Lines Matching +full:- +full:j

6 Derived from public domain code by D. J. Bernstein.
13 unsigned int j; in add() local
16 for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } in add()
22 unsigned int j; in sub() local
25 for (j = 0;j < 31;++j) { in sub()
26 u += a[j] + 65280 - b[j]; in sub()
27 out[j] = u & 255; in sub()
30 u += a[31] - b[31]; in sub()
36 unsigned int j; in squeeze() local
39 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } in squeeze()
42 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } in squeeze()
53 unsigned int j; in freeze() local
56 for (j = 0;j < 32;++j) aorig[j] = a[j]; in freeze()
58 negative = -((a[31] >> 7) & 1); in freeze()
59 for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); in freeze()
65 unsigned int j; in mult() local
70 for (j = 0;j <= i;++j) u += a[j] * b[i - j]; in mult()
71 for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; in mult()
79 unsigned int j; in mult121665() local
83 for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } in mult121665()
86 for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } in mult121665()
87 u += out[j]; out[j] = u; in mult121665()
93 unsigned int j; in square() local
98 for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; in square()
99 for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; in square()
112 unsigned int j; in select() local
116 bminus1 = b - 1; in select()
117 for (j = 0;j < 64;++j) { in select()
118 t = bminus1 & (r[j] ^ s[j]); in select()
119 p[j] = s[j] ^ t; in select()
120 q[j] = r[j] ^ t; in select()
141 unsigned int j; in mainloop() local
145 for (j = 0;j < 32;++j) xzm1[j] = work[j]; in mainloop()
147 for (j = 33;j < 64;++j) xzm1[j] = 0; in mainloop()
150 for (j = 1;j < 64;++j) xzm[j] = 0; in mainloop()
152 for (pos = 254;pos >= 0;--pos) { in mainloop()
177 for (j = 0;j < 64;++j) work[j] = xzm[j]; in mainloop()
200 /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); in recip()
202 /* 2^6 - 2^1 */ square(t0,z2_5_0); in recip()
203 /* 2^7 - 2^2 */ square(t1,t0); in recip()
204 /* 2^8 - 2^3 */ square(t0,t1); in recip()
205 /* 2^9 - 2^4 */ square(t1,t0); in recip()
206 /* 2^10 - 2^5 */ square(t0,t1); in recip()
207 /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); in recip()
209 /* 2^11 - 2^1 */ square(t0,z2_10_0); in recip()
210 /* 2^12 - 2^2 */ square(t1,t0); in recip()
211 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } in recip()
212 /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); in recip()
214 /* 2^21 - 2^1 */ square(t0,z2_20_0); in recip()
215 /* 2^22 - 2^2 */ square(t1,t0); in recip()
216 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } in recip()
217 /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); in recip()
219 /* 2^41 - 2^1 */ square(t1,t0); in recip()
220 /* 2^42 - 2^2 */ square(t0,t1); in recip()
221 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } in recip()
222 /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); in recip()
224 /* 2^51 - 2^1 */ square(t0,z2_50_0); in recip()
225 /* 2^52 - 2^2 */ square(t1,t0); in recip()
226 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } in recip()
227 /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); in recip()
229 /* 2^101 - 2^1 */ square(t1,z2_100_0); in recip()
230 /* 2^102 - 2^2 */ square(t0,t1); in recip()
231 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } in recip()
232 /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); in recip()
234 /* 2^201 - 2^1 */ square(t0,t1); in recip()
235 /* 2^202 - 2^2 */ square(t1,t0); in recip()
236 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } in recip()
237 /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); in recip()
239 /* 2^251 - 2^1 */ square(t1,t0); in recip()
240 /* 2^252 - 2^2 */ square(t0,t1); in recip()
241 /* 2^253 - 2^3 */ square(t1,t0); in recip()
242 /* 2^254 - 2^4 */ square(t0,t1); in recip()
243 /* 2^255 - 2^5 */ square(t1,t0); in recip()
244 /* 2^255 - 21 */ mult(out,t1,z11); in recip()