/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "gvn_dead_code_elimination.h" #include "base/bit_vector-inl.h" #include "base/macros.h" #include "base/allocator.h" #include "compiler_enums.h" #include "dataflow_iterator-inl.h" #include "dex_instruction.h" #include "dex/mir_graph.h" #include "local_value_numbering.h" #include "utils/arena_bit_vector.h" namespace art { constexpr uint16_t GvnDeadCodeElimination::kNoValue; constexpr uint16_t GvnDeadCodeElimination::kNPos; inline uint16_t GvnDeadCodeElimination::MIRData::PrevChange(int v_reg) const { DCHECK(has_def); DCHECK(v_reg == vreg_def || v_reg == vreg_def + 1); return (v_reg == vreg_def) ? prev_value.change : prev_value_high.change; } inline void GvnDeadCodeElimination::MIRData::SetPrevChange(int v_reg, uint16_t change) { DCHECK(has_def); DCHECK(v_reg == vreg_def || v_reg == vreg_def + 1); if (v_reg == vreg_def) { prev_value.change = change; } else { prev_value_high.change = change; } } inline void GvnDeadCodeElimination::MIRData::RemovePrevChange(int v_reg, MIRData* prev_data) { DCHECK_NE(PrevChange(v_reg), kNPos); DCHECK(v_reg == prev_data->vreg_def || v_reg == prev_data->vreg_def + 1); if (vreg_def == v_reg) { if (prev_data->vreg_def == v_reg) { prev_value = prev_data->prev_value; low_def_over_high_word = prev_data->low_def_over_high_word; } else { prev_value = prev_data->prev_value_high; low_def_over_high_word = !prev_data->high_def_over_low_word; } } else { if (prev_data->vreg_def == v_reg) { prev_value_high = prev_data->prev_value; high_def_over_low_word = !prev_data->low_def_over_high_word; } else { prev_value_high = prev_data->prev_value_high; high_def_over_low_word = prev_data->high_def_over_low_word; } } } GvnDeadCodeElimination::VRegChains::VRegChains(uint32_t num_vregs, ScopedArenaAllocator* alloc) : num_vregs_(num_vregs), vreg_data_(alloc->AllocArray(num_vregs, kArenaAllocMisc)), vreg_high_words_(false, Allocator::GetNoopAllocator(), BitVector::BitsToWords(num_vregs), alloc->AllocArray(BitVector::BitsToWords(num_vregs))), mir_data_(alloc->Adapter()) { mir_data_.reserve(100); } inline void GvnDeadCodeElimination::VRegChains::Reset() { DCHECK(mir_data_.empty()); std::fill_n(vreg_data_, num_vregs_, VRegValue()); vreg_high_words_.ClearAllBits(); } void GvnDeadCodeElimination::VRegChains::AddMIRWithDef(MIR* mir, int v_reg, bool wide, uint16_t new_value) { uint16_t pos = mir_data_.size(); mir_data_.emplace_back(mir); MIRData* data = &mir_data_.back(); data->has_def = true; data->wide_def = wide; data->vreg_def = v_reg; DCHECK_LT(static_cast(v_reg), num_vregs_); data->prev_value = vreg_data_[v_reg]; data->low_def_over_high_word = (vreg_data_[v_reg].change != kNPos) ? GetMIRData(vreg_data_[v_reg].change)->vreg_def + 1 == v_reg : vreg_high_words_.IsBitSet(v_reg); vreg_data_[v_reg].value = new_value; vreg_data_[v_reg].change = pos; vreg_high_words_.ClearBit(v_reg); if (wide) { DCHECK_LT(static_cast(v_reg + 1), num_vregs_); data->prev_value_high = vreg_data_[v_reg + 1]; data->high_def_over_low_word = (vreg_data_[v_reg + 1].change != kNPos) ? GetMIRData(vreg_data_[v_reg + 1].change)->vreg_def == v_reg + 1 : !vreg_high_words_.IsBitSet(v_reg + 1); vreg_data_[v_reg + 1].value = new_value; vreg_data_[v_reg + 1].change = pos; vreg_high_words_.SetBit(v_reg + 1); } } inline void GvnDeadCodeElimination::VRegChains::AddMIRWithoutDef(MIR* mir) { mir_data_.emplace_back(mir); } void GvnDeadCodeElimination::VRegChains::RemoveLastMIRData() { MIRData* data = LastMIRData(); if (data->has_def) { DCHECK_EQ(vreg_data_[data->vreg_def].change, NumMIRs() - 1u); vreg_data_[data->vreg_def] = data->prev_value; DCHECK(!vreg_high_words_.IsBitSet(data->vreg_def)); if (data->low_def_over_high_word) { vreg_high_words_.SetBit(data->vreg_def); } if (data->wide_def) { DCHECK_EQ(vreg_data_[data->vreg_def + 1].change, NumMIRs() - 1u); vreg_data_[data->vreg_def + 1] = data->prev_value_high; DCHECK(vreg_high_words_.IsBitSet(data->vreg_def + 1)); if (data->high_def_over_low_word) { vreg_high_words_.ClearBit(data->vreg_def + 1); } } } mir_data_.pop_back(); } void GvnDeadCodeElimination::VRegChains::RemoveTrailingNops() { // There's at least one NOP to drop. There may be more. MIRData* last_data = LastMIRData(); DCHECK(!last_data->must_keep && !last_data->has_def); do { DCHECK_EQ(static_cast(last_data->mir->dalvikInsn.opcode), static_cast(kMirOpNop)); mir_data_.pop_back(); if (mir_data_.empty()) { break; } last_data = LastMIRData(); } while (!last_data->must_keep && !last_data->has_def); } inline size_t GvnDeadCodeElimination::VRegChains::NumMIRs() const { return mir_data_.size(); } inline GvnDeadCodeElimination::MIRData* GvnDeadCodeElimination::VRegChains::GetMIRData(size_t pos) { DCHECK_LT(pos, mir_data_.size()); return &mir_data_[pos]; } inline GvnDeadCodeElimination::MIRData* GvnDeadCodeElimination::VRegChains::LastMIRData() { DCHECK(!mir_data_.empty()); return &mir_data_.back(); } uint32_t GvnDeadCodeElimination::VRegChains::NumVRegs() const { return num_vregs_; } void GvnDeadCodeElimination::VRegChains::InsertInitialValueHigh(int v_reg, uint16_t value) { DCHECK_NE(value, kNoValue); DCHECK_LT(static_cast(v_reg), num_vregs_); uint16_t change = vreg_data_[v_reg].change; if (change == kNPos) { vreg_data_[v_reg].value = value; vreg_high_words_.SetBit(v_reg); } else { while (true) { MIRData* data = &mir_data_[change]; DCHECK(data->vreg_def == v_reg || data->vreg_def + 1 == v_reg); if (data->vreg_def == v_reg) { // Low word, use prev_value. if (data->prev_value.change == kNPos) { DCHECK_EQ(data->prev_value.value, kNoValue); data->prev_value.value = value; data->low_def_over_high_word = true; break; } change = data->prev_value.change; } else { // High word, use prev_value_high. if (data->prev_value_high.change == kNPos) { DCHECK_EQ(data->prev_value_high.value, kNoValue); data->prev_value_high.value = value; break; } change = data->prev_value_high.change; } } } } void GvnDeadCodeElimination::VRegChains::UpdateInitialVRegValue(int v_reg, bool wide, const LocalValueNumbering* lvn) { DCHECK_LT(static_cast(v_reg), num_vregs_); if (!wide) { if (vreg_data_[v_reg].value == kNoValue) { uint16_t old_value = lvn->GetStartingVregValueNumber(v_reg); if (old_value == kNoValue) { // Maybe there was a wide value in v_reg before. Do not check for wide value in v_reg-1, // that will be done only if we see a definition of v_reg-1, otherwise it's unnecessary. old_value = lvn->GetStartingVregValueNumberWide(v_reg); if (old_value != kNoValue) { InsertInitialValueHigh(v_reg + 1, old_value); } } vreg_data_[v_reg].value = old_value; DCHECK(!vreg_high_words_.IsBitSet(v_reg)); // Keep marked as low word. } } else { DCHECK_LT(static_cast(v_reg + 1), num_vregs_); bool check_high = true; if (vreg_data_[v_reg].value == kNoValue) { uint16_t old_value = lvn->GetStartingVregValueNumberWide(v_reg); if (old_value != kNoValue) { InsertInitialValueHigh(v_reg + 1, old_value); check_high = false; // High word has been processed. } else { // Maybe there was a narrow value before. Do not check for wide value in v_reg-1, // that will be done only if we see a definition of v_reg-1, otherwise it's unnecessary. old_value = lvn->GetStartingVregValueNumber(v_reg); } vreg_data_[v_reg].value = old_value; DCHECK(!vreg_high_words_.IsBitSet(v_reg)); // Keep marked as low word. } if (check_high && vreg_data_[v_reg + 1].value == kNoValue) { uint16_t old_value = lvn->GetStartingVregValueNumber(v_reg + 1); if (old_value == kNoValue && static_cast(v_reg + 2) < num_vregs_) { // Maybe there was a wide value before. old_value = lvn->GetStartingVregValueNumberWide(v_reg + 1); if (old_value != kNoValue) { InsertInitialValueHigh(v_reg + 2, old_value); } } vreg_data_[v_reg + 1].value = old_value; DCHECK(!vreg_high_words_.IsBitSet(v_reg + 1)); // Keep marked as low word. } } } inline uint16_t GvnDeadCodeElimination::VRegChains::LastChange(int v_reg) { DCHECK_LT(static_cast(v_reg), num_vregs_); return vreg_data_[v_reg].change; } inline uint16_t GvnDeadCodeElimination::VRegChains::CurrentValue(int v_reg) { DCHECK_LT(static_cast(v_reg), num_vregs_); return vreg_data_[v_reg].value; } uint16_t GvnDeadCodeElimination::VRegChains::FindKillHead(int v_reg, uint16_t cutoff) { uint16_t current_value = this->CurrentValue(v_reg); DCHECK_NE(current_value, kNoValue); uint16_t change = LastChange(v_reg); DCHECK_LT(change, mir_data_.size()); DCHECK_GE(change, cutoff); bool match_high_word = (mir_data_[change].vreg_def != v_reg); do { MIRData* data = &mir_data_[change]; DCHECK(data->vreg_def == v_reg || data->vreg_def + 1 == v_reg); if (data->vreg_def == v_reg) { // Low word, use prev_value. if (data->prev_value.value == current_value && match_high_word == data->low_def_over_high_word) { break; } change = data->prev_value.change; } else { // High word, use prev_value_high. if (data->prev_value_high.value == current_value && match_high_word != data->high_def_over_low_word) { break; } change = data->prev_value_high.change; } if (change < cutoff) { change = kNPos; } } while (change != kNPos); return change; } uint16_t GvnDeadCodeElimination::VRegChains::FindFirstChangeAfter(int v_reg, uint16_t change) const { DCHECK_LT(static_cast(v_reg), num_vregs_); DCHECK_LT(change, mir_data_.size()); uint16_t result = kNPos; uint16_t search_change = vreg_data_[v_reg].change; while (search_change != kNPos && search_change > change) { result = search_change; search_change = mir_data_[search_change].PrevChange(v_reg); } return result; } void GvnDeadCodeElimination::VRegChains::ReplaceChange(uint16_t old_change, uint16_t new_change) { const MIRData* old_data = GetMIRData(old_change); DCHECK(old_data->has_def); int count = old_data->wide_def ? 2 : 1; for (int v_reg = old_data->vreg_def, end = old_data->vreg_def + count; v_reg != end; ++v_reg) { uint16_t next_change = FindFirstChangeAfter(v_reg, old_change); if (next_change == kNPos) { DCHECK_EQ(vreg_data_[v_reg].change, old_change); vreg_data_[v_reg].change = new_change; DCHECK_EQ(vreg_high_words_.IsBitSet(v_reg), v_reg == old_data->vreg_def + 1); // No change in vreg_high_words_. } else { DCHECK_EQ(mir_data_[next_change].PrevChange(v_reg), old_change); mir_data_[next_change].SetPrevChange(v_reg, new_change); } } } void GvnDeadCodeElimination::VRegChains::RemoveChange(uint16_t change) { MIRData* data = &mir_data_[change]; DCHECK(data->has_def); int count = data->wide_def ? 2 : 1; for (int v_reg = data->vreg_def, end = data->vreg_def + count; v_reg != end; ++v_reg) { uint16_t next_change = FindFirstChangeAfter(v_reg, change); if (next_change == kNPos) { DCHECK_EQ(vreg_data_[v_reg].change, change); vreg_data_[v_reg] = (data->vreg_def == v_reg) ? data->prev_value : data->prev_value_high; DCHECK_EQ(vreg_high_words_.IsBitSet(v_reg), v_reg == data->vreg_def + 1); if (data->vreg_def == v_reg && data->low_def_over_high_word) { vreg_high_words_.SetBit(v_reg); } else if (data->vreg_def != v_reg && data->high_def_over_low_word) { vreg_high_words_.ClearBit(v_reg); } } else { DCHECK_EQ(mir_data_[next_change].PrevChange(v_reg), change); mir_data_[next_change].RemovePrevChange(v_reg, data); } } } inline bool GvnDeadCodeElimination::VRegChains::IsTopChange(uint16_t change) const { DCHECK_LT(change, mir_data_.size()); const MIRData* data = &mir_data_[change]; DCHECK(data->has_def); DCHECK_LT(data->wide_def ? data->vreg_def + 1u : data->vreg_def, num_vregs_); return vreg_data_[data->vreg_def].change == change && (!data->wide_def || vreg_data_[data->vreg_def + 1u].change == change); } bool GvnDeadCodeElimination::VRegChains::IsSRegUsed(uint16_t first_change, uint16_t last_change, int s_reg) const { DCHECK_LE(first_change, last_change); DCHECK_LE(last_change, mir_data_.size()); for (size_t c = first_change; c != last_change; ++c) { SSARepresentation* ssa_rep = mir_data_[c].mir->ssa_rep; for (int i = 0; i != ssa_rep->num_uses; ++i) { if (ssa_rep->uses[i] == s_reg) { return true; } } } return false; } bool GvnDeadCodeElimination::VRegChains::IsVRegUsed(uint16_t first_change, uint16_t last_change, int v_reg, MIRGraph* mir_graph) const { DCHECK_LE(first_change, last_change); DCHECK_LE(last_change, mir_data_.size()); for (size_t c = first_change; c != last_change; ++c) { SSARepresentation* ssa_rep = mir_data_[c].mir->ssa_rep; for (int i = 0; i != ssa_rep->num_uses; ++i) { if (mir_graph->SRegToVReg(ssa_rep->uses[i]) == v_reg) { return true; } } } return false; } void GvnDeadCodeElimination::VRegChains::RenameSRegUses(uint16_t first_change, uint16_t last_change, int old_s_reg, int new_s_reg, bool wide) { for (size_t c = first_change; c != last_change; ++c) { SSARepresentation* ssa_rep = mir_data_[c].mir->ssa_rep; for (int i = 0; i != ssa_rep->num_uses; ++i) { if (ssa_rep->uses[i] == old_s_reg) { ssa_rep->uses[i] = new_s_reg; if (wide) { ++i; DCHECK_LT(i, ssa_rep->num_uses); ssa_rep->uses[i] = new_s_reg + 1; } } } } } void GvnDeadCodeElimination::VRegChains::RenameVRegUses(uint16_t first_change, uint16_t last_change, int old_s_reg, int old_v_reg, int new_s_reg, int new_v_reg) { for (size_t c = first_change; c != last_change; ++c) { MIR* mir = mir_data_[c].mir; if (IsInstructionBinOp2Addr(mir->dalvikInsn.opcode) && mir->ssa_rep->uses[0] == old_s_reg && old_v_reg != new_v_reg) { // Rewrite binop_2ADDR with plain binop before doing the register rename. ChangeBinOp2AddrToPlainBinOp(mir); } uint64_t df_attr = MIRGraph::GetDataFlowAttributes(mir); size_t use = 0u; #define REPLACE_VREG(REG) \ if ((df_attr & DF_U##REG) != 0) { \ if (mir->ssa_rep->uses[use] == old_s_reg) { \ DCHECK_EQ(mir->dalvikInsn.v##REG, static_cast(old_v_reg)); \ mir->dalvikInsn.v##REG = new_v_reg; \ mir->ssa_rep->uses[use] = new_s_reg; \ if ((df_attr & DF_##REG##_WIDE) != 0) { \ DCHECK_EQ(mir->ssa_rep->uses[use + 1], old_s_reg + 1); \ mir->ssa_rep->uses[use + 1] = new_s_reg + 1; \ } \ } \ use += ((df_attr & DF_##REG##_WIDE) != 0) ? 2 : 1; \ } REPLACE_VREG(A) REPLACE_VREG(B) REPLACE_VREG(C) #undef REPLACE_VREG // We may encounter an out-of-order Phi which we need to ignore, otherwise we should // only be asked to rename registers specified by DF_UA, DF_UB and DF_UC. DCHECK_EQ(use, static_cast(mir->dalvikInsn.opcode) == kMirOpPhi ? 0u : static_cast(mir->ssa_rep->num_uses)); } } GvnDeadCodeElimination::GvnDeadCodeElimination(const GlobalValueNumbering* gvn, ScopedArenaAllocator* alloc) : gvn_(gvn), mir_graph_(gvn_->GetMirGraph()), vreg_chains_(mir_graph_->GetNumOfCodeAndTempVRs(), alloc), bb_(nullptr), lvn_(nullptr), no_uses_all_since_(0u), unused_vregs_(new (alloc) ArenaBitVector(alloc, vreg_chains_.NumVRegs(), false)), vregs_to_kill_(new (alloc) ArenaBitVector(alloc, vreg_chains_.NumVRegs(), false)), kill_heads_(alloc->AllocArray(vreg_chains_.NumVRegs(), kArenaAllocMisc)), changes_to_kill_(alloc->Adapter()), dependent_vregs_(new (alloc) ArenaBitVector(alloc, vreg_chains_.NumVRegs(), false)) { changes_to_kill_.reserve(16u); } void GvnDeadCodeElimination::Apply(BasicBlock* bb) { bb_ = bb; lvn_ = gvn_->GetLvn(bb->id); RecordPass(); BackwardPass(); DCHECK_EQ(no_uses_all_since_, 0u); lvn_ = nullptr; bb_ = nullptr; } void GvnDeadCodeElimination::RecordPass() { // Record MIRs with vreg definition data, eliminate single instructions. vreg_chains_.Reset(); DCHECK_EQ(no_uses_all_since_, 0u); for (MIR* mir = bb_->first_mir_insn; mir != nullptr; mir = mir->next) { if (RecordMIR(mir)) { RecordPassTryToKillOverwrittenMoveOrMoveSrc(); RecordPassTryToKillLastMIR(); } } } void GvnDeadCodeElimination::BackwardPass() { // Now process MIRs in reverse order, trying to eliminate them. unused_vregs_->ClearAllBits(); // Implicitly depend on all vregs at the end of BB. while (vreg_chains_.NumMIRs() != 0u) { if (BackwardPassTryToKillLastMIR()) { continue; } BackwardPassProcessLastMIR(); } } void GvnDeadCodeElimination::KillMIR(MIRData* data) { DCHECK(!data->must_keep); DCHECK(!data->uses_all_vregs); DCHECK(data->has_def); DCHECK(data->mir->ssa_rep->num_defs == 1 || data->mir->ssa_rep->num_defs == 2); KillMIR(data->mir); data->has_def = false; data->is_move = false; data->is_move_src = false; } void GvnDeadCodeElimination::KillMIR(MIR* mir) { mir->dalvikInsn.opcode = static_cast(kMirOpNop); mir->ssa_rep->num_uses = 0; mir->ssa_rep->num_defs = 0; } void GvnDeadCodeElimination::ChangeBinOp2AddrToPlainBinOp(MIR* mir) { mir->dalvikInsn.vC = mir->dalvikInsn.vB; mir->dalvikInsn.vB = mir->dalvikInsn.vA; mir->dalvikInsn.opcode = static_cast( mir->dalvikInsn.opcode - Instruction::ADD_INT_2ADDR + Instruction::ADD_INT); } MIR* GvnDeadCodeElimination::CreatePhi(int s_reg) { int v_reg = mir_graph_->SRegToVReg(s_reg); MIR* phi = mir_graph_->NewMIR(); phi->dalvikInsn.opcode = static_cast(kMirOpPhi); phi->dalvikInsn.vA = v_reg; phi->offset = bb_->start_offset; phi->m_unit_index = 0; // Arbitrarily assign all Phi nodes to outermost method. phi->ssa_rep = static_cast(mir_graph_->GetArena()->Alloc( sizeof(SSARepresentation), kArenaAllocDFInfo)); mir_graph_->AllocateSSADefData(phi, 1); phi->ssa_rep->defs[0] = s_reg; size_t num_uses = bb_->predecessors.size(); mir_graph_->AllocateSSAUseData(phi, num_uses); size_t idx = 0u; for (BasicBlockId pred_id : bb_->predecessors) { BasicBlock* pred_bb = mir_graph_->GetBasicBlock(pred_id); DCHECK(pred_bb != nullptr); phi->ssa_rep->uses[idx] = pred_bb->data_flow_info->vreg_to_ssa_map_exit[v_reg]; DCHECK_NE(phi->ssa_rep->uses[idx], INVALID_SREG); idx++; } phi->meta.phi_incoming = static_cast(mir_graph_->GetArena()->Alloc( sizeof(BasicBlockId) * num_uses, kArenaAllocDFInfo)); std::copy(bb_->predecessors.begin(), bb_->predecessors.end(), phi->meta.phi_incoming); bb_->PrependMIR(phi); return phi; } MIR* GvnDeadCodeElimination::RenameSRegDefOrCreatePhi(uint16_t def_change, uint16_t last_change, MIR* mir_to_kill) { DCHECK(mir_to_kill->ssa_rep->num_defs == 1 || mir_to_kill->ssa_rep->num_defs == 2); bool wide = (mir_to_kill->ssa_rep->num_defs != 1); int new_s_reg = mir_to_kill->ssa_rep->defs[0]; // Just before we kill mir_to_kill, we need to replace the previous SSA reg assigned to the // same dalvik reg to keep consistency with subsequent instructions. However, if there's no // defining MIR for that dalvik reg, the preserved values must come from its predecessors // and we need to create a new Phi (a degenerate Phi if there's only a single predecessor). if (def_change == kNPos) { if (wide) { DCHECK_EQ(new_s_reg + 1, mir_to_kill->ssa_rep->defs[1]); DCHECK_EQ(mir_graph_->SRegToVReg(new_s_reg) + 1, mir_graph_->SRegToVReg(new_s_reg + 1)); CreatePhi(new_s_reg + 1); // High word Phi. } MIR* phi = CreatePhi(new_s_reg); // If this is a degenerate Phi with all inputs being the same SSA reg, we need to its uses. DCHECK_NE(phi->ssa_rep->num_uses, 0u); int old_s_reg = phi->ssa_rep->uses[0]; bool all_same = true; for (size_t i = 1u, num = phi->ssa_rep->num_uses; i != num; ++i) { if (phi->ssa_rep->uses[i] != old_s_reg) { all_same = false; break; } } if (all_same) { vreg_chains_.RenameSRegUses(0u, last_change, old_s_reg, new_s_reg, wide); } return phi; } else { DCHECK_LT(def_change, last_change); DCHECK_LE(last_change, vreg_chains_.NumMIRs()); MIRData* def_data = vreg_chains_.GetMIRData(def_change); DCHECK(def_data->has_def); int old_s_reg = def_data->mir->ssa_rep->defs[0]; DCHECK_NE(old_s_reg, new_s_reg); DCHECK_EQ(mir_graph_->SRegToVReg(old_s_reg), mir_graph_->SRegToVReg(new_s_reg)); def_data->mir->ssa_rep->defs[0] = new_s_reg; if (wide) { if (static_cast(def_data->mir->dalvikInsn.opcode) == kMirOpPhi) { // Currently the high word Phi is always located after the low word Phi. MIR* phi_high = def_data->mir->next; DCHECK(phi_high != nullptr && static_cast(phi_high->dalvikInsn.opcode) == kMirOpPhi); DCHECK_EQ(phi_high->ssa_rep->defs[0], old_s_reg + 1); phi_high->ssa_rep->defs[0] = new_s_reg + 1; } else { DCHECK_EQ(def_data->mir->ssa_rep->defs[1], old_s_reg + 1); def_data->mir->ssa_rep->defs[1] = new_s_reg + 1; } } vreg_chains_.RenameSRegUses(def_change + 1u, last_change, old_s_reg, new_s_reg, wide); return nullptr; } } void GvnDeadCodeElimination::BackwardPassProcessLastMIR() { MIRData* data = vreg_chains_.LastMIRData(); if (data->uses_all_vregs) { DCHECK(data->must_keep); unused_vregs_->ClearAllBits(); DCHECK_EQ(no_uses_all_since_, vreg_chains_.NumMIRs()); --no_uses_all_since_; while (no_uses_all_since_ != 0u && !vreg_chains_.GetMIRData(no_uses_all_since_ - 1u)->uses_all_vregs) { --no_uses_all_since_; } } else { if (data->has_def) { unused_vregs_->SetBit(data->vreg_def); if (data->wide_def) { unused_vregs_->SetBit(data->vreg_def + 1); } } for (int i = 0, num_uses = data->mir->ssa_rep->num_uses; i != num_uses; ++i) { int v_reg = mir_graph_->SRegToVReg(data->mir->ssa_rep->uses[i]); unused_vregs_->ClearBit(v_reg); } } vreg_chains_.RemoveLastMIRData(); } void GvnDeadCodeElimination::RecordPassKillMoveByRenamingSrcDef(uint16_t src_change, uint16_t move_change) { DCHECK_LT(src_change, move_change); MIRData* src_data = vreg_chains_.GetMIRData(src_change); MIRData* move_data = vreg_chains_.GetMIRData(move_change); DCHECK(src_data->is_move_src); DCHECK_EQ(src_data->wide_def, move_data->wide_def); DCHECK(move_data->prev_value.change == kNPos || move_data->prev_value.change <= src_change); DCHECK(!move_data->wide_def || move_data->prev_value_high.change == kNPos || move_data->prev_value_high.change <= src_change); int old_s_reg = src_data->mir->ssa_rep->defs[0]; // NOTE: old_s_reg may differ from move_data->mir->ssa_rep->uses[0]; value names must match. int new_s_reg = move_data->mir->ssa_rep->defs[0]; DCHECK_NE(old_s_reg, new_s_reg); if (IsInstructionBinOp2Addr(src_data->mir->dalvikInsn.opcode) && src_data->vreg_def != move_data->vreg_def) { // Rewrite binop_2ADDR with plain binop before doing the register rename. ChangeBinOp2AddrToPlainBinOp(src_data->mir); } // Remove src_change from the vreg chain(s). vreg_chains_.RemoveChange(src_change); // Replace the move_change with the src_change, copying all necessary data. src_data->is_move_src = move_data->is_move_src; src_data->low_def_over_high_word = move_data->low_def_over_high_word; src_data->high_def_over_low_word = move_data->high_def_over_low_word; src_data->vreg_def = move_data->vreg_def; src_data->prev_value = move_data->prev_value; src_data->prev_value_high = move_data->prev_value_high; src_data->mir->dalvikInsn.vA = move_data->vreg_def; src_data->mir->ssa_rep->defs[0] = new_s_reg; if (move_data->wide_def) { DCHECK_EQ(src_data->mir->ssa_rep->defs[1], old_s_reg + 1); src_data->mir->ssa_rep->defs[1] = new_s_reg + 1; } vreg_chains_.ReplaceChange(move_change, src_change); // Rename uses and kill the move. vreg_chains_.RenameVRegUses(src_change + 1u, vreg_chains_.NumMIRs(), old_s_reg, mir_graph_->SRegToVReg(old_s_reg), new_s_reg, mir_graph_->SRegToVReg(new_s_reg)); KillMIR(move_data); } void GvnDeadCodeElimination::RecordPassTryToKillOverwrittenMoveOrMoveSrc(uint16_t check_change) { MIRData* data = vreg_chains_.GetMIRData(check_change); DCHECK(data->is_move || data->is_move_src); int32_t dest_s_reg = data->mir->ssa_rep->defs[0]; if (data->is_move) { // Check if source vreg has changed since the MOVE. int32_t src_s_reg = data->mir->ssa_rep->uses[0]; uint32_t src_v_reg = mir_graph_->SRegToVReg(src_s_reg); uint16_t src_change = vreg_chains_.FindFirstChangeAfter(src_v_reg, check_change); bool wide = data->wide_def; if (wide) { uint16_t src_change_high = vreg_chains_.FindFirstChangeAfter(src_v_reg + 1, check_change); if (src_change_high != kNPos && (src_change == kNPos || src_change_high < src_change)) { src_change = src_change_high; } } if (src_change == kNPos || !vreg_chains_.IsSRegUsed(src_change + 1u, vreg_chains_.NumMIRs(), dest_s_reg)) { // We can simply change all uses of dest to src. size_t rename_end = (src_change != kNPos) ? src_change + 1u : vreg_chains_.NumMIRs(); vreg_chains_.RenameVRegUses(check_change + 1u, rename_end, dest_s_reg, mir_graph_->SRegToVReg(dest_s_reg), src_s_reg, mir_graph_->SRegToVReg(src_s_reg)); // Now, remove the MOVE from the vreg chain(s) and kill it. vreg_chains_.RemoveChange(check_change); KillMIR(data); return; } } if (data->is_move_src) { // Try to find a MOVE to a vreg that wasn't changed since check_change. uint16_t value_name = data->wide_def ? lvn_->GetSregValueWide(dest_s_reg) : lvn_->GetSregValue(dest_s_reg); uint32_t dest_v_reg = mir_graph_->SRegToVReg(dest_s_reg); for (size_t c = check_change + 1u, size = vreg_chains_.NumMIRs(); c != size; ++c) { MIRData* d = vreg_chains_.GetMIRData(c); if (d->is_move && d->wide_def == data->wide_def && (d->prev_value.change == kNPos || d->prev_value.change <= check_change) && (!d->wide_def || d->prev_value_high.change == kNPos || d->prev_value_high.change <= check_change)) { // Compare value names to find move to move. int32_t src_s_reg = d->mir->ssa_rep->uses[0]; uint16_t src_name = (d->wide_def ? lvn_->GetSregValueWide(src_s_reg) : lvn_->GetSregValue(src_s_reg)); if (value_name == src_name) { // Check if the move's destination vreg is unused between check_change and the move. uint32_t new_dest_v_reg = mir_graph_->SRegToVReg(d->mir->ssa_rep->defs[0]); if (!vreg_chains_.IsVRegUsed(check_change + 1u, c, new_dest_v_reg, mir_graph_) && (!d->wide_def || !vreg_chains_.IsVRegUsed(check_change + 1u, c, new_dest_v_reg + 1, mir_graph_))) { // If the move's destination vreg changed, check if the vreg we're trying // to rename is unused after that change. uint16_t dest_change = vreg_chains_.FindFirstChangeAfter(new_dest_v_reg, c); if (d->wide_def) { uint16_t dest_change_high = vreg_chains_.FindFirstChangeAfter(new_dest_v_reg + 1, c); if (dest_change_high != kNPos && (dest_change == kNPos || dest_change_high < dest_change)) { dest_change = dest_change_high; } } if (dest_change == kNPos || !vreg_chains_.IsVRegUsed(dest_change + 1u, size, dest_v_reg, mir_graph_)) { RecordPassKillMoveByRenamingSrcDef(check_change, c); return; } } } } } } } void GvnDeadCodeElimination::RecordPassTryToKillOverwrittenMoveOrMoveSrc() { // Check if we're overwriting a the result of a move or the definition of a source of a move. // For MOVE_WIDE, we may be overwriting partially; if that's the case, check that the other // word wasn't previously overwritten - we would have tried to rename back then. MIRData* data = vreg_chains_.LastMIRData(); if (!data->has_def) { return; } // NOTE: Instructions such as new-array implicitly use all vregs (if they throw) but they can // define a move source which can be renamed. Therefore we allow the checked change to be the // change before no_uses_all_since_. This has no effect on moves as they never use all vregs. if (data->prev_value.change != kNPos && data->prev_value.change + 1u >= no_uses_all_since_) { MIRData* check_data = vreg_chains_.GetMIRData(data->prev_value.change); bool try_to_kill = false; if (!check_data->is_move && !check_data->is_move_src) { DCHECK(!try_to_kill); } else if (!check_data->wide_def) { // Narrow move; always fully overwritten by the last MIR. try_to_kill = true; } else if (data->low_def_over_high_word) { // Overwriting only the high word; is the low word still valid? DCHECK_EQ(check_data->vreg_def + 1u, data->vreg_def); if (vreg_chains_.LastChange(check_data->vreg_def) == data->prev_value.change) { try_to_kill = true; } } else if (!data->wide_def) { // Overwriting only the low word, is the high word still valid? if (vreg_chains_.LastChange(data->vreg_def + 1) == data->prev_value.change) { try_to_kill = true; } } else { // Overwriting both words; was the high word still from the same move? if (data->prev_value_high.change == data->prev_value.change) { try_to_kill = true; } } if (try_to_kill) { RecordPassTryToKillOverwrittenMoveOrMoveSrc(data->prev_value.change); } } if (data->wide_def && data->high_def_over_low_word && data->prev_value_high.change != kNPos && data->prev_value_high.change + 1u >= no_uses_all_since_) { MIRData* check_data = vreg_chains_.GetMIRData(data->prev_value_high.change); bool try_to_kill = false; if (!check_data->is_move && !check_data->is_move_src) { DCHECK(!try_to_kill); } else if (!check_data->wide_def) { // Narrow move; always fully overwritten by the last MIR. try_to_kill = true; } else if (vreg_chains_.LastChange(check_data->vreg_def + 1) == data->prev_value_high.change) { // High word is still valid. try_to_kill = true; } if (try_to_kill) { RecordPassTryToKillOverwrittenMoveOrMoveSrc(data->prev_value_high.change); } } } void GvnDeadCodeElimination::RecordPassTryToKillLastMIR() { MIRData* last_data = vreg_chains_.LastMIRData(); if (last_data->must_keep) { return; } if (UNLIKELY(!last_data->has_def)) { // Must be an eliminated MOVE. Drop its data and data of all eliminated MIRs before it. vreg_chains_.RemoveTrailingNops(); return; } // Try to kill a sequence of consecutive definitions of the same vreg. Allow mixing // wide and non-wide defs; consider high word dead if low word has been overwritten. uint16_t current_value = vreg_chains_.CurrentValue(last_data->vreg_def); uint16_t change = vreg_chains_.NumMIRs() - 1u; MIRData* data = last_data; while (data->prev_value.value != current_value) { --change; if (data->prev_value.change == kNPos || data->prev_value.change != change) { return; } data = vreg_chains_.GetMIRData(data->prev_value.change); if (data->must_keep || !data->has_def || data->vreg_def != last_data->vreg_def) { return; } } bool wide = last_data->wide_def; if (wide) { // Check that the low word is valid. if (data->low_def_over_high_word) { return; } // Check that the high word is valid. MIRData* high_data = data; if (!high_data->wide_def) { uint16_t high_change = vreg_chains_.FindFirstChangeAfter(data->vreg_def + 1, change); DCHECK_NE(high_change, kNPos); high_data = vreg_chains_.GetMIRData(high_change); DCHECK_EQ(high_data->vreg_def, data->vreg_def); } if (high_data->prev_value_high.value != current_value || high_data->high_def_over_low_word) { return; } } MIR* phi = RenameSRegDefOrCreatePhi(data->prev_value.change, change, last_data->mir); for (size_t i = 0, count = vreg_chains_.NumMIRs() - change; i != count; ++i) { KillMIR(vreg_chains_.LastMIRData()->mir); vreg_chains_.RemoveLastMIRData(); } if (phi != nullptr) { // Though the Phi has been added to the beginning, we can put the MIRData at the end. vreg_chains_.AddMIRWithDef(phi, phi->dalvikInsn.vA, wide, current_value); // Reset the previous value to avoid eventually eliminating the Phi itself (unless unused). last_data = vreg_chains_.LastMIRData(); last_data->prev_value.value = kNoValue; last_data->prev_value_high.value = kNoValue; } } uint16_t GvnDeadCodeElimination::FindChangesToKill(uint16_t first_change, uint16_t last_change) { // Process dependencies for changes in range [first_change, last_change) and record all // changes that we need to kill. Return kNPos if there's a dependent change that must be // kept unconditionally; otherwise the end of the range processed before encountering // a change that defines a dalvik reg that we need to keep (last_change on full success). changes_to_kill_.clear(); dependent_vregs_->ClearAllBits(); for (size_t change = first_change; change != last_change; ++change) { MIRData* data = vreg_chains_.GetMIRData(change); DCHECK(!data->uses_all_vregs); bool must_not_depend = data->must_keep; bool depends = false; // Check if the MIR defines a vreg we're trying to eliminate. if (data->has_def && vregs_to_kill_->IsBitSet(data->vreg_def)) { if (change < kill_heads_[data->vreg_def]) { must_not_depend = true; } else { depends = true; } } if (data->has_def && data->wide_def && vregs_to_kill_->IsBitSet(data->vreg_def + 1)) { if (change < kill_heads_[data->vreg_def + 1]) { must_not_depend = true; } else { depends = true; } } if (!depends) { // Check for dependency through SSA reg uses. SSARepresentation* ssa_rep = data->mir->ssa_rep; for (int i = 0; i != ssa_rep->num_uses; ++i) { if (dependent_vregs_->IsBitSet(mir_graph_->SRegToVReg(ssa_rep->uses[i]))) { depends = true; break; } } } // Now check if we can eliminate the insn if we need to. if (depends && must_not_depend) { return kNPos; } if (depends && data->has_def && vreg_chains_.IsTopChange(change) && !vregs_to_kill_->IsBitSet(data->vreg_def) && !unused_vregs_->IsBitSet(data->vreg_def) && (!data->wide_def || !unused_vregs_->IsBitSet(data->vreg_def + 1))) { // This is a top change but neither unnecessary nor one of the top kill changes. return change; } // Finally, update the data. if (depends) { changes_to_kill_.push_back(change); if (data->has_def) { dependent_vregs_->SetBit(data->vreg_def); if (data->wide_def) { dependent_vregs_->SetBit(data->vreg_def + 1); } } } else { if (data->has_def) { dependent_vregs_->ClearBit(data->vreg_def); if (data->wide_def) { dependent_vregs_->ClearBit(data->vreg_def + 1); } } } } return last_change; } void GvnDeadCodeElimination::BackwardPassTryToKillRevertVRegs() { } bool GvnDeadCodeElimination::BackwardPassTryToKillLastMIR() { MIRData* last_data = vreg_chains_.LastMIRData(); if (last_data->must_keep) { return false; } DCHECK(!last_data->uses_all_vregs); if (!last_data->has_def) { // Previously eliminated. DCHECK_EQ(static_cast(last_data->mir->dalvikInsn.opcode), static_cast(kMirOpNop)); vreg_chains_.RemoveTrailingNops(); return true; } if (unused_vregs_->IsBitSet(last_data->vreg_def) || (last_data->wide_def && unused_vregs_->IsBitSet(last_data->vreg_def + 1))) { if (last_data->wide_def) { // For wide defs, one of the vregs may still be considered needed, fix that. unused_vregs_->SetBit(last_data->vreg_def); unused_vregs_->SetBit(last_data->vreg_def + 1); } KillMIR(last_data->mir); vreg_chains_.RemoveLastMIRData(); return true; } vregs_to_kill_->ClearAllBits(); size_t num_mirs = vreg_chains_.NumMIRs(); DCHECK_NE(num_mirs, 0u); uint16_t kill_change = num_mirs - 1u; uint16_t start = num_mirs; size_t num_killed_top_changes = 0u; while (num_killed_top_changes != kMaxNumTopChangesToKill && kill_change != kNPos && kill_change != num_mirs) { ++num_killed_top_changes; DCHECK(vreg_chains_.IsTopChange(kill_change)); MIRData* data = vreg_chains_.GetMIRData(kill_change); int count = data->wide_def ? 2 : 1; for (int v_reg = data->vreg_def, end = data->vreg_def + count; v_reg != end; ++v_reg) { uint16_t kill_head = vreg_chains_.FindKillHead(v_reg, no_uses_all_since_); if (kill_head == kNPos) { return false; } kill_heads_[v_reg] = kill_head; vregs_to_kill_->SetBit(v_reg); start = std::min(start, kill_head); } DCHECK_LT(start, vreg_chains_.NumMIRs()); kill_change = FindChangesToKill(start, num_mirs); } if (kill_change != num_mirs) { return false; } // Kill all MIRs marked as dependent. for (uint32_t v_reg : vregs_to_kill_->Indexes()) { // Rename s_regs or create Phi only once for each MIR (only for low word). MIRData* data = vreg_chains_.GetMIRData(vreg_chains_.LastChange(v_reg)); DCHECK(data->has_def); if (data->vreg_def == v_reg) { MIRData* kill_head_data = vreg_chains_.GetMIRData(kill_heads_[v_reg]); RenameSRegDefOrCreatePhi(kill_head_data->PrevChange(v_reg), num_mirs, data->mir); } else { DCHECK_EQ(data->vreg_def + 1u, v_reg); DCHECK_EQ(vreg_chains_.GetMIRData(kill_heads_[v_reg - 1u])->PrevChange(v_reg - 1u), vreg_chains_.GetMIRData(kill_heads_[v_reg])->PrevChange(v_reg)); } } for (auto it = changes_to_kill_.rbegin(), end = changes_to_kill_.rend(); it != end; ++it) { MIRData* data = vreg_chains_.GetMIRData(*it); DCHECK(!data->must_keep); DCHECK(data->has_def); vreg_chains_.RemoveChange(*it); KillMIR(data); } // Each dependent register not in vregs_to_kill_ is either already marked unused or // it's one word of a wide register where the other word has been overwritten. unused_vregs_->UnionIfNotIn(dependent_vregs_, vregs_to_kill_); vreg_chains_.RemoveTrailingNops(); return true; } bool GvnDeadCodeElimination::RecordMIR(MIR* mir) { bool must_keep = false; bool uses_all_vregs = false; bool is_move = false; uint16_t opcode = mir->dalvikInsn.opcode; switch (opcode) { case kMirOpPhi: { // Determine if this Phi is merging wide regs. RegLocation raw_dest = gvn_->GetMirGraph()->GetRawDest(mir); if (raw_dest.high_word) { // This is the high part of a wide reg. Ignore the Phi. return false; } bool wide = raw_dest.wide; // Record the value. DCHECK_EQ(mir->ssa_rep->num_defs, 1); int s_reg = mir->ssa_rep->defs[0]; uint16_t new_value = wide ? lvn_->GetSregValueWide(s_reg) : lvn_->GetSregValue(s_reg); int v_reg = mir_graph_->SRegToVReg(s_reg); DCHECK_EQ(vreg_chains_.CurrentValue(v_reg), kNoValue); // No previous def for v_reg. if (wide) { DCHECK_EQ(vreg_chains_.CurrentValue(v_reg + 1), kNoValue); } vreg_chains_.AddMIRWithDef(mir, v_reg, wide, new_value); return true; // Avoid the common processing. } case kMirOpNop: case Instruction::NOP: // Don't record NOPs. return false; case kMirOpCheck: must_keep = true; uses_all_vregs = true; break; case Instruction::RETURN_VOID: case Instruction::RETURN: case Instruction::RETURN_OBJECT: case Instruction::RETURN_WIDE: case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: case Instruction::PACKED_SWITCH: case Instruction::SPARSE_SWITCH: case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: case kMirOpFusedCmplFloat: case kMirOpFusedCmpgFloat: case kMirOpFusedCmplDouble: case kMirOpFusedCmpgDouble: case kMirOpFusedCmpLong: must_keep = true; uses_all_vregs = true; // Keep the implicit dependencies on all vregs. break; case Instruction::CONST_CLASS: case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: // NOTE: While we're currently treating CONST_CLASS, CONST_STRING and CONST_STRING_JUMBO // as throwing but we could conceivably try and eliminate those exceptions if we're // retrieving the class/string repeatedly. must_keep = true; uses_all_vregs = true; break; case Instruction::MONITOR_ENTER: case Instruction::MONITOR_EXIT: // We can actually try and optimize across the acquire operation of MONITOR_ENTER, // the value names provided by GVN reflect the possible changes to memory visibility. // NOTE: In ART, MONITOR_ENTER and MONITOR_EXIT can throw only NPE. must_keep = true; uses_all_vregs = (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0; break; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: case Instruction::THROW: case Instruction::FILLED_NEW_ARRAY: case Instruction::FILLED_NEW_ARRAY_RANGE: case Instruction::FILL_ARRAY_DATA: must_keep = true; uses_all_vregs = true; break; case Instruction::NEW_INSTANCE: case Instruction::NEW_ARRAY: must_keep = true; uses_all_vregs = true; break; case Instruction::CHECK_CAST: DCHECK_EQ(mir->ssa_rep->num_uses, 1); must_keep = true; // Keep for type information even if MIR_IGNORE_CHECK_CAST. uses_all_vregs = (mir->optimization_flags & MIR_IGNORE_CHECK_CAST) == 0; break; case kMirOpNullCheck: DCHECK_EQ(mir->ssa_rep->num_uses, 1); if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0) { mir->ssa_rep->num_uses = 0; mir->dalvikInsn.opcode = static_cast(kMirOpNop); return false; } must_keep = true; uses_all_vregs = true; break; case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: case Instruction::MOVE_RESULT_WIDE: break; case Instruction::INSTANCE_OF: break; case Instruction::MOVE_EXCEPTION: must_keep = true; break; case kMirOpCopy: case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_OBJECT_16: { is_move = true; // If the MIR defining src vreg is known, allow renaming all uses of src vreg to dest vreg // while updating the defining MIR to directly define dest vreg. However, changing Phi's // def this way doesn't work without changing MIRs in other BBs. int src_v_reg = mir_graph_->SRegToVReg(mir->ssa_rep->uses[0]); int src_change = vreg_chains_.LastChange(src_v_reg); if (src_change != kNPos) { MIRData* src_data = vreg_chains_.GetMIRData(src_change); if (static_cast(src_data->mir->dalvikInsn.opcode) != kMirOpPhi) { src_data->is_move_src = true; } } break; } case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: case Instruction::CONST_HIGH16: case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: case Instruction::CONST_WIDE: case Instruction::CONST_WIDE_HIGH16: case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: case Instruction::CMP_LONG: case Instruction::NEG_INT: case Instruction::NOT_INT: case Instruction::NEG_LONG: case Instruction::NOT_LONG: case Instruction::NEG_FLOAT: case Instruction::NEG_DOUBLE: case Instruction::INT_TO_LONG: case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_INT: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: case Instruction::INT_TO_BYTE: case Instruction::INT_TO_CHAR: case Instruction::INT_TO_SHORT: case Instruction::ADD_INT: case Instruction::SUB_INT: case Instruction::MUL_INT: case Instruction::AND_INT: case Instruction::OR_INT: case Instruction::XOR_INT: case Instruction::SHL_INT: case Instruction::SHR_INT: case Instruction::USHR_INT: case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::MUL_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::DIV_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_INT_2ADDR: case Instruction::SUB_INT_2ADDR: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT_2ADDR: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT_2ADDR: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::MUL_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::DIV_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: case Instruction::ADD_INT_LIT16: case Instruction::RSUB_INT: case Instruction::MUL_INT_LIT16: case Instruction::AND_INT_LIT16: case Instruction::OR_INT_LIT16: case Instruction::XOR_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT8: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: break; case Instruction::DIV_INT: case Instruction::REM_INT: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: if ((mir->optimization_flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { must_keep = true; uses_all_vregs = true; } break; case Instruction::DIV_INT_LIT16: case Instruction::REM_INT_LIT16: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT8: if (mir->dalvikInsn.vC == 0) { // Explicit division by 0? must_keep = true; uses_all_vregs = true; } break; case Instruction::ARRAY_LENGTH: if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0) { must_keep = true; uses_all_vregs = true; } break; case Instruction::AGET_OBJECT: case Instruction::AGET: case Instruction::AGET_WIDE: case Instruction::AGET_BOOLEAN: case Instruction::AGET_BYTE: case Instruction::AGET_CHAR: case Instruction::AGET_SHORT: if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0 || (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) == 0) { must_keep = true; uses_all_vregs = true; } break; case Instruction::APUT_OBJECT: case Instruction::APUT: case Instruction::APUT_WIDE: case Instruction::APUT_BYTE: case Instruction::APUT_BOOLEAN: case Instruction::APUT_SHORT: case Instruction::APUT_CHAR: must_keep = true; if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0 || (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) == 0) { uses_all_vregs = true; } break; case Instruction::IGET_OBJECT: case Instruction::IGET: case Instruction::IGET_WIDE: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: { const MirIFieldLoweringInfo& info = mir_graph_->GetIFieldLoweringInfo(mir); if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0 || !info.IsResolved() || !info.FastGet()) { must_keep = true; uses_all_vregs = true; } else if (info.IsVolatile()) { must_keep = true; } break; } case Instruction::IPUT_OBJECT: case Instruction::IPUT: case Instruction::IPUT_WIDE: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: { must_keep = true; const MirIFieldLoweringInfo& info = mir_graph_->GetIFieldLoweringInfo(mir); if ((mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0 || !info.IsResolved() || !info.FastPut()) { uses_all_vregs = true; } break; } case Instruction::SGET_OBJECT: case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: { const MirSFieldLoweringInfo& info = mir_graph_->GetSFieldLoweringInfo(mir); if ((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0 || !info.IsResolved() || !info.FastGet()) { must_keep = true; uses_all_vregs = true; } else if (info.IsVolatile()) { must_keep = true; } break; } case Instruction::SPUT_OBJECT: case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { must_keep = true; const MirSFieldLoweringInfo& info = mir_graph_->GetSFieldLoweringInfo(mir); if ((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0 || !info.IsResolved() || !info.FastPut()) { uses_all_vregs = true; } break; } default: LOG(FATAL) << "Unexpected opcode: " << opcode; UNREACHABLE(); } if (mir->ssa_rep->num_defs != 0) { DCHECK(mir->ssa_rep->num_defs == 1 || mir->ssa_rep->num_defs == 2); bool wide = (mir->ssa_rep->num_defs == 2); int s_reg = mir->ssa_rep->defs[0]; int v_reg = mir_graph_->SRegToVReg(s_reg); uint16_t new_value = wide ? lvn_->GetSregValueWide(s_reg) : lvn_->GetSregValue(s_reg); DCHECK_NE(new_value, kNoValue); vreg_chains_.UpdateInitialVRegValue(v_reg, wide, lvn_); vreg_chains_.AddMIRWithDef(mir, v_reg, wide, new_value); if (is_move) { // Allow renaming all uses of dest vreg to src vreg. vreg_chains_.LastMIRData()->is_move = true; } } else { vreg_chains_.AddMIRWithoutDef(mir); DCHECK(!is_move) << opcode; } if (must_keep) { MIRData* last_data = vreg_chains_.LastMIRData(); last_data->must_keep = true; if (uses_all_vregs) { last_data->uses_all_vregs = true; no_uses_all_since_ = vreg_chains_.NumMIRs(); } } else { DCHECK_NE(mir->ssa_rep->num_defs, 0) << opcode; DCHECK(!uses_all_vregs) << opcode; } return true; } } // namespace art