Lines Matching refs:iu
237 Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
238 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
239 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
240 …void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHo…
241 …void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseh…
279 Index iu = m_matT.cols() - 1; in computeFromHessenberg() local
287 while (iu >= 0) in computeFromHessenberg()
289 Index il = findSmallSubdiagEntry(iu, norm); in computeFromHessenberg()
292 if (il == iu) // One root found in computeFromHessenberg()
294 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; in computeFromHessenberg()
295 if (iu > 0) in computeFromHessenberg()
296 m_matT.coeffRef(iu, iu-1) = Scalar(0); in computeFromHessenberg()
297 iu--; in computeFromHessenberg()
300 else if (il == iu-1) // Two roots found in computeFromHessenberg()
302 splitOffTwoRows(iu, computeU, exshift); in computeFromHessenberg()
303 iu -= 2; in computeFromHessenberg()
310 computeShift(iu, iter, exshift, shiftInfo); in computeFromHessenberg()
315 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); in computeFromHessenberg()
316 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); in computeFromHessenberg()
346 inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scal… in findSmallSubdiagEntry() argument
349 Index res = iu; in findSmallSubdiagEntry()
364 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) in splitOffTwoRows() argument
372 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); in splitOffTwoRows()
373 …Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 in splitOffTwoRows()
374 m_matT.coeffRef(iu,iu) += exshift; in splitOffTwoRows()
375 m_matT.coeffRef(iu-1,iu-1) += exshift; in splitOffTwoRows()
382 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
384 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
386 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); in splitOffTwoRows()
387 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
388 m_matT.coeffRef(iu, iu-1) = Scalar(0); in splitOffTwoRows()
390 m_matU.applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
393 if (iu > 1) in splitOffTwoRows()
394 m_matT.coeffRef(iu-1, iu-2) = Scalar(0); in splitOffTwoRows()
399 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& sh… in computeShift() argument
403 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); in computeShift()
404 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); in computeShift()
405 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); in computeShift()
411 for (Index i = 0; i <= iu; ++i) in computeShift()
413 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); in computeShift()
432 for (Index i = 0; i <= iu; ++i) in computeShift()
441 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo,… in initFrancisQRStep() argument
446 for (im = iu-2; im >= il; --im) in initFrancisQRStep()
468 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU… in performFrancisQRStep() argument
471 eigen_assert(im <= iu-2); in performFrancisQRStep()
475 for (Index k = im; k <= iu-2; ++k) in performFrancisQRStep()
498 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
504 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); in performFrancisQRStep()
511 m_matT.coeffRef(iu-1, iu-2) = beta; in performFrancisQRStep()
512 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); in performFrancisQRStep()
513 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
515 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
519 for (Index i = im+2; i <= iu; ++i) in performFrancisQRStep()