1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 #define ATRACE_TAG ATRACE_TAG_VIEW
19 
20 #include <math.h>
21 #include <utils/Log.h>
22 #include <utils/Trace.h>
23 
24 #include "AmbientShadow.h"
25 #include "Caches.h"
26 #include "ShadowTessellator.h"
27 #include "SpotShadow.h"
28 
29 namespace android {
30 namespace uirenderer {
31 
tessellateAmbientShadow(bool isCasterOpaque,const Vector3 * casterPolygon,int casterVertexCount,const Vector3 & centroid3d,const Rect & casterBounds,const Rect & localClip,float maxZ,VertexBuffer & shadowVertexBuffer)32 void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
33         const Vector3* casterPolygon, int casterVertexCount,
34         const Vector3& centroid3d, const Rect& casterBounds,
35         const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
36     ATRACE_CALL();
37 
38     // A bunch of parameters to tweak the shadow.
39     // TODO: Allow some of these changable by debug settings or APIs.
40     float heightFactor = 1.0f / 128;
41     const float geomFactor = 64;
42 
43     Caches& caches = Caches::getInstance();
44     if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) {
45         heightFactor *= caches.propertyAmbientRatio;
46     }
47 
48     Rect ambientShadowBounds(casterBounds);
49     ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
50 
51     if (!localClip.intersects(ambientShadowBounds)) {
52 #if DEBUG_SHADOW
53         ALOGD("Ambient shadow is out of clip rect!");
54 #endif
55         return;
56     }
57 
58     AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
59             casterVertexCount, centroid3d, heightFactor, geomFactor,
60             shadowVertexBuffer);
61 }
62 
tessellateSpotShadow(bool isCasterOpaque,const Vector3 * casterPolygon,int casterVertexCount,const Vector3 & casterCentroid,const mat4 & receiverTransform,const Vector3 & lightCenter,int lightRadius,const Rect & casterBounds,const Rect & localClip,VertexBuffer & shadowVertexBuffer)63 void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
64         const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
65         const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
66         const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
67     ATRACE_CALL();
68 
69     Caches& caches = Caches::getInstance();
70 
71     Vector3 adjustedLightCenter(lightCenter);
72     if (CC_UNLIKELY(caches.propertyLightPosY > 0)) {
73         adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up
74     }
75     if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) {
76         adjustedLightCenter.z = caches.propertyLightPosZ;
77     }
78 
79 #if DEBUG_SHADOW
80     ALOGD("light center %f %f %f",
81             adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
82 #endif
83 
84     // light position (because it's in local space) needs to compensate for receiver transform
85     // TODO: should apply to light orientation, not just position
86     Matrix4 reverseReceiverTransform;
87     reverseReceiverTransform.loadInverse(receiverTransform);
88     reverseReceiverTransform.mapPoint3d(adjustedLightCenter);
89 
90     const int lightVertexCount = 8;
91     if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) {
92         lightRadius = caches.propertyLightDiameter;
93     }
94 
95     // Now light and caster are both in local space, we will check whether
96     // the shadow is within the clip area.
97     Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
98             adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
99     lightRect.unionWith(localClip);
100     if (!lightRect.intersects(casterBounds)) {
101 #if DEBUG_SHADOW
102         ALOGD("Spot shadow is out of clip rect!");
103 #endif
104         return;
105     }
106 
107     SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
108             casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);
109 
110 #if DEBUG_SHADOW
111      if(shadowVertexBuffer.getVertexCount() <= 0) {
112         ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
113      }
114 #endif
115 }
116 
generateShadowIndices(uint16_t * shadowIndices)117 void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
118     int currentIndex = 0;
119     const int rays = SHADOW_RAY_COUNT;
120     // For the penumbra area.
121     for (int layer = 0; layer < 2; layer ++) {
122         int baseIndex = layer * rays;
123         for (int i = 0; i < rays; i++) {
124             shadowIndices[currentIndex++] = i + baseIndex;
125             shadowIndices[currentIndex++] = rays + i + baseIndex;
126         }
127         // To close the loop, back to the ray 0.
128         shadowIndices[currentIndex++] = 0 + baseIndex;
129          // Note this is the same as the first index of next layer loop.
130         shadowIndices[currentIndex++] = rays + baseIndex;
131     }
132 
133 #if DEBUG_SHADOW
134     if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
135         ALOGW("vertex index count is wrong. current %d, expected %d",
136                 currentIndex, MAX_SHADOW_INDEX_COUNT);
137     }
138     for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
139         ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
140     }
141 #endif
142 }
143 
144 /**
145  * Calculate the centroid of a 2d polygon.
146  *
147  * @param poly The polygon, which is represented in a Vector2 array.
148  * @param polyLength The length of the polygon in terms of number of vertices.
149  * @return the centroid of the polygon.
150  */
centroid2d(const Vector2 * poly,int polyLength)151 Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
152     double sumx = 0;
153     double sumy = 0;
154     int p1 = polyLength - 1;
155     double area = 0;
156     for (int p2 = 0; p2 < polyLength; p2++) {
157         double x1 = poly[p1].x;
158         double y1 = poly[p1].y;
159         double x2 = poly[p2].x;
160         double y2 = poly[p2].y;
161         double a = (x1 * y2 - x2 * y1);
162         sumx += (x1 + x2) * a;
163         sumy += (y1 + y2) * a;
164         area += a;
165         p1 = p2;
166     }
167 
168     Vector2 centroid = poly[0];
169     if (area != 0) {
170         centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
171             static_cast<float>(sumy / (3 * area))};
172     } else {
173         ALOGW("Area is 0 while computing centroid!");
174     }
175     return centroid;
176 }
177 
178 // Make sure p1 -> p2 is going CW around the poly.
calculateNormal(const Vector2 & p1,const Vector2 & p2)179 Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
180     Vector2 result = p2 - p1;
181     if (result.x != 0 || result.y != 0) {
182         result.normalize();
183         // Calculate the normal , which is CCW 90 rotate to the delta.
184         float tempy = result.y;
185         result.y = result.x;
186         result.x = -tempy;
187     }
188     return result;
189 }
190 /**
191  * Test whether the polygon is order in clockwise.
192  *
193  * @param polygon the polygon as a Vector2 array
194  * @param len the number of points of the polygon
195  */
isClockwise(const Vector2 * polygon,int len)196 bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
197     if (len < 2 || polygon == NULL) {
198         return true;
199     }
200     double sum = 0;
201     double p1x = polygon[len - 1].x;
202     double p1y = polygon[len - 1].y;
203     for (int i = 0; i < len; i++) {
204 
205         double p2x = polygon[i].x;
206         double p2y = polygon[i].y;
207         sum += p1x * p2y - p2x * p1y;
208         p1x = p2x;
209         p1y = p2y;
210     }
211     return sum < 0;
212 }
213 
isClockwisePath(const SkPath & path)214 bool ShadowTessellator::isClockwisePath(const SkPath& path) {
215     SkPath::Iter iter(path, false);
216     SkPoint pts[4];
217     SkPath::Verb v;
218 
219     Vector<Vector2> arrayForDirection;
220     while (SkPath::kDone_Verb != (v = iter.next(pts))) {
221             switch (v) {
222             case SkPath::kMove_Verb:
223                 arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()});
224                 break;
225             case SkPath::kLine_Verb:
226                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
227                 break;
228             case SkPath::kQuad_Verb:
229                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
230                 arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
231                 break;
232             case SkPath::kCubic_Verb:
233                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
234                 arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
235                 arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()});
236                 break;
237             default:
238                 break;
239             }
240     }
241 
242     return isClockwise(arrayForDirection.array(), arrayForDirection.size());
243 }
244 
reverseVertexArray(Vertex * polygon,int len)245 void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
246     int n = len / 2;
247     for (int i = 0; i < n; i++) {
248         Vertex tmp = polygon[i];
249         int k = len - 1 - i;
250         polygon[i] = polygon[k];
251         polygon[k] = tmp;
252     }
253 }
254 
getExtraVertexNumber(const Vector2 & vector1,const Vector2 & vector2,float divisor)255 int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
256         const Vector2& vector2, float divisor) {
257     // When there is no distance difference, there is no need for extra vertices.
258     if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
259         return 0;
260     }
261     // The formula is :
262     // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
263     // The value ranges for each step are:
264     // dot( ) --- [-1, 1]
265     // acos( )     --- [0, M_PI]
266     // floor(...)  --- [0, EXTRA_VERTEX_PER_PI]
267     float dotProduct = vector1.dot(vector2);
268     // TODO: Use look up table for the dotProduct to extraVerticesNumber
269     // computation, if needed.
270     float angle = acosf(dotProduct);
271     return (int) floor(angle / divisor);
272 }
273 
checkOverflow(int used,int total,const char * bufferName)274 void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
275     LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
276             bufferName, used, total);
277 }
278 
279 }; // namespace uirenderer
280 }; // namespace android
281