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
1358   //       the arena. We should be smarter and just place straight into the arena, or compute the
1359   //       value more lazily.
1360   return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1361 }
1362 
1363 // Similar to GetSSAName, but if ssa name represents an immediate show that as well.
GetSSANameWithConst(int ssa_reg,bool singles_only)1364 std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
1365   if (reg_location_ == NULL) {
1366     // Pre-SSA - just use the standard name.
1367     return GetSSAName(ssa_reg);
1368   }
1369   if (IsConst(reg_location_[ssa_reg])) {
1370     if (!singles_only && reg_location_[ssa_reg].wide) {
1371       return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1372                           ConstantValueWide(reg_location_[ssa_reg]));
1373     } else {
1374       return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1375                           ConstantValue(reg_location_[ssa_reg]));
1376     }
1377   } else {
1378     return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1379   }
1380 }
1381 
GetBlockName(BasicBlock * bb,char * name)1382 void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
1383   switch (bb->block_type) {
1384     case kEntryBlock:
1385       snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
1386       break;
1387     case kExitBlock:
1388       snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
1389       break;
1390     case kDalvikByteCode:
1391       snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
1392       break;
1393     case kExceptionHandling:
1394       snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
1395                bb->id);
1396       break;
1397     default:
1398       snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
1399       break;
1400   }
1401 }
1402 
GetShortyFromTargetIdx(int target_idx)1403 const char* MIRGraph::GetShortyFromTargetIdx(int target_idx) {
1404   // TODO: for inlining support, use current code unit.
1405   const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(target_idx);
1406   return cu_->dex_file->GetShorty(method_id.proto_idx_);
1407 }
1408 
1409 /* Debug Utility - dump a compilation unit */
DumpMIRGraph()1410 void MIRGraph::DumpMIRGraph() {
1411   BasicBlock* bb;
1412   const char* block_type_names[] = {
1413     "Null Block",
1414     "Entry Block",
1415     "Code Block",
1416     "Exit Block",
1417     "Exception Handling",
1418     "Catch Block"
1419   };
1420 
1421   LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1422   LOG(INFO) << cu_->insns << " insns";
1423   LOG(INFO) << GetNumBlocks() << " blocks in total";
1424   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1425 
1426   while (true) {
1427     bb = iterator.Next();
1428     if (bb == NULL) break;
1429     LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
1430         bb->id,
1431         block_type_names[bb->block_type],
1432         bb->start_offset,
1433         bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
1434         bb->last_mir_insn ? "" : " empty");
1435     if (bb->taken != NullBasicBlockId) {
1436       LOG(INFO) << "  Taken branch: block " << bb->taken
1437                 << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
1438     }
1439     if (bb->fall_through != NullBasicBlockId) {
1440       LOG(INFO) << "  Fallthrough : block " << bb->fall_through
1441                 << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
1442     }
1443   }
1444 }
1445 
1446 /*
1447  * Build an array of location records for the incoming arguments.
1448  * Note: one location record per word of arguments, with dummy
1449  * high-word loc for wide arguments.  Also pull up any following
1450  * MOVE_RESULT and incorporate it into the invoke.
1451  */
NewMemCallInfo(BasicBlock * bb,MIR * mir,InvokeType type,bool is_range)1452 CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type,
1453                                   bool is_range) {
1454   CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
1455                                                         kArenaAllocMisc));
1456   MIR* move_result_mir = FindMoveResult(bb, mir);
1457   if (move_result_mir == NULL) {
1458     info->result.location = kLocInvalid;
1459   } else {
1460     info->result = GetRawDest(move_result_mir);
1461     move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1462   }
1463   info->num_arg_words = mir->ssa_rep->num_uses;
1464   info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
1465       (arena_->Alloc(sizeof(RegLocation) * info->num_arg_words, kArenaAllocMisc));
1466   for (int i = 0; i < info->num_arg_words; i++) {
1467     info->args[i] = GetRawSrc(mir, i);
1468   }
1469   info->opt_flags = mir->optimization_flags;
1470   info->type = type;
1471   info->is_range = is_range;
1472   info->index = mir->dalvikInsn.vB;
1473   info->offset = mir->offset;
1474   info->mir = mir;
1475   return info;
1476 }
1477 
1478 // Allocate a new MIR.
NewMIR()1479 MIR* MIRGraph::NewMIR() {
1480   MIR* mir = new (arena_) MIR();
1481   return mir;
1482 }
1483 
1484 // Allocate a new basic block.
NewMemBB(BBType block_type,int block_id)1485 BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
1486   BasicBlock* bb = new (arena_) BasicBlock();
1487 
1488   bb->block_type = block_type;
1489   bb->id = block_id;
1490   // TUNING: better estimate of the exit block predecessors?
1491   bb->predecessors = new (arena_) GrowableArray<BasicBlockId>(arena_,
1492                                                              (block_type == kExitBlock) ? 2048 : 2,
1493                                                              kGrowableArrayPredecessors);
1494   bb->successor_block_list_type = kNotUsed;
1495   block_id_map_.Put(block_id, block_id);
1496   return bb;
1497 }
1498 
InitializeConstantPropagation()1499 void MIRGraph::InitializeConstantPropagation() {
1500   is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
1501   constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(), kArenaAllocDFInfo));
1502 }
1503 
InitializeMethodUses()1504 void MIRGraph::InitializeMethodUses() {
1505   // The gate starts by initializing the use counts.
1506   int num_ssa_regs = GetNumSSARegs();
1507   use_counts_.Resize(num_ssa_regs + 32);
1508   raw_use_counts_.Resize(num_ssa_regs + 32);
1509   // Initialize list.
1510   for (int i = 0; i < num_ssa_regs; i++) {
1511     use_counts_.Insert(0);
1512     raw_use_counts_.Insert(0);
1513   }
1514 }
1515 
SSATransformationStart()1516 void MIRGraph::SSATransformationStart() {
1517   DCHECK(temp_scoped_alloc_.get() == nullptr);
1518   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1519   temp_bit_vector_size_ = cu_->num_dalvik_registers;
1520   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1521       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapRegisterV);
1522 
1523   // Update the maximum number of reachable blocks.
1524   max_num_reachable_blocks_ = num_reachable_blocks_;
1525 }
1526 
SSATransformationEnd()1527 void MIRGraph::SSATransformationEnd() {
1528   // Verify the dataflow information after the pass.
1529   if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
1530     VerifyDataflow();
1531   }
1532 
1533   temp_bit_vector_size_ = 0u;
1534   temp_bit_vector_ = nullptr;
1535   DCHECK(temp_scoped_alloc_.get() != nullptr);
1536   temp_scoped_alloc_.reset();
1537 }
1538 
SelectTopologicalSortOrderFallBack(MIRGraph * mir_graph,const ArenaBitVector * current_loop,const ScopedArenaVector<size_t> * visited_cnt_values,ScopedArenaAllocator * allocator,ScopedArenaVector<BasicBlockId> * tmp_stack)1539 static BasicBlock* SelectTopologicalSortOrderFallBack(
1540     MIRGraph* mir_graph, const ArenaBitVector* current_loop,
1541     const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
1542     ScopedArenaVector<BasicBlockId>* tmp_stack) {
1543   // No true loop head has been found but there may be true loop heads after the mess we need
1544   // to resolve. To avoid taking one of those, pick the candidate with the highest number of
1545   // reachable unvisited nodes. That candidate will surely be a part of a loop.
1546   BasicBlock* fall_back = nullptr;
1547   size_t fall_back_num_reachable = 0u;
1548   // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
1549   ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
1550   AllNodesIterator iter(mir_graph);
1551   for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
1552     if (candidate->hidden ||                            // Hidden, or
1553         candidate->visited ||                           // already processed, or
1554         (*visited_cnt_values)[candidate->id] == 0u ||   // no processed predecessors, or
1555         (current_loop != nullptr &&                     // outside current loop.
1556          !current_loop->IsBitSet(candidate->id))) {
1557       continue;
1558     }
1559     DCHECK(tmp_stack->empty());
1560     tmp_stack->push_back(candidate->id);
1561     candidate_reachable.ClearAllBits();
1562     size_t num_reachable = 0u;
1563     while (!tmp_stack->empty()) {
1564       BasicBlockId current_id = tmp_stack->back();
1565       tmp_stack->pop_back();
1566       BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1567       DCHECK(current_bb != nullptr);
1568       ChildBlockIterator child_iter(current_bb, mir_graph);
1569       BasicBlock* child_bb = child_iter.Next();
1570       for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
1571         DCHECK(!child_bb->hidden);
1572         if (child_bb->visited ||                            // Already processed, or
1573             (current_loop != nullptr &&                     // outside current loop.
1574              !current_loop->IsBitSet(child_bb->id))) {
1575           continue;
1576         }
1577         if (!candidate_reachable.IsBitSet(child_bb->id)) {
1578           candidate_reachable.SetBit(child_bb->id);
1579           tmp_stack->push_back(child_bb->id);
1580           num_reachable += 1u;
1581         }
1582       }
1583     }
1584     if (fall_back_num_reachable < num_reachable) {
1585       fall_back_num_reachable = num_reachable;
1586       fall_back = candidate;
1587     }
1588   }
1589   return fall_back;
1590 }
1591 
1592 // Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
ComputeUnvisitedReachableFrom(MIRGraph * mir_graph,BasicBlockId bb_id,ArenaBitVector * reachable,ScopedArenaVector<BasicBlockId> * tmp_stack)1593 static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
1594                                           ArenaBitVector* reachable,
1595                                           ScopedArenaVector<BasicBlockId>* tmp_stack) {
1596   // NOTE: Loop heads indicated by the "visited" flag.
1597   DCHECK(tmp_stack->empty());
1598   reachable->ClearAllBits();
1599   tmp_stack->push_back(bb_id);
1600   while (!tmp_stack->empty()) {
1601     BasicBlockId current_id = tmp_stack->back();
1602     tmp_stack->pop_back();
1603     BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1604     DCHECK(current_bb != nullptr);
1605     GrowableArray<BasicBlockId>::Iterator iter(current_bb->predecessors);
1606     BasicBlock* pred_bb = mir_graph->GetBasicBlock(iter.Next());
1607     for ( ; pred_bb != nullptr; pred_bb = mir_graph->GetBasicBlock(iter.Next())) {
1608       if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
1609         reachable->SetBit(pred_bb->id);
1610         tmp_stack->push_back(pred_bb->id);
1611       }
1612     }
1613   }
1614 }
1615 
ComputeTopologicalSortOrder()1616 void MIRGraph::ComputeTopologicalSortOrder() {
1617   ScopedArenaAllocator allocator(&cu_->arena_stack);
1618   unsigned int num_blocks = GetNumBlocks();
1619 
1620   ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
1621   ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
1622   ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
1623   size_t max_nested_loops = 0u;
1624   ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
1625   loop_exit_blocks.ClearAllBits();
1626 
1627   // Count the number of blocks to process and add the entry block(s).
1628   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1629   unsigned int num_blocks_to_process = 0u;
1630   for (BasicBlock* bb = iterator.Next(); bb != nullptr; bb = iterator.Next()) {
1631     if (bb->hidden == true) {
1632       continue;
1633     }
1634 
1635     num_blocks_to_process += 1u;
1636 
1637     if (bb->predecessors->Size() == 0u) {
1638       // Add entry block to the queue.
1639       q.push(bb);
1640     }
1641   }
1642 
1643   // Create the topological order if need be.
1644   if (topological_order_ == nullptr) {
1645     topological_order_ = new (arena_) GrowableArray<BasicBlockId>(arena_, num_blocks);
1646     topological_order_loop_ends_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1647     topological_order_indexes_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1648   }
1649   topological_order_->Reset();
1650   topological_order_loop_ends_->Reset();
1651   topological_order_indexes_->Reset();
1652   topological_order_loop_ends_->Resize(num_blocks);
1653   topological_order_indexes_->Resize(num_blocks);
1654   for (BasicBlockId i = 0; i != num_blocks; ++i) {
1655     topological_order_loop_ends_->Insert(0u);
1656     topological_order_indexes_->Insert(static_cast<uint16_t>(-1));
1657   }
1658 
1659   // Mark all blocks as unvisited.
1660   ClearAllVisitedFlags();
1661 
1662   // For loop heads, keep track from which blocks they are reachable not going through other
1663   // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
1664   // in this set go into the loop body, the other children are jumping over the loop.
1665   ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
1666   loop_head_reachable_from.resize(num_blocks, nullptr);
1667   // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
1668   ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
1669 
1670   while (num_blocks_to_process != 0u) {
1671     BasicBlock* bb = nullptr;
1672     if (!q.empty()) {
1673       num_blocks_to_process -= 1u;
1674       // Get top.
1675       bb = q.front();
1676       q.pop();
1677       if (bb->visited) {
1678         // Loop head: it was already processed, mark end and copy exit blocks to the queue.
1679         DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1680         uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1681         topological_order_loop_ends_->Put(topological_order_indexes_->Get(bb->id), idx);
1682         DCHECK_EQ(loop_head_stack.back(), bb->id);
1683         loop_head_stack.pop_back();
1684         ArenaBitVector* reachable =
1685             loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1686         for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
1687           if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
1688             q.push(GetBasicBlock(candidate_id));
1689             // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
1690             // so clearing the bit has no effect on the iterator.
1691             loop_exit_blocks.ClearBit(candidate_id);
1692           }
1693         }
1694         continue;
1695       }
1696     } else {
1697       // Find the new loop head.
1698       AllNodesIterator iter(this);
1699       while (true) {
1700         BasicBlock* candidate = iter.Next();
1701         if (candidate == nullptr) {
1702           // We did not find a true loop head, fall back to a reachable block in any loop.
1703           ArenaBitVector* current_loop =
1704               loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1705           bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
1706                                                   &allocator, &tmp_stack);
1707           DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1708           if (kIsDebugBuild && cu_->dex_file != nullptr) {
1709             LOG(INFO) << "Topological sort order: Using fall-back in "
1710                 << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
1711                 << " @0x" << std::hex << bb->start_offset
1712                 << ", num_blocks = " << std::dec << num_blocks;
1713           }
1714           break;
1715         }
1716         if (candidate->hidden ||                            // Hidden, or
1717             candidate->visited ||                           // already processed, or
1718             visited_cnt_values[candidate->id] == 0u ||      // no processed predecessors, or
1719             (!loop_head_stack.empty() &&                    // outside current loop.
1720              !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
1721           continue;
1722         }
1723 
1724         GrowableArray<BasicBlockId>::Iterator pred_iter(candidate->predecessors);
1725         BasicBlock* pred_bb = GetBasicBlock(pred_iter.Next());
1726         for ( ; pred_bb != nullptr; pred_bb = GetBasicBlock(pred_iter.Next())) {
1727           if (pred_bb != candidate && !pred_bb->visited &&
1728               !pred_bb->dominators->IsBitSet(candidate->id)) {
1729             break;  // Keep non-null pred_bb to indicate failure.
1730           }
1731         }
1732         if (pred_bb == nullptr) {
1733           bb = candidate;
1734           break;
1735         }
1736       }
1737       // Compute blocks from which the loop head is reachable and process those blocks first.
1738       ArenaBitVector* reachable =
1739           new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
1740       loop_head_reachable_from[bb->id] = reachable;
1741       ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
1742       // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
1743       loop_head_stack.push_back(bb->id);
1744       max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
1745     }
1746 
1747     DCHECK_EQ(bb->hidden, false);
1748     DCHECK_EQ(bb->visited, false);
1749     bb->visited = true;
1750 
1751     // Now add the basic block.
1752     uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1753     topological_order_indexes_->Put(bb->id, idx);
1754     topological_order_->Insert(bb->id);
1755 
1756     // Update visited_cnt_values for children.
1757     ChildBlockIterator succIter(bb, this);
1758     BasicBlock* successor = succIter.Next();
1759     for ( ; successor != nullptr; successor = succIter.Next()) {
1760       if (successor->hidden) {
1761         continue;
1762       }
1763 
1764       // One more predecessor was visited.
1765       visited_cnt_values[successor->id] += 1u;
1766       if (visited_cnt_values[successor->id] == successor->predecessors->Size()) {
1767         if (loop_head_stack.empty() ||
1768             loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
1769           q.push(successor);
1770         } else {
1771           DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
1772           loop_exit_blocks.SetBit(successor->id);
1773         }
1774       }
1775     }
1776   }
1777 
1778   // Prepare the loop head stack for iteration.
1779   topological_order_loop_head_stack_ =
1780       new (arena_) GrowableArray<std::pair<uint16_t, bool>>(arena_, max_nested_loops);
1781 }
1782 
IsExceptionBlock() const1783 bool BasicBlock::IsExceptionBlock() const {
1784   if (block_type == kExceptionHandling) {
1785     return true;
1786   }
1787   return false;
1788 }
1789 
HasSuspendTestBetween(BasicBlock * source,BasicBlockId target_id)1790 bool MIRGraph::HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id) {
1791   BasicBlock* target = GetBasicBlock(target_id);
1792 
1793   if (source == nullptr || target == nullptr)
1794     return false;
1795 
1796   int idx;
1797   for (idx = gen_suspend_test_list_.Size() - 1; idx >= 0; idx--) {
1798     BasicBlock* bb = gen_suspend_test_list_.Get(idx);
1799     if (bb == source)
1800       return true;  // The block has been inserted by a suspend check before.
1801     if (source->dominators->IsBitSet(bb->id) && bb->dominators->IsBitSet(target_id))
1802       return true;
1803   }
1804 
1805   return false;
1806 }
1807 
ChildBlockIterator(BasicBlock * bb,MIRGraph * mir_graph)1808 ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
1809     : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
1810       visited_taken_(false), have_successors_(false) {
1811   // Check if we actually do have successors.
1812   if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
1813     have_successors_ = true;
1814     successor_iter_.Reset(basic_block_->successor_blocks);
1815   }
1816 }
1817 
Next()1818 BasicBlock* ChildBlockIterator::Next() {
1819   // We check if we have a basic block. If we don't we cannot get next child.
1820   if (basic_block_ == nullptr) {
1821     return nullptr;
1822   }
1823 
1824   // If we haven't visited fallthrough, return that.
1825   if (visited_fallthrough_ == false) {
1826     visited_fallthrough_ = true;
1827 
1828     BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
1829     if (result != nullptr) {
1830       return result;
1831     }
1832   }
1833 
1834   // If we haven't visited taken, return that.
1835   if (visited_taken_ == false) {
1836     visited_taken_ = true;
1837 
1838     BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
1839     if (result != nullptr) {
1840       return result;
1841     }
1842   }
1843 
1844   // We visited both taken and fallthrough. Now check if we have successors we need to visit.
1845   if (have_successors_ == true) {
1846     // Get information about next successor block.
1847     for (SuccessorBlockInfo* successor_block_info = successor_iter_.Next();
1848       successor_block_info != nullptr;
1849       successor_block_info = successor_iter_.Next()) {
1850       // If block was replaced by zero block, take next one.
1851       if (successor_block_info->block != NullBasicBlockId) {
1852         return mir_graph_->GetBasicBlock(successor_block_info->block);
1853       }
1854     }
1855   }
1856 
1857   // We do not have anything.
1858   return nullptr;
1859 }
1860 
Copy(CompilationUnit * c_unit)1861 BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
1862   MIRGraph* mir_graph = c_unit->mir_graph.get();
1863   return Copy(mir_graph);
1864 }
1865 
Copy(MIRGraph * mir_graph)1866 BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
1867   BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
1868 
1869   // We don't do a memcpy style copy here because it would lead to a lot of things
1870   // to clean up. Let us do it by hand instead.
1871   // Copy in taken and fallthrough.
1872   result_bb->fall_through = fall_through;
1873   result_bb->taken = taken;
1874 
1875   // Copy successor links if needed.
1876   ArenaAllocator* arena = mir_graph->GetArena();
1877 
1878   result_bb->successor_block_list_type = successor_block_list_type;
1879   if (result_bb->successor_block_list_type != kNotUsed) {
1880     size_t size = successor_blocks->Size();
1881     result_bb->successor_blocks = new (arena) GrowableArray<SuccessorBlockInfo*>(arena, size, kGrowableArraySuccessorBlocks);
1882     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
1883     while (true) {
1884       SuccessorBlockInfo* sbi_old = iterator.Next();
1885       if (sbi_old == nullptr) {
1886         break;
1887       }
1888       SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
1889       memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
1890       result_bb->successor_blocks->Insert(sbi_new);
1891     }
1892   }
1893 
1894   // Copy offset, method.
1895   result_bb->start_offset = start_offset;
1896 
1897   // Now copy instructions.
1898   for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
1899     // Get a copy first.
1900     MIR* copy = mir->Copy(mir_graph);
1901 
1902     // Append it.
1903     result_bb->AppendMIR(copy);
1904   }
1905 
1906   return result_bb;
1907 }
1908 
Copy(MIRGraph * mir_graph)1909 MIR* MIR::Copy(MIRGraph* mir_graph) {
1910   MIR* res = mir_graph->NewMIR();
1911   *res = *this;
1912 
1913   // Remove links
1914   res->next = nullptr;
1915   res->bb = NullBasicBlockId;
1916   res->ssa_rep = nullptr;
1917 
1918   return res;
1919 }
1920 
Copy(CompilationUnit * c_unit)1921 MIR* MIR::Copy(CompilationUnit* c_unit) {
1922   return Copy(c_unit->mir_graph.get());
1923 }
1924 
GetStartUseIndex(Instruction::Code opcode)1925 uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
1926   // Default result.
1927   int res = 0;
1928 
1929   // We are basically setting the iputs to their igets counterparts.
1930   switch (opcode) {
1931     case Instruction::IPUT:
1932     case Instruction::IPUT_OBJECT:
1933     case Instruction::IPUT_BOOLEAN:
1934     case Instruction::IPUT_BYTE:
1935     case Instruction::IPUT_CHAR:
1936     case Instruction::IPUT_SHORT:
1937     case Instruction::IPUT_QUICK:
1938     case Instruction::IPUT_OBJECT_QUICK:
1939     case Instruction::APUT:
1940     case Instruction::APUT_OBJECT:
1941     case Instruction::APUT_BOOLEAN:
1942     case Instruction::APUT_BYTE:
1943     case Instruction::APUT_CHAR:
1944     case Instruction::APUT_SHORT:
1945     case Instruction::SPUT:
1946     case Instruction::SPUT_OBJECT:
1947     case Instruction::SPUT_BOOLEAN:
1948     case Instruction::SPUT_BYTE:
1949     case Instruction::SPUT_CHAR:
1950     case Instruction::SPUT_SHORT:
1951       // Skip the VR containing what to store.
1952       res = 1;
1953       break;
1954     case Instruction::IPUT_WIDE:
1955     case Instruction::IPUT_WIDE_QUICK:
1956     case Instruction::APUT_WIDE:
1957     case Instruction::SPUT_WIDE:
1958       // Skip the two VRs containing what to store.
1959       res = 2;
1960       break;
1961     default:
1962       // Do nothing in the general case.
1963       break;
1964   }
1965 
1966   return res;
1967 }
1968 
1969 /**
1970  * @brief Given a decoded instruction, it checks whether the instruction
1971  * sets a constant and if it does, more information is provided about the
1972  * constant being set.
1973  * @param ptr_value pointer to a 64-bit holder for the constant.
1974  * @param wide Updated by function whether a wide constant is being set by bytecode.
1975  * @return Returns false if the decoded instruction does not represent a constant bytecode.
1976  */
GetConstant(int64_t * ptr_value,bool * wide) const1977 bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
1978   bool sets_const = true;
1979   int64_t value = vB;
1980 
1981   DCHECK(ptr_value != nullptr);
1982   DCHECK(wide != nullptr);
1983 
1984   switch (opcode) {
1985     case Instruction::CONST_4:
1986     case Instruction::CONST_16:
1987     case Instruction::CONST:
1988       *wide = false;
1989       value <<= 32;      // In order to get the sign extend.
1990       value >>= 32;
1991       break;
1992     case Instruction::CONST_HIGH16:
1993       *wide = false;
1994       value <<= 48;      // In order to get the sign extend.
1995       value >>= 32;
1996       break;
1997     case Instruction::CONST_WIDE_16:
1998     case Instruction::CONST_WIDE_32:
1999       *wide = true;
2000       value <<= 32;      // In order to get the sign extend.
2001       value >>= 32;
2002       break;
2003     case Instruction::CONST_WIDE:
2004       *wide = true;
2005       value = vB_wide;
2006       break;
2007     case Instruction::CONST_WIDE_HIGH16:
2008       *wide = true;
2009       value <<= 48;      // In order to get the sign extend.
2010       break;
2011     default:
2012       sets_const = false;
2013       break;
2014   }
2015 
2016   if (sets_const) {
2017     *ptr_value = value;
2018   }
2019 
2020   return sets_const;
2021 }
2022 
ResetOptimizationFlags(uint16_t reset_flags)2023 void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
2024   // Reset flags for all MIRs in bb.
2025   for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
2026     mir->optimization_flags &= (~reset_flags);
2027   }
2028 }
2029 
Hide(CompilationUnit * c_unit)2030 void BasicBlock::Hide(CompilationUnit* c_unit) {
2031   // First lets make it a dalvik bytecode block so it doesn't have any special meaning.
2032   block_type = kDalvikByteCode;
2033 
2034   // Mark it as hidden.
2035   hidden = true;
2036 
2037   // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
2038   // are updated to know that they no longer have a parent.
2039   for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2040     mir->bb = NullBasicBlockId;
2041   }
2042   first_mir_insn = nullptr;
2043   last_mir_insn = nullptr;
2044 
2045   GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2046 
2047   MIRGraph* mir_graph = c_unit->mir_graph.get();
2048   while (true) {
2049     BasicBlock* pred_bb = mir_graph->GetBasicBlock(iterator.Next());
2050     if (pred_bb == nullptr) {
2051       break;
2052     }
2053 
2054     // Sadly we have to go through the children by hand here.
2055     pred_bb->ReplaceChild(id, NullBasicBlockId);
2056   }
2057 
2058   // Iterate through children of bb we are hiding.
2059   ChildBlockIterator successorChildIter(this, mir_graph);
2060 
2061   for (BasicBlock* childPtr = successorChildIter.Next(); childPtr != 0; childPtr = successorChildIter.Next()) {
2062     // Replace child with null child.
2063     childPtr->predecessors->Delete(id);
2064   }
2065 }
2066 
IsSSALiveOut(const CompilationUnit * c_unit,int ssa_reg)2067 bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
2068   // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
2069   // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
2070   // then it is not live out of this BB.
2071   int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
2072 
2073   int last_ssa_reg = -1;
2074 
2075   // Walk through the MIRs backwards.
2076   for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2077     // Get ssa rep.
2078     SSARepresentation *ssa_rep = mir->ssa_rep;
2079 
2080     // Go through the defines for this MIR.
2081     for (int i = 0; i < ssa_rep->num_defs; i++) {
2082       DCHECK(ssa_rep->defs != nullptr);
2083 
2084       // Get the ssa reg.
2085       int def_ssa_reg = ssa_rep->defs[i];
2086 
2087       // Get dalvik reg.
2088       int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
2089 
2090       // Compare dalvik regs.
2091       if (dalvik_reg == def_dalvik_reg) {
2092         // We found a def of the register that we are being asked about.
2093         // Remember it.
2094         last_ssa_reg = def_ssa_reg;
2095       }
2096     }
2097   }
2098 
2099   if (last_ssa_reg == -1) {
2100     // If we get to this point we couldn't find a define of register user asked about.
2101     // Let's assume the user knows what he's doing so we can be safe and say that if we
2102     // couldn't find a def, it is live out.
2103     return true;
2104   }
2105 
2106   // If it is not -1, we found a match, is it ssa_reg?
2107   return (ssa_reg == last_ssa_reg);
2108 }
2109 
ReplaceChild(BasicBlockId old_bb,BasicBlockId new_bb)2110 bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
2111   // We need to check taken, fall_through, and successor_blocks to replace.
2112   bool found = false;
2113   if (taken == old_bb) {
2114     taken = new_bb;
2115     found = true;
2116   }
2117 
2118   if (fall_through == old_bb) {
2119     fall_through = new_bb;
2120     found = true;
2121   }
2122 
2123   if (successor_block_list_type != kNotUsed) {
2124     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
2125     while (true) {
2126       SuccessorBlockInfo* successor_block_info = iterator.Next();
2127       if (successor_block_info == nullptr) {
2128         break;
2129       }
2130       if (successor_block_info->block == old_bb) {
2131         successor_block_info->block = new_bb;
2132         found = true;
2133       }
2134     }
2135   }
2136 
2137   return found;
2138 }
2139 
UpdatePredecessor(BasicBlockId old_parent,BasicBlockId new_parent)2140 void BasicBlock::UpdatePredecessor(BasicBlockId old_parent, BasicBlockId new_parent) {
2141   GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2142   bool found = false;
2143 
2144   while (true) {
2145     BasicBlockId pred_bb_id = iterator.Next();
2146 
2147     if (pred_bb_id == NullBasicBlockId) {
2148       break;
2149     }
2150 
2151     if (pred_bb_id == old_parent) {
2152       size_t idx = iterator.GetIndex() - 1;
2153       predecessors->Put(idx, new_parent);
2154       found = true;
2155       break;
2156     }
2157   }
2158 
2159   // If not found, add it.
2160   if (found == false) {
2161     predecessors->Insert(new_parent);
2162   }
2163 }
2164 
2165 // Create a new basic block with block_id as num_blocks_ that is
2166 // post-incremented.
CreateNewBB(BBType block_type)2167 BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
2168   BasicBlock* res = NewMemBB(block_type, num_blocks_++);
2169   block_list_.Insert(res);
2170   return res;
2171 }
2172 
CalculateBasicBlockInformation()2173 void MIRGraph::CalculateBasicBlockInformation() {
2174   PassDriverMEPostOpt driver(cu_);
2175   driver.Launch();
2176 }
2177 
InitializeBasicBlockData()2178 void MIRGraph::InitializeBasicBlockData() {
2179   num_blocks_ = block_list_.Size();
2180 }
2181 
2182 }  // namespace art
2183