/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_mips.h" #include "arch/mips/instruction_set_features_mips.h" #include "arch/mips/entrypoints_direct_mips.h" #include "base/logging.h" #include "dex/quick/mir_to_lir-inl.h" #include "dex/reg_storage_eq.h" #include "dex/mir_graph.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "mips_lir.h" namespace art { /* This file contains codegen for the Mips ISA */ LIR* MipsMir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) { int opcode; if (cu_->target64) { DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit()); if (r_dest.Is64Bit()) { if (r_dest.IsDouble()) { if (r_src.IsDouble()) { opcode = kMipsFmovd; } else { // Note the operands are swapped for the dmtc1 instr. RegStorage t_opnd = r_src; r_src = r_dest; r_dest = t_opnd; opcode = kMips64Dmtc1; } } else { DCHECK(r_src.IsDouble()); opcode = kMips64Dmfc1; } } else { if (r_dest.IsSingle()) { if (r_src.IsSingle()) { opcode = kMipsFmovs; } else { // Note the operands are swapped for the mtc1 instr. RegStorage t_opnd = r_src; r_src = r_dest; r_dest = t_opnd; opcode = kMipsMtc1; } } else { DCHECK(r_src.IsSingle()); opcode = kMipsMfc1; } } } else { // Must be both DOUBLE or both not DOUBLE. DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble()); if (r_dest.IsDouble()) { opcode = kMipsFmovd; } else { if (r_dest.IsSingle()) { if (r_src.IsSingle()) { opcode = kMipsFmovs; } else { // Note the operands are swapped for the mtc1 instr. RegStorage t_opnd = r_src; r_src = r_dest; r_dest = t_opnd; opcode = kMipsMtc1; } } else { DCHECK(r_src.IsSingle()); opcode = kMipsMfc1; } } } LIR* res; if (cu_->target64) { res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); } else { res = RawLIR(current_dalvik_offset_, opcode, r_src.GetReg(), r_dest.GetReg()); } if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { res->flags.is_nop = true; } return res; } bool MipsMir2Lir::InexpensiveConstantInt(int32_t value) { // For encodings, see LoadConstantNoClobber below. return ((value == 0) || IsUint<16>(value) || IsInt<16>(value)); } bool MipsMir2Lir::InexpensiveConstantFloat(int32_t value) { UNUSED(value); return false; // TUNING } bool MipsMir2Lir::InexpensiveConstantLong(int64_t value) { UNUSED(value); return false; // TUNING } bool MipsMir2Lir::InexpensiveConstantDouble(int64_t value) { UNUSED(value); return false; // TUNING } /* * Load a immediate using a shortcut if possible; otherwise * grab from the per-translation literal pool. If target is * a high register, build constant into a low register and copy. * * No additional register clobbering operation performed. Use this version when * 1) r_dest is freshly returned from AllocTemp or * 2) The codegen is under fixed register usage */ LIR* MipsMir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) { LIR *res; RegStorage r_dest_save = r_dest; int is_fp_reg = r_dest.IsFloat(); if (is_fp_reg) { DCHECK(r_dest.IsSingle()); r_dest = AllocTemp(); } // See if the value can be constructed cheaply. if (value == 0) { res = NewLIR2(kMipsMove, r_dest.GetReg(), rZERO); } else if (IsUint<16>(value)) { // Use OR with (unsigned) immediate to encode 16b unsigned int. res = NewLIR3(kMipsOri, r_dest.GetReg(), rZERO, value); } else if (IsInt<16>(value)) { // Use ADD with (signed) immediate to encode 16b signed int. res = NewLIR3(kMipsAddiu, r_dest.GetReg(), rZERO, value); } else { res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16); if (value & 0xffff) NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), value); } if (is_fp_reg) { NewLIR2(kMipsMtc1, r_dest.GetReg(), r_dest_save.GetReg()); FreeTemp(r_dest); } return res; } LIR* MipsMir2Lir::LoadConstantWideNoClobber(RegStorage r_dest, int64_t value) { LIR* res = nullptr; DCHECK(r_dest.Is64Bit()); RegStorage r_dest_save = r_dest; int is_fp_reg = r_dest.IsFloat(); if (is_fp_reg) { DCHECK(r_dest.IsDouble()); r_dest = AllocTemp(); } int bit31 = (value & UINT64_C(0x80000000)) != 0; // Loads with 1 instruction. if (IsUint<16>(value)) { res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, value); } else if (IsInt<16>(value)) { res = NewLIR3(kMips64Daddiu, r_dest.GetReg(), rZEROd, value); } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) { res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16); } else if (IsInt<32>(value)) { // Loads with 2 instructions. res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16); NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), value); } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) { res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, value); NewLIR2(kMips64Dahi, r_dest.GetReg(), value >> 32); } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) { res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, value); NewLIR2(kMips64Dati, r_dest.GetReg(), value >> 48); } else if ((value & 0xFFFF) == 0 && (value >> 32) >= (-32768 - bit31) && (value >> 32) <= (32767 - bit31)) { res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16); NewLIR2(kMips64Dahi, r_dest.GetReg(), (value >> 32) + bit31); } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16); NewLIR2(kMips64Dati, r_dest.GetReg(), (value >> 48) + bit31); } else { int64_t tmp = value; int shift_cnt = 0; while ((tmp & 1) == 0) { tmp >>= 1; shift_cnt++; } if (IsUint<16>(tmp)) { res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, tmp); NewLIR3((shift_cnt < 32) ? kMips64Dsll : kMips64Dsll32, r_dest.GetReg(), r_dest.GetReg(), shift_cnt & 0x1F); } else if (IsInt<16>(tmp)) { res = NewLIR3(kMips64Daddiu, r_dest.GetReg(), rZEROd, tmp); NewLIR3((shift_cnt < 32) ? kMips64Dsll : kMips64Dsll32, r_dest.GetReg(), r_dest.GetReg(), shift_cnt & 0x1F); } else if (IsInt<32>(tmp)) { // Loads with 3 instructions. res = NewLIR2(kMipsLui, r_dest.GetReg(), tmp >> 16); NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), tmp); NewLIR3((shift_cnt < 32) ? kMips64Dsll : kMips64Dsll32, r_dest.GetReg(), r_dest.GetReg(), shift_cnt & 0x1F); } else { tmp = value >> 16; shift_cnt = 16; while ((tmp & 1) == 0) { tmp >>= 1; shift_cnt++; } if (IsUint<16>(tmp)) { res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, tmp); NewLIR3((shift_cnt < 32) ? kMips64Dsll : kMips64Dsll32, r_dest.GetReg(), r_dest.GetReg(), shift_cnt & 0x1F); NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), value); } else if (IsInt<16>(tmp)) { res = NewLIR3(kMips64Daddiu, r_dest.GetReg(), rZEROd, tmp); NewLIR3((shift_cnt < 32) ? kMips64Dsll : kMips64Dsll32, r_dest.GetReg(), r_dest.GetReg(), shift_cnt & 0x1F); NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), value); } else { // Loads with 3-4 instructions. uint64_t tmp2 = value; if (((tmp2 >> 16) & 0xFFFF) != 0 || (tmp2 & 0xFFFFFFFF) == 0) { res = NewLIR2(kMipsLui, r_dest.GetReg(), tmp2 >> 16); } if ((tmp2 & 0xFFFF) != 0) { if (res) NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), tmp2); else res = NewLIR3(kMipsOri, r_dest.GetReg(), rZEROd, tmp2); } if (bit31) { tmp2 += UINT64_C(0x100000000); } if (((tmp2 >> 32) & 0xFFFF) != 0) { NewLIR2(kMips64Dahi, r_dest.GetReg(), tmp2 >> 32); } if (tmp2 & UINT64_C(0x800000000000)) { tmp2 += UINT64_C(0x1000000000000); } if ((tmp2 >> 48) != 0) { NewLIR2(kMips64Dati, r_dest.GetReg(), tmp2 >> 48); } } } } if (is_fp_reg) { NewLIR2(kMips64Dmtc1, r_dest.GetReg(), r_dest_save.GetReg()); FreeTemp(r_dest); } return res; } LIR* MipsMir2Lir::OpUnconditionalBranch(LIR* target) { LIR* res = NewLIR1(kMipsB, 0 /* offset to be patched during assembly*/); res->target = target; return res; } LIR* MipsMir2Lir::OpReg(OpKind op, RegStorage r_dest_src) { MipsOpCode opcode = kMipsNop; switch (op) { case kOpBlx: opcode = kMipsJalr; break; case kOpBx: return NewLIR2(kMipsJalr, rZERO, r_dest_src.GetReg()); default: LOG(FATAL) << "Bad case in OpReg"; UNREACHABLE(); } return NewLIR2(opcode, cu_->target64 ? rRAd : rRA, r_dest_src.GetReg()); } LIR* MipsMir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) { if ((op == kOpAdd) || (op == kOpSub)) { return OpRegRegImm(op, r_dest_src1, r_dest_src1, value); } else { LOG(FATAL) << "Bad case in OpRegImm"; UNREACHABLE(); } } LIR* MipsMir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) { MipsOpCode opcode = kMipsNop; bool is64bit = cu_->target64 && (r_dest.Is64Bit() || r_src1.Is64Bit() || r_src2.Is64Bit()); switch (op) { case kOpAdd: opcode = is64bit ? kMips64Daddu : kMipsAddu; break; case kOpSub: opcode = is64bit ? kMips64Dsubu : kMipsSubu; break; case kOpAnd: opcode = kMipsAnd; break; case kOpMul: opcode = isaIsR6_ ? kMipsR6Mul : kMipsR2Mul; break; case kOpOr: opcode = kMipsOr; break; case kOpXor: opcode = kMipsXor; break; case kOpLsl: opcode = is64bit ? kMips64Dsllv : kMipsSllv; break; case kOpLsr: opcode = is64bit ? kMips64Dsrlv : kMipsSrlv; break; case kOpAsr: opcode = is64bit ? kMips64Dsrav : kMipsSrav; break; case kOpAdc: case kOpSbc: LOG(FATAL) << "No carry bit on MIPS"; break; default: LOG(FATAL) << "Bad case in OpRegRegReg"; break; } return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg()); } LIR* MipsMir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) { LIR *res; MipsOpCode opcode = kMipsNop; bool short_form = true; bool is64bit = cu_->target64 && (r_dest.Is64Bit() || r_src1.Is64Bit()); switch (op) { case kOpAdd: if (IS_SIMM16(value)) { opcode = is64bit ? kMips64Daddiu : kMipsAddiu; } else { short_form = false; opcode = is64bit ? kMips64Daddu : kMipsAddu; } break; case kOpSub: if (IS_SIMM16((-value))) { value = -value; opcode = is64bit ? kMips64Daddiu : kMipsAddiu; } else { short_form = false; opcode = is64bit ? kMips64Dsubu : kMipsSubu; } break; case kOpLsl: if (is64bit) { DCHECK(value >= 0 && value <= 63); if (value >= 0 && value <= 31) { opcode = kMips64Dsll; } else { opcode = kMips64Dsll32; value = value - 32; } } else { DCHECK(value >= 0 && value <= 31); opcode = kMipsSll; } break; case kOpLsr: if (is64bit) { DCHECK(value >= 0 && value <= 63); if (value >= 0 && value <= 31) { opcode = kMips64Dsrl; } else { opcode = kMips64Dsrl32; value = value - 32; } } else { DCHECK(value >= 0 && value <= 31); opcode = kMipsSrl; } break; case kOpAsr: if (is64bit) { DCHECK(value >= 0 && value <= 63); if (value >= 0 && value <= 31) { opcode = kMips64Dsra; } else { opcode = kMips64Dsra32; value = value - 32; } } else { DCHECK(value >= 0 && value <= 31); opcode = kMipsSra; } break; case kOpAnd: if (IS_UIMM16((value))) { opcode = kMipsAndi; } else { short_form = false; opcode = kMipsAnd; } break; case kOpOr: if (IS_UIMM16((value))) { opcode = kMipsOri; } else { short_form = false; opcode = kMipsOr; } break; case kOpXor: if (IS_UIMM16((value))) { opcode = kMipsXori; } else { short_form = false; opcode = kMipsXor; } break; case kOpMul: short_form = false; opcode = isaIsR6_ ? kMipsR6Mul : kMipsR2Mul; break; default: LOG(FATAL) << "Bad case in OpRegRegImm"; break; } if (short_form) { res = NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), value); } else { if (r_dest != r_src1) { res = LoadConstant(r_dest, value); NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_dest.GetReg()); } else { RegStorage r_scratch; if (is64bit) { r_scratch = AllocTempWide(); res = LoadConstantWide(r_scratch, value); } else { r_scratch = AllocTemp(); res = LoadConstant(r_scratch, value); } NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg()); } } return res; } LIR* MipsMir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) { MipsOpCode opcode = kMipsNop; LIR *res; switch (op) { case kOpMov: opcode = kMipsMove; break; case kOpMvn: return NewLIR3(kMipsNor, r_dest_src1.GetReg(), r_src2.GetReg(), rZERO); case kOpNeg: if (cu_->target64 && r_dest_src1.Is64Bit()) { return NewLIR3(kMips64Dsubu, r_dest_src1.GetReg(), rZEROd, r_src2.GetReg()); } else { return NewLIR3(kMipsSubu, r_dest_src1.GetReg(), rZERO, r_src2.GetReg()); } case kOpAdd: case kOpAnd: case kOpMul: case kOpOr: case kOpSub: case kOpXor: return OpRegRegReg(op, r_dest_src1, r_dest_src1, r_src2); case kOp2Byte: if (cu_->target64) { res = NewLIR2(kMipsSeb, r_dest_src1.GetReg(), r_src2.GetReg()); } else { if (cu_->compiler_driver->GetInstructionSetFeatures()->AsMipsInstructionSetFeatures() ->IsMipsIsaRevGreaterThanEqual2()) { res = NewLIR2(kMipsSeb, r_dest_src1.GetReg(), r_src2.GetReg()); } else { res = OpRegRegImm(kOpLsl, r_dest_src1, r_src2, 24); OpRegRegImm(kOpAsr, r_dest_src1, r_dest_src1, 24); } } return res; case kOp2Short: if (cu_->target64) { res = NewLIR2(kMipsSeh, r_dest_src1.GetReg(), r_src2.GetReg()); } else { if (cu_->compiler_driver->GetInstructionSetFeatures()->AsMipsInstructionSetFeatures() ->IsMipsIsaRevGreaterThanEqual2()) { res = NewLIR2(kMipsSeh, r_dest_src1.GetReg(), r_src2.GetReg()); } else { res = OpRegRegImm(kOpLsl, r_dest_src1, r_src2, 16); OpRegRegImm(kOpAsr, r_dest_src1, r_dest_src1, 16); } } return res; case kOp2Char: return NewLIR3(kMipsAndi, r_dest_src1.GetReg(), r_src2.GetReg(), 0xFFFF); default: LOG(FATAL) << "Bad case in OpRegReg"; UNREACHABLE(); } return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg()); } LIR* MipsMir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) { UNUSED(r_dest, r_base, offset, move_type); UNIMPLEMENTED(FATAL); UNREACHABLE(); } LIR* MipsMir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) { UNUSED(r_base, offset, r_src, move_type); UNIMPLEMENTED(FATAL); UNREACHABLE(); } LIR* MipsMir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) { UNUSED(op, cc, r_dest, r_src); LOG(FATAL) << "Unexpected use of OpCondRegReg for MIPS"; UNREACHABLE(); } LIR* MipsMir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) { LIR *res; if (cu_->target64) { res = LoadConstantWideNoClobber(r_dest, value); return res; } if (fpuIs32Bit_ || !r_dest.IsFloat()) { // 32bit FPU (pairs) or loading into GPR. if (!r_dest.IsPair()) { // Form 64-bit pair. r_dest = Solo64ToPair64(r_dest); } res = LoadConstantNoClobber(r_dest.GetLow(), Low32Bits(value)); LoadConstantNoClobber(r_dest.GetHigh(), High32Bits(value)); } else { // Here if we have a 64bit FPU and loading into FPR. RegStorage r_temp = AllocTemp(); r_dest = Fp64ToSolo32(r_dest); res = LoadConstantNoClobber(r_dest, Low32Bits(value)); LoadConstantNoClobber(r_temp, High32Bits(value)); NewLIR2(kMipsMthc1, r_temp.GetReg(), r_dest.GetReg()); FreeTemp(r_temp); } return res; } /* Load value from base + scaled index. */ LIR* MipsMir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale, OpSize size) { LIR *first = nullptr; LIR *res; MipsOpCode opcode = kMipsNop; bool is64bit = cu_->target64 && r_dest.Is64Bit(); RegStorage t_reg = is64bit ? AllocTempWide() : AllocTemp(); if (r_dest.IsFloat()) { DCHECK(r_dest.IsSingle()); DCHECK((size == k32) || (size == kSingle) || (size == kReference)); size = kSingle; } else { if (size == kSingle) size = k32; } if (cu_->target64) { if (!scale) { if (is64bit) { first = NewLIR3(kMips64Daddu, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg()); } else { first = NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg()); } } else { first = OpRegRegImm(kOpLsl, t_reg, r_index, scale); NewLIR3(kMips64Daddu, t_reg.GetReg() , r_base.GetReg(), t_reg.GetReg()); } } else { if (!scale) { first = NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg()); } else { first = OpRegRegImm(kOpLsl, t_reg, r_index, scale); NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), t_reg.GetReg()); } } switch (size) { case k64: if (cu_->target64) { opcode = kMips64Ld; } else { LOG(FATAL) << "Bad case in LoadBaseIndexed"; } break; case kSingle: opcode = kMipsFlwc1; break; case k32: case kReference: opcode = kMipsLw; break; case kUnsignedHalf: opcode = kMipsLhu; break; case kSignedHalf: opcode = kMipsLh; break; case kUnsignedByte: opcode = kMipsLbu; break; case kSignedByte: opcode = kMipsLb; break; default: LOG(FATAL) << "Bad case in LoadBaseIndexed"; } res = NewLIR3(opcode, r_dest.GetReg(), 0, t_reg.GetReg()); FreeTemp(t_reg); return (first) ? first : res; } // Store value base base + scaled index. LIR* MipsMir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale, OpSize size) { LIR *first = nullptr; MipsOpCode opcode = kMipsNop; RegStorage t_reg = AllocTemp(); if (r_src.IsFloat()) { DCHECK(r_src.IsSingle()); DCHECK((size == k32) || (size == kSingle) || (size == kReference)); size = kSingle; } else { if (size == kSingle) size = k32; } MipsOpCode add_opcode = cu_->target64 ? kMips64Daddu : kMipsAddu; if (!scale) { first = NewLIR3(add_opcode, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg()); } else { first = OpRegRegImm(kOpLsl, t_reg, r_index, scale); NewLIR3(add_opcode, t_reg.GetReg() , r_base.GetReg(), t_reg.GetReg()); } switch (size) { case kSingle: opcode = kMipsFswc1; break; case k32: case kReference: opcode = kMipsSw; break; case kUnsignedHalf: case kSignedHalf: opcode = kMipsSh; break; case kUnsignedByte: case kSignedByte: opcode = kMipsSb; break; default: LOG(FATAL) << "Bad case in StoreBaseIndexed"; } NewLIR3(opcode, r_src.GetReg(), 0, t_reg.GetReg()); return first; } // FIXME: don't split r_dest into 2 containers. LIR* MipsMir2Lir::LoadBaseDispBody(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size) { /* * Load value from base + displacement. Optionally perform null check * on base (which must have an associated s_reg and MIR). If not * performing null check, incoming MIR can be null. IMPORTANT: this * code must not allocate any new temps. If a new register is needed * and base and dest are the same, spill some other register to * rlp and then restore. */ LIR *res; LIR *load = nullptr; LIR *load2 = nullptr; MipsOpCode opcode = kMipsNop; bool short_form = IS_SIMM16(displacement); bool is64bit = false; switch (size) { case k64: case kDouble: if (cu_->target64) { r_dest = Check64BitReg(r_dest); if (!r_dest.IsFloat()) { opcode = kMips64Ld; } else { opcode = kMipsFldc1; } DCHECK_EQ((displacement & 0x3), 0); break; } is64bit = true; if (fpuIs32Bit_ && !r_dest.IsPair()) { // Form 64-bit pair. r_dest = Solo64ToPair64(r_dest); } short_form = IS_SIMM16_2WORD(displacement); FALLTHROUGH_INTENDED; case k32: case kSingle: case kReference: opcode = kMipsLw; if (r_dest.IsFloat()) { opcode = kMipsFlwc1; if (!is64bit) { DCHECK(r_dest.IsSingle()); } else { DCHECK(r_dest.IsDouble()); } } DCHECK_EQ((displacement & 0x3), 0); break; case kUnsignedHalf: opcode = kMipsLhu; DCHECK_EQ((displacement & 0x1), 0); break; case kSignedHalf: opcode = kMipsLh; DCHECK_EQ((displacement & 0x1), 0); break; case kUnsignedByte: opcode = kMipsLbu; break; case kSignedByte: opcode = kMipsLb; break; default: LOG(FATAL) << "Bad case in LoadBaseIndexedBody"; } if (cu_->target64) { if (short_form) { load = res = NewLIR3(opcode, r_dest.GetReg(), displacement, r_base.GetReg()); } else { RegStorage r_tmp = (r_base == r_dest) ? AllocTemp() : r_dest; res = OpRegRegImm(kOpAdd, r_tmp, r_base, displacement); load = NewLIR3(opcode, r_dest.GetReg(), 0, r_tmp.GetReg()); if (r_tmp != r_dest) FreeTemp(r_tmp); } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, TargetPtrReg(kSp)); AnnotateDalvikRegAccess(load, displacement >> 2, true /* is_load */, r_dest.Is64Bit()); } return res; } if (short_form) { if (!is64bit) { load = res = NewLIR3(opcode, r_dest.GetReg(), displacement, r_base.GetReg()); } else { if (fpuIs32Bit_ || !r_dest.IsFloat()) { DCHECK(r_dest.IsPair()); load = res = NewLIR3(opcode, r_dest.GetLowReg(), displacement + LOWORD_OFFSET, r_base.GetReg()); load2 = NewLIR3(opcode, r_dest.GetHighReg(), displacement + HIWORD_OFFSET, r_base.GetReg()); } else { // Here if 64bit fpu and r_dest is a 64bit fp register. RegStorage r_tmp = AllocTemp(); // FIXME: why is r_dest a 64BitPair here??? r_dest = Fp64ToSolo32(r_dest); load = res = NewLIR3(kMipsFlwc1, r_dest.GetReg(), displacement + LOWORD_OFFSET, r_base.GetReg()); load2 = NewLIR3(kMipsLw, r_tmp.GetReg(), displacement + HIWORD_OFFSET, r_base.GetReg()); NewLIR2(kMipsMthc1, r_tmp.GetReg(), r_dest.GetReg()); FreeTemp(r_tmp); } } } else { if (!is64bit) { RegStorage r_tmp = (r_base == r_dest || r_dest.IsFloat()) ? AllocTemp() : r_dest; res = OpRegRegImm(kOpAdd, r_tmp, r_base, displacement); load = NewLIR3(opcode, r_dest.GetReg(), 0, r_tmp.GetReg()); if (r_tmp != r_dest) FreeTemp(r_tmp); } else { RegStorage r_tmp = AllocTemp(); res = OpRegRegImm(kOpAdd, r_tmp, r_base, displacement); if (fpuIs32Bit_ || !r_dest.IsFloat()) { DCHECK(r_dest.IsPair()); load = NewLIR3(opcode, r_dest.GetLowReg(), LOWORD_OFFSET, r_tmp.GetReg()); load2 = NewLIR3(opcode, r_dest.GetHighReg(), HIWORD_OFFSET, r_tmp.GetReg()); } else { // Here if 64bit fpu and r_dest is a 64bit fp register r_dest = Fp64ToSolo32(r_dest); load = res = NewLIR3(kMipsFlwc1, r_dest.GetReg(), LOWORD_OFFSET, r_tmp.GetReg()); load2 = NewLIR3(kMipsLw, r_tmp.GetReg(), HIWORD_OFFSET, r_tmp.GetReg()); NewLIR2(kMipsMthc1, r_tmp.GetReg(), r_dest.GetReg()); } FreeTemp(r_tmp); } } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, TargetPtrReg(kSp)); AnnotateDalvikRegAccess(load, (displacement + (is64bit ? LOWORD_OFFSET : 0)) >> 2, true /* is_load */, is64bit /* is64bit */); if (is64bit) { AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2, true /* is_load */, is64bit /* is64bit */); } } return res; } void MipsMir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags, bool is_wide) { if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { return; } // Force an implicit null check by performing a memory operation (load) from the given // register with offset 0. This will cause a signal if the register contains 0 (null). LIR* load = Load32Disp(reg, LOWORD_OFFSET, rs_rZERO); MarkSafepointPC(load); if (is_wide) { load = Load32Disp(reg, HIWORD_OFFSET, rs_rZERO); MarkSafepointPC(load); } } } LIR* MipsMir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size, VolatileKind is_volatile) { if (UNLIKELY(is_volatile == kVolatile && (size == k64 || size == kDouble)) && (!cu_->target64 || displacement & 0x7)) { // TODO: use lld/scd instructions for Mips64. // Do atomic 64-bit load. return GenAtomic64Load(r_base, displacement, r_dest); } // TODO: base this on target. if (size == kWord) { size = cu_->target64 ? k64 : k32; } LIR* load; load = LoadBaseDispBody(r_base, displacement, r_dest, size); if (UNLIKELY(is_volatile == kVolatile)) { GenMemBarrier(kLoadAny); } return load; } // FIXME: don't split r_dest into 2 containers. LIR* MipsMir2Lir::StoreBaseDispBody(RegStorage r_base, int displacement, RegStorage r_src, OpSize size) { LIR *res; LIR *store = nullptr; LIR *store2 = nullptr; MipsOpCode opcode = kMipsNop; bool short_form = IS_SIMM16(displacement); bool is64bit = false; switch (size) { case k64: case kDouble: if (cu_->target64) { r_src = Check64BitReg(r_src); if (!r_src.IsFloat()) { opcode = kMips64Sd; } else { opcode = kMipsFsdc1; } DCHECK_EQ((displacement & 0x3), 0); break; } is64bit = true; if (fpuIs32Bit_ && !r_src.IsPair()) { // Form 64-bit pair. r_src = Solo64ToPair64(r_src); } short_form = IS_SIMM16_2WORD(displacement); FALLTHROUGH_INTENDED; case k32: case kSingle: case kReference: opcode = kMipsSw; if (r_src.IsFloat()) { opcode = kMipsFswc1; if (!is64bit) { DCHECK(r_src.IsSingle()); } else { DCHECK(r_src.IsDouble()); } } DCHECK_EQ((displacement & 0x3), 0); break; case kUnsignedHalf: case kSignedHalf: opcode = kMipsSh; DCHECK_EQ((displacement & 0x1), 0); break; case kUnsignedByte: case kSignedByte: opcode = kMipsSb; break; default: LOG(FATAL) << "Bad case in StoreBaseDispBody"; } if (cu_->target64) { if (short_form) { store = res = NewLIR3(opcode, r_src.GetReg(), displacement, r_base.GetReg()); } else { RegStorage r_scratch = AllocTemp(); res = OpRegRegImm(kOpAdd, r_scratch, r_base, displacement); store = NewLIR3(opcode, r_src.GetReg(), 0, r_scratch.GetReg()); FreeTemp(r_scratch); } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, TargetPtrReg(kSp)); AnnotateDalvikRegAccess(store, displacement >> 2, false /* is_load */, r_src.Is64Bit()); } return res; } if (short_form) { if (!is64bit) { store = res = NewLIR3(opcode, r_src.GetReg(), displacement, r_base.GetReg()); } else { if (fpuIs32Bit_ || !r_src.IsFloat()) { DCHECK(r_src.IsPair()); store = res = NewLIR3(opcode, r_src.GetLowReg(), displacement + LOWORD_OFFSET, r_base.GetReg()); store2 = NewLIR3(opcode, r_src.GetHighReg(), displacement + HIWORD_OFFSET, r_base.GetReg()); } else { // Here if 64bit fpu and r_src is a 64bit fp register RegStorage r_tmp = AllocTemp(); r_src = Fp64ToSolo32(r_src); store = res = NewLIR3(kMipsFswc1, r_src.GetReg(), displacement + LOWORD_OFFSET, r_base.GetReg()); NewLIR2(kMipsMfhc1, r_tmp.GetReg(), r_src.GetReg()); store2 = NewLIR3(kMipsSw, r_tmp.GetReg(), displacement + HIWORD_OFFSET, r_base.GetReg()); FreeTemp(r_tmp); } } } else { RegStorage r_scratch = AllocTemp(); res = OpRegRegImm(kOpAdd, r_scratch, r_base, displacement); if (!is64bit) { store = NewLIR3(opcode, r_src.GetReg(), 0, r_scratch.GetReg()); } else { if (fpuIs32Bit_ || !r_src.IsFloat()) { DCHECK(r_src.IsPair()); store = NewLIR3(opcode, r_src.GetLowReg(), LOWORD_OFFSET, r_scratch.GetReg()); store2 = NewLIR3(opcode, r_src.GetHighReg(), HIWORD_OFFSET, r_scratch.GetReg()); } else { // Here if 64bit fpu and r_src is a 64bit fp register RegStorage r_tmp = AllocTemp(); r_src = Fp64ToSolo32(r_src); store = NewLIR3(kMipsFswc1, r_src.GetReg(), LOWORD_OFFSET, r_scratch.GetReg()); NewLIR2(kMipsMfhc1, r_tmp.GetReg(), r_src.GetReg()); store2 = NewLIR3(kMipsSw, r_tmp.GetReg(), HIWORD_OFFSET, r_scratch.GetReg()); FreeTemp(r_tmp); } } FreeTemp(r_scratch); } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, TargetPtrReg(kSp)); AnnotateDalvikRegAccess(store, (displacement + (is64bit ? LOWORD_OFFSET : 0)) >> 2, false /* is_load */, is64bit /* is64bit */); if (is64bit) { AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2, false /* is_load */, is64bit /* is64bit */); } } return res; } LIR* MipsMir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size, VolatileKind is_volatile) { if (is_volatile == kVolatile) { // Ensure that prior accesses become visible to other threads first. GenMemBarrier(kAnyStore); } LIR* store; if (UNLIKELY(is_volatile == kVolatile && (size == k64 || size == kDouble) && (!cu_->target64 || displacement & 0x7))) { // TODO: use lld/scd instructions for Mips64. // Do atomic 64-bit load. store = GenAtomic64Store(r_base, displacement, r_src); } else { // TODO: base this on target. if (size == kWord) { size = cu_->target64 ? k64 : k32; } store = StoreBaseDispBody(r_base, displacement, r_src, size); } if (UNLIKELY(is_volatile == kVolatile)) { // Preserve order with respect to any subsequent volatile loads. // We need StoreLoad, but that generally requires the most expensive barrier. GenMemBarrier(kAnyAny); } return store; } LIR* MipsMir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) { UNUSED(op, r_base, disp); LOG(FATAL) << "Unexpected use of OpMem for MIPS"; UNREACHABLE(); } LIR* MipsMir2Lir::OpCondBranch(ConditionCode cc, LIR* target) { UNUSED(cc, target); LOG(FATAL) << "Unexpected use of OpCondBranch for MIPS"; UNREACHABLE(); } LIR* MipsMir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) { if (!cu_->target64 && IsDirectEntrypoint(trampoline)) { // Reserve argument space on stack (for $a0-$a3) for // entrypoints that directly reference native implementations. // This is not safe in general, as it violates the frame size // of the Quick method, but it is used here only for calling // native functions, outside of the runtime. OpRegImm(kOpSub, rs_rSP, 16); LIR* retVal = OpReg(op, r_tgt); OpRegImm(kOpAdd, rs_rSP, 16); return retVal; } return OpReg(op, r_tgt); } RegStorage MipsMir2Lir::AllocPtrSizeTemp(bool required) { return cu_->target64 ? AllocTempWide(required) : AllocTemp(required); } } // namespace art