Lines Matching refs:RealScalar
21 typedef typename MatrixType::RealScalar RealScalar; typedef
24 MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) in MatrixPowerRetval()
36 const RealScalar m_p;
49 typedef typename MatrixType::RealScalar RealScalar; typedef
50 typedef std::complex<RealScalar> ComplexScalar;
55 RealScalar m_p;
58 void compute2x2(MatrixType& res, RealScalar p) const;
63 static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
64 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
67 MatrixPowerAtomic(const MatrixType& T, RealScalar p);
72 MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : in MatrixPowerAtomic()
108 void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const in compute2x2()
130 const int digits = std::numeric_limits<RealScalar>::digits; in computeBig()
131 …const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle… in computeBig()
137 RealScalar normIminusT; in computeBig()
155 eigen_assert(m_A(i,i) != RealScalar(0)); in computeBig()
237 …c<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) in computeSuperDiag()
243 …return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (c… in computeSuperDiag()
247 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
248 MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) in computeSuperDiag()
250 RealScalar w = numext::atanh2(curr - prev, curr + prev); in computeSuperDiag()
284 typedef typename MatrixType::RealScalar RealScalar; typedef
306 const MatrixPowerRetval<MatrixType> operator()(RealScalar p) in operator()
317 void compute(ResultType& res, RealScalar p);
323 typedef std::complex<RealScalar> ComplexScalar;
330 RealScalar m_conditionNumber;
332 RealScalar modfAndInit(RealScalar, RealScalar*);
335 void computeIntPower(ResultType&, RealScalar);
338 void computeFracPower(ResultType&, RealScalar);
348 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
355 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) in compute()
364 RealScalar intpart, x = modfAndInit(p, &intpart); in compute()
371 typename MatrixPower<MatrixType>::RealScalar
372 MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart) in modfAndInit()
374 typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray; in modfAndInit()
377 RealScalar res = x - *intpart; in modfAndInit()
388 if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) { in modfAndInit()
397 void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) in computeIntPower()
399 RealScalar pp = std::abs(p); in computeIntPower()
415 void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) in computeFracPower()
436 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, in revertSchur() argument
459 typedef typename Derived::RealScalar RealScalar; typedef
468 MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) in MatrixPowerReturnValue()
486 const RealScalar m_p;
503 const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const