/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEX_PASS_DRIVER_ME_H_ #define ART_COMPILER_DEX_PASS_DRIVER_ME_H_ #include #include #include "bb_optimizations.h" #include "dataflow_iterator.h" #include "dataflow_iterator-inl.h" #include "dex_flags.h" #include "pass_driver.h" #include "pass_manager.h" #include "pass_me.h" #include "safe_map.h" namespace art { class PassManager; class PassManagerOptions; class PassDriverME: public PassDriver { public: explicit PassDriverME(const PassManager* const pass_manager, CompilationUnit* cu) : PassDriver(pass_manager), pass_me_data_holder_(), dump_cfg_folder_("/sdcard/") { pass_me_data_holder_.bb = nullptr; pass_me_data_holder_.c_unit = cu; } ~PassDriverME() { } void DispatchPass(const Pass* pass) { VLOG(compiler) << "Dispatching " << pass->GetName(); const PassME* me_pass = down_cast(pass); DataFlowAnalysisMode mode = me_pass->GetTraversal(); switch (mode) { case kPreOrderDFSTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kRepeatingPreOrderDFSTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kRepeatingPostOrderDFSTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kReversePostOrderDFSTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kRepeatingReversePostOrderDFSTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kPostOrderDOMTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kTopologicalSortTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kLoopRepeatingTopologicalSortTraversal: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kAllNodes: DoWalkBasicBlocks(&pass_me_data_holder_, me_pass); break; case kNoNodes: break; default: LOG(FATAL) << "Iterator mode not handled in dispatcher: " << mode; break; } } bool RunPass(const Pass* pass, bool time_split) OVERRIDE { // Paranoid: c_unit and pass cannot be null, and the pass should have a name. DCHECK(pass != nullptr); DCHECK(pass->GetName() != nullptr && pass->GetName()[0] != 0); CompilationUnit* c_unit = pass_me_data_holder_.c_unit; DCHECK(c_unit != nullptr); // Do we perform a time split if (time_split) { c_unit->NewTimingSplit(pass->GetName()); } // First, work on determining pass verbosity. bool old_print_pass = c_unit->print_pass; c_unit->print_pass = pass_manager_->GetOptions().GetPrintAllPasses(); auto* const options = &pass_manager_->GetOptions(); const std::string& print_pass_list = options->GetPrintPassList(); if (!print_pass_list.empty() && strstr(print_pass_list.c_str(), pass->GetName()) != nullptr) { c_unit->print_pass = true; } // Next, check if there are any overridden settings for the pass that change default // configuration. c_unit->overridden_pass_options.clear(); FillOverriddenPassSettings(options, pass->GetName(), c_unit->overridden_pass_options); if (c_unit->print_pass) { for (auto setting_it : c_unit->overridden_pass_options) { LOG(INFO) << "Overridden option \"" << setting_it.first << ":" << setting_it.second << "\" for pass \"" << pass->GetName() << "\""; } } // Check the pass gate first. bool should_apply_pass = pass->Gate(&pass_me_data_holder_); if (should_apply_pass) { // Applying the pass: first start, doWork, and end calls. this->ApplyPass(&pass_me_data_holder_, pass); bool should_dump = (c_unit->enable_debug & (1 << kDebugDumpCFG)) != 0; const std::string& dump_pass_list = pass_manager_->GetOptions().GetDumpPassList(); if (!dump_pass_list.empty()) { const bool found = strstr(dump_pass_list.c_str(), pass->GetName()); should_dump = should_dump || found; } if (should_dump) { // Do we want to log it? if ((c_unit->enable_debug& (1 << kDebugDumpCFG)) != 0) { // Do we have a pass folder? const PassME* me_pass = (down_cast(pass)); const char* passFolder = me_pass->GetDumpCFGFolder(); DCHECK(passFolder != nullptr); if (passFolder[0] != 0) { // Create directory prefix. std::string prefix = GetDumpCFGFolder(); prefix += passFolder; prefix += "/"; c_unit->mir_graph->DumpCFG(prefix.c_str(), false); } } } } // Before wrapping up with this pass, restore old pass verbosity flag. c_unit->print_pass = old_print_pass; // If the pass gate passed, we can declare success. return should_apply_pass; } static void PrintPassOptions(PassManager* manager) { for (const auto* pass : *manager->GetDefaultPassList()) { const PassME* me_pass = down_cast(pass); if (me_pass->HasOptions()) { LOG(INFO) << "Pass options for \"" << me_pass->GetName() << "\" are:"; SafeMap overridden_settings; FillOverriddenPassSettings(&manager->GetOptions(), me_pass->GetName(), overridden_settings); me_pass->PrintPassOptions(overridden_settings); } } } const char* GetDumpCFGFolder() const { return dump_cfg_folder_; } protected: /** @brief The data holder that contains data needed for the PassDriverME. */ PassMEDataHolder pass_me_data_holder_; /** @brief Dump CFG base folder: where is the base folder for dumping CFGs. */ const char* dump_cfg_folder_; static void DoWalkBasicBlocks(PassMEDataHolder* data, const PassME* pass, DataflowIterator* iterator) { // Paranoid: Check the iterator before walking the BasicBlocks. DCHECK(iterator != nullptr); bool change = false; for (BasicBlock* bb = iterator->Next(change); bb != nullptr; bb = iterator->Next(change)) { data->bb = bb; change = pass->Worker(data); } } template inline static void DoWalkBasicBlocks(PassMEDataHolder* data, const PassME* pass) { DCHECK(data != nullptr); CompilationUnit* c_unit = data->c_unit; DCHECK(c_unit != nullptr); Iterator iterator(c_unit->mir_graph.get()); DoWalkBasicBlocks(data, pass, &iterator); } /** * @brief Fills the settings_to_fill by finding all of the applicable options in the * overridden_pass_options_list_. * @param pass_name The pass name for which to fill settings. * @param settings_to_fill Fills the options to contain the mapping of name of option to the new * configuration. */ static void FillOverriddenPassSettings( const PassManagerOptions* options, const char* pass_name, SafeMap& settings_to_fill) { const std::string& settings = options->GetOverriddenPassOptions(); const size_t settings_len = settings.size(); // Before anything, check if we care about anything right now. if (settings_len == 0) { return; } const size_t pass_name_len = strlen(pass_name); const size_t min_setting_size = 4; // 2 delimiters, 1 setting name, 1 setting size_t search_pos = 0; // If there is no room for pass options, exit early. if (settings_len < pass_name_len + min_setting_size) { return; } do { search_pos = settings.find(pass_name, search_pos); // Check if we found this pass name in rest of string. if (search_pos == std::string::npos) { // No more settings for this pass. break; } // The string contains the pass name. Now check that there is // room for the settings: at least one char for setting name, // two chars for two delimiter, and at least one char for setting. if (search_pos + pass_name_len + min_setting_size >= settings_len) { // No more settings for this pass. break; } // Update the current search position to not include the pass name. search_pos += pass_name_len; // The format must be "PassName:SettingName:#" where # is the setting. // Thus look for the first ":" which must exist. if (settings[search_pos] != ':') { // Missing delimiter right after pass name. continue; } else { search_pos += 1; } // Now look for the actual setting by finding the next ":" delimiter. const size_t setting_name_pos = search_pos; size_t setting_pos = settings.find(':', setting_name_pos); if (setting_pos == std::string::npos) { // Missing a delimiter that would capture where setting starts. continue; } else if (setting_pos == setting_name_pos) { // Missing setting thus did not move from setting name continue; } else { // Skip the delimiter. setting_pos += 1; } // Look for the terminating delimiter which must be a comma. size_t next_configuration_separator = settings.find(',', setting_pos); if (next_configuration_separator == std::string::npos) { next_configuration_separator = settings_len; } // Prevent end of string errors. if (next_configuration_separator == setting_pos) { continue; } // Get the actual setting itself. std::string setting_string = settings.substr(setting_pos, next_configuration_separator - setting_pos); std::string setting_name = settings.substr(setting_name_pos, setting_pos - setting_name_pos - 1); // We attempt to convert the option value to integer. Strtoll is being used to // convert because it is exception safe. char* end_ptr = nullptr; const char* setting_ptr = setting_string.c_str(); DCHECK(setting_ptr != nullptr); // Paranoid: setting_ptr must be a valid pointer. int64_t int_value = strtoll(setting_ptr, &end_ptr, 0); DCHECK(end_ptr != nullptr); // Paranoid: end_ptr must be set by the strtoll call. // If strtoll call succeeded, the option is now considered as integer. if (*setting_ptr != '\0' && end_ptr != setting_ptr && *end_ptr == '\0') { settings_to_fill.Put(setting_name, OptionContent(int_value)); } else { // Otherwise, it is considered as a string. settings_to_fill.Put(setting_name, OptionContent(setting_string.c_str())); } search_pos = next_configuration_separator; } while (true); } }; } // namespace art #endif // ART_COMPILER_DEX_PASS_DRIVER_ME_H_