1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
18 #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
19
20 namespace android {
21
22 // depends on AudioResamplerFirOps.h
23
24 /* variant for input type TI = int16_t input samples */
25 template<typename TC>
26 static inline
mac(int32_t & l,int32_t & r,TC coef,const int16_t * samples)27 void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples)
28 {
29 uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
30 l = mulAddRL(1, rl, coef, l);
31 r = mulAddRL(0, rl, coef, r);
32 }
33
34 template<typename TC>
35 static inline
mac(int32_t & l,TC coef,const int16_t * samples)36 void mac(int32_t& l, TC coef, const int16_t* samples)
37 {
38 l = mulAdd(samples[0], coef, l);
39 }
40
41 /* variant for input type TI = float input samples */
42 template<typename TC>
43 static inline
mac(float & l,float & r,TC coef,const float * samples)44 void mac(float& l, float& r, TC coef, const float* samples)
45 {
46 l += *samples++ * coef;
47 r += *samples * coef;
48 }
49
50 template<typename TC>
51 static inline
mac(float & l,TC coef,const float * samples)52 void mac(float& l, TC coef, const float* samples)
53 {
54 l += *samples * coef;
55 }
56
57 /* variant for output type TO = int32_t output samples */
58 static inline
volumeAdjust(int32_t value,int32_t volume)59 int32_t volumeAdjust(int32_t value, int32_t volume)
60 {
61 return 2 * mulRL(0, value, volume); // Note: only use top 16b
62 }
63
64 /* variant for output type TO = float output samples */
65 static inline
volumeAdjust(float value,float volume)66 float volumeAdjust(float value, float volume)
67 {
68 return value * volume;
69 }
70
71 /*
72 * Helper template functions for loop unrolling accumulator operations.
73 *
74 * Unrolling the loops achieves about 2x gain.
75 * Using a recursive template rather than an array of TO[] for the accumulator
76 * values is an additional 10-20% gain.
77 */
78
79 template<int CHANNELS, typename TO>
80 class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive
81 {
82 public:
clear()83 inline void clear() {
84 value = 0;
85 Accumulator<CHANNELS-1, TO>::clear();
86 }
87 template<typename TC, typename TI>
acc(TC coef,const TI * & data)88 inline void acc(TC coef, const TI*& data) {
89 mac(value, coef, data++);
90 Accumulator<CHANNELS-1, TO>::acc(coef, data);
91 }
volume(TO * & out,TO gain)92 inline void volume(TO*& out, TO gain) {
93 *out++ = volumeAdjust(value, gain);
94 Accumulator<CHANNELS-1, TO>::volume(out, gain);
95 }
96
97 TO value; // one per recursive inherited base class
98 };
99
100 template<typename TO>
101 class Accumulator<0, TO> {
102 public:
clear()103 inline void clear() {
104 }
105 template<typename TC, typename TI>
acc(TC coef __unused,const TI * & data __unused)106 inline void acc(TC coef __unused, const TI*& data __unused) {
107 }
volume(TO * & out __unused,TO gain __unused)108 inline void volume(TO*& out __unused, TO gain __unused) {
109 }
110 };
111
112 template<typename TC, typename TINTERP>
113 inline
interpolate(TC coef_0,TC coef_1,TINTERP lerp)114 TC interpolate(TC coef_0, TC coef_1, TINTERP lerp)
115 {
116 return lerp * (coef_1 - coef_0) + coef_0;
117 }
118
119 template<>
120 inline
121 int16_t interpolate<int16_t, uint32_t>(int16_t coef_0, int16_t coef_1, uint32_t lerp)
122 { // in some CPU architectures 16b x 16b multiplies are faster.
123 return (static_cast<int16_t>(lerp) * static_cast<int16_t>(coef_1 - coef_0) >> 15) + coef_0;
124 }
125
126 template<>
127 inline
128 int32_t interpolate<int32_t, uint32_t>(int32_t coef_0, int32_t coef_1, uint32_t lerp)
129 {
130 return (lerp * static_cast<int64_t>(coef_1 - coef_0) >> 31) + coef_0;
131 }
132
133 /* class scope for passing in functions into templates */
134 struct InterpCompute {
135 template<typename TC, typename TINTERP>
136 static inline
interpolatepInterpCompute137 TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) {
138 return interpolate(coef_0, coef_1, lerp);
139 }
140
141 template<typename TC, typename TINTERP>
142 static inline
interpolatenInterpCompute143 TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) {
144 return interpolate(coef_0, coef_1, lerp);
145 }
146 };
147
148 struct InterpNull {
149 template<typename TC, typename TINTERP>
150 static inline
interpolatepInterpNull151 TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) {
152 return coef_0;
153 }
154
155 template<typename TC, typename TINTERP>
156 static inline
interpolatenInterpNull157 TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) {
158 return coef_1;
159 }
160 };
161
162 /*
163 * Calculates a single output frame (two samples).
164 *
165 * The Process*() functions compute both the positive half FIR dot product and
166 * the negative half FIR dot product, accumulates, and then applies the volume.
167 *
168 * Use fir() to compute the proper coefficient pointers for a polyphase
169 * filter bank.
170 *
171 * ProcessBase() is the fundamental processing template function.
172 *
173 * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase.
174 * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase.
175 */
176
177 template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO, typename TINTERP>
178 static inline
ProcessBase(TO * const out,size_t count,const TC * coefsP,const TC * coefsN,const TI * sP,const TI * sN,TINTERP lerpP,const TO * const volumeLR)179 void ProcessBase(TO* const out,
180 size_t count,
181 const TC* coefsP,
182 const TC* coefsN,
183 const TI* sP,
184 const TI* sN,
185 TINTERP lerpP,
186 const TO* const volumeLR)
187 {
188 COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS > 0)
189
190 if (CHANNELS > 2) {
191 // TO accum[CHANNELS];
192 Accumulator<CHANNELS, TO> accum;
193
194 // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0;
195 accum.clear();
196 for (size_t i = 0; i < count; ++i) {
197 TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP);
198
199 // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j);
200 const TI *tmp_data = sP; // tmp_ptr seems to work better
201 accum.acc(c, tmp_data);
202
203 coefsP++;
204 sP -= CHANNELS;
205 c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP);
206
207 // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j);
208 tmp_data = sN; // tmp_ptr seems faster than directly using sN
209 accum.acc(c, tmp_data);
210
211 coefsN++;
212 sN += CHANNELS;
213 }
214 // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]);
215 TO *tmp_out = out; // may remove if const out definition changes.
216 accum.volume(tmp_out, volumeLR[0]);
217 } else if (CHANNELS == 2) {
218 TO l = 0;
219 TO r = 0;
220 for (size_t i = 0; i < count; ++i) {
221 mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
222 coefsP++;
223 sP -= CHANNELS;
224 mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
225 coefsN++;
226 sN += CHANNELS;
227 }
228 out[0] += volumeAdjust(l, volumeLR[0]);
229 out[1] += volumeAdjust(r, volumeLR[1]);
230 } else { /* CHANNELS == 1 */
231 TO l = 0;
232 for (size_t i = 0; i < count; ++i) {
233 mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
234 coefsP++;
235 sP -= CHANNELS;
236 mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
237 coefsN++;
238 sN += CHANNELS;
239 }
240 out[0] += volumeAdjust(l, volumeLR[0]);
241 out[1] += volumeAdjust(l, volumeLR[1]);
242 }
243 }
244
245 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO>
246 static inline
ProcessL(TO * const out,int count,const TC * coefsP,const TC * coefsN,const TI * sP,const TI * sN,const TO * const volumeLR)247 void ProcessL(TO* const out,
248 int count,
249 const TC* coefsP,
250 const TC* coefsN,
251 const TI* sP,
252 const TI* sN,
253 const TO* const volumeLR)
254 {
255 ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR);
256 }
257
258 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP>
259 static inline
Process(TO * const out,int count,const TC * coefsP,const TC * coefsN,const TC * coefsP1 __unused,const TC * coefsN1 __unused,const TI * sP,const TI * sN,TINTERP lerpP,const TO * const volumeLR)260 void Process(TO* const out,
261 int count,
262 const TC* coefsP,
263 const TC* coefsN,
264 const TC* coefsP1 __unused,
265 const TC* coefsN1 __unused,
266 const TI* sP,
267 const TI* sN,
268 TINTERP lerpP,
269 const TO* const volumeLR)
270 {
271 ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP, volumeLR);
272 }
273
274 /*
275 * Calculates a single output frame (two samples) from input sample pointer.
276 *
277 * This sets up the params for the accelerated Process() and ProcessL()
278 * functions to do the appropriate dot products.
279 *
280 * @param out should point to the output buffer with space for at least one output frame.
281 *
282 * @param phase is the fractional distance between input frames for interpolation:
283 * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction
284 * of phase/phaseWrapLimit.
285 *
286 * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
287 * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
288 *
289 * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
290 *
291 * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
292 * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
293 *
294 * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
295 * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs
296 * (due to symmetry). The total size of the filter bank in coefficients is
297 * (#polyphases+1)*halfNumCoefs.
298 *
299 * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
300 *
301 * The coefs should be attenuated (to compensate for passband ripple)
302 * if storing back into the native format.
303 *
304 * @param samples are unaligned input samples. The position is in the "middle" of the
305 * sample array with respect to the FIR filter:
306 * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
307 * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
308 *
309 * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
310 * expressed as a S32 integer. A negative value inverts the channel 180 degrees.
311 * The pointer volumeLR should be aligned to a minimum of 8 bytes.
312 * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
313 *
314 * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
315 * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
316 *
317 * The filter polyphase index is given by indexP = phase >> coefShift. Due to
318 * odd length symmetric filter, the polyphase index of the negative half depends on
319 * whether interpolation is used.
320 *
321 * The fractional siting between the polyphase indices is given by the bits below coefShift:
322 *
323 * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply
324 * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
325 *
326 * For integer types, this is expressed as:
327 *
328 * lerpP = phase << sizeof(phase)*8 - coefShift
329 * >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
330 *
331 * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0):
332 *
333 * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent
334 */
335
336 template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO>
337 static inline
fir(TO * const out,const uint32_t phase,const uint32_t phaseWrapLimit,const int coefShift,const int halfNumCoefs,const TC * const coefs,const TI * const samples,const TO * const volumeLR)338 void fir(TO* const out,
339 const uint32_t phase, const uint32_t phaseWrapLimit,
340 const int coefShift, const int halfNumCoefs, const TC* const coefs,
341 const TI* const samples, const TO* const volumeLR)
342 {
343 // NOTE: be very careful when modifying the code here. register
344 // pressure is very high and a small change might cause the compiler
345 // to generate far less efficient code.
346 // Always sanity check the result with objdump or test-resample.
347
348 if (LOCKED) {
349 // locked polyphase (no interpolation)
350 // Compute the polyphase filter index on the positive and negative side.
351 uint32_t indexP = phase >> coefShift;
352 uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
353 const TC* coefsP = coefs + indexP*halfNumCoefs;
354 const TC* coefsN = coefs + indexN*halfNumCoefs;
355 const TI* sP = samples;
356 const TI* sN = samples + CHANNELS;
357
358 // dot product filter.
359 ProcessL<CHANNELS, STRIDE>(out,
360 halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
361 } else {
362 // interpolated polyphase
363 // Compute the polyphase filter index on the positive and negative side.
364 uint32_t indexP = phase >> coefShift;
365 uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
366 const TC* coefsP = coefs + indexP*halfNumCoefs;
367 const TC* coefsN = coefs + indexN*halfNumCoefs;
368 const TC* coefsP1 = coefsP + halfNumCoefs;
369 const TC* coefsN1 = coefsN + halfNumCoefs;
370 const TI* sP = samples;
371 const TI* sN = samples + CHANNELS;
372
373 // Interpolation fraction lerpP derived by shifting all the way up and down
374 // to clear the appropriate bits and align to the appropriate level
375 // for the integer multiply. The constants should resolve in compile time.
376 //
377 // The interpolated filter coefficient is derived as follows for the pos/neg half:
378 //
379 // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
380 // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
381
382 // on-the-fly interpolated dot product filter
383 if (is_same<TC, float>::value || is_same<TC, double>::value) {
384 static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0)
385 TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale;
386
387 Process<CHANNELS, STRIDE>(out,
388 halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
389 } else {
390 uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
391 >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
392
393 Process<CHANNELS, STRIDE>(out,
394 halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
395 }
396 }
397 }
398
399 }; // namespace android
400
401 #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/
402