/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_arm32.h" #include "base/bit_utils.h" #include "base/logging.h" #include "entrypoints/quick/quick_entrypoints.h" #include "offsets.h" #include "thread.h" namespace art { namespace arm { bool Arm32Assembler::ShifterOperandCanHoldArm32(uint32_t immediate, ShifterOperand* shifter_op) { // Avoid the more expensive test for frequent small immediate values. if (immediate < (1 << kImmed8Bits)) { shifter_op->type_ = ShifterOperand::kImmediate; shifter_op->is_rotate_ = true; shifter_op->rotate_ = 0; shifter_op->immed_ = immediate; return true; } // Note that immediate must be unsigned for the test to work correctly. for (int rot = 0; rot < 16; rot++) { uint32_t imm8 = (immediate << 2*rot) | (immediate >> (32 - 2*rot)); if (imm8 < (1 << kImmed8Bits)) { shifter_op->type_ = ShifterOperand::kImmediate; shifter_op->is_rotate_ = true; shifter_op->rotate_ = rot; shifter_op->immed_ = imm8; return true; } } return false; } bool Arm32Assembler::ShifterOperandCanHold(Register rd ATTRIBUTE_UNUSED, Register rn ATTRIBUTE_UNUSED, Opcode opcode ATTRIBUTE_UNUSED, uint32_t immediate, ShifterOperand* shifter_op) { return ShifterOperandCanHoldArm32(immediate, shifter_op); } void Arm32Assembler::and_(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), AND, 0, rn, rd, so); } void Arm32Assembler::eor(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), EOR, 0, rn, rd, so); } void Arm32Assembler::sub(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), SUB, 0, rn, rd, so); } void Arm32Assembler::rsb(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), RSB, 0, rn, rd, so); } void Arm32Assembler::rsbs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), RSB, 1, rn, rd, so); } void Arm32Assembler::add(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), ADD, 0, rn, rd, so); } void Arm32Assembler::adds(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), ADD, 1, rn, rd, so); } void Arm32Assembler::subs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), SUB, 1, rn, rd, so); } void Arm32Assembler::adc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), ADC, 0, rn, rd, so); } void Arm32Assembler::sbc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), SBC, 0, rn, rd, so); } void Arm32Assembler::rsc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), RSC, 0, rn, rd, so); } void Arm32Assembler::tst(Register rn, const ShifterOperand& so, Condition cond) { CHECK_NE(rn, PC); // Reserve tst pc instruction for exception handler marker. EmitType01(cond, so.type(), TST, 1, rn, R0, so); } void Arm32Assembler::teq(Register rn, const ShifterOperand& so, Condition cond) { CHECK_NE(rn, PC); // Reserve teq pc instruction for exception handler marker. EmitType01(cond, so.type(), TEQ, 1, rn, R0, so); } void Arm32Assembler::cmp(Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), CMP, 1, rn, R0, so); } void Arm32Assembler::cmn(Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), CMN, 1, rn, R0, so); } void Arm32Assembler::orr(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), ORR, 0, rn, rd, so); } void Arm32Assembler::orrs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), ORR, 1, rn, rd, so); } void Arm32Assembler::mov(Register rd, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), MOV, 0, R0, rd, so); } void Arm32Assembler::movs(Register rd, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), MOV, 1, R0, rd, so); } void Arm32Assembler::bic(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), BIC, 0, rn, rd, so); } void Arm32Assembler::mvn(Register rd, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), MVN, 0, R0, rd, so); } void Arm32Assembler::mvns(Register rd, const ShifterOperand& so, Condition cond) { EmitType01(cond, so.type(), MVN, 1, R0, rd, so); } void Arm32Assembler::mul(Register rd, Register rn, Register rm, Condition cond) { // Assembler registers rd, rn, rm are encoded as rn, rm, rs. EmitMulOp(cond, 0, R0, rd, rn, rm); } void Arm32Assembler::mla(Register rd, Register rn, Register rm, Register ra, Condition cond) { // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. EmitMulOp(cond, B21, ra, rd, rn, rm); } void Arm32Assembler::mls(Register rd, Register rn, Register rm, Register ra, Condition cond) { // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. EmitMulOp(cond, B22 | B21, ra, rd, rn, rm); } void Arm32Assembler::umull(Register rd_lo, Register rd_hi, Register rn, Register rm, Condition cond) { // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm); } void Arm32Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(rm, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = B26 | B25 | B24 | B20 | B15 | B14 | B13 | B12 | (static_cast(cond) << kConditionShift) | (static_cast(rn) << 0) | (static_cast(rd) << 16) | (static_cast(rm) << 8) | B4; Emit(encoding); } void Arm32Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(rm, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = B26 | B25 | B24 | B21 | B20 | B15 | B14 | B13 | B12 | (static_cast(cond) << kConditionShift) | (static_cast(rn) << 0) | (static_cast(rd) << 16) | (static_cast(rm) << 8) | B4; Emit(encoding); } void Arm32Assembler::sbfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(cond, kNoCondition); CHECK_LE(lsb, 31U); CHECK(1U <= width && width <= 32U) << width; uint32_t widthminus1 = width - 1; int32_t encoding = (static_cast(cond) << kConditionShift) | B26 | B25 | B24 | B23 | B21 | (widthminus1 << 16) | (static_cast(rd) << 12) | (lsb << 7) | B6 | B4 | static_cast(rn); Emit(encoding); } void Arm32Assembler::ubfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(cond, kNoCondition); CHECK_LE(lsb, 31U); CHECK(1U <= width && width <= 32U) << width; uint32_t widthminus1 = width - 1; int32_t encoding = (static_cast(cond) << kConditionShift) | B26 | B25 | B24 | B23 | B22 | B21 | (widthminus1 << 16) | (static_cast(rd) << 12) | (lsb << 7) | B6 | B4 | static_cast(rn); Emit(encoding); } void Arm32Assembler::ldr(Register rd, const Address& ad, Condition cond) { EmitMemOp(cond, true, false, rd, ad); } void Arm32Assembler::str(Register rd, const Address& ad, Condition cond) { EmitMemOp(cond, false, false, rd, ad); } void Arm32Assembler::ldrb(Register rd, const Address& ad, Condition cond) { EmitMemOp(cond, true, true, rd, ad); } void Arm32Assembler::strb(Register rd, const Address& ad, Condition cond) { EmitMemOp(cond, false, true, rd, ad); } void Arm32Assembler::ldrh(Register rd, const Address& ad, Condition cond) { EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad); } void Arm32Assembler::strh(Register rd, const Address& ad, Condition cond) { EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad); } void Arm32Assembler::ldrsb(Register rd, const Address& ad, Condition cond) { EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad); } void Arm32Assembler::ldrsh(Register rd, const Address& ad, Condition cond) { EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad); } void Arm32Assembler::ldrd(Register rd, const Address& ad, Condition cond) { CHECK_EQ(rd % 2, 0); EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, ad); } void Arm32Assembler::strd(Register rd, const Address& ad, Condition cond) { CHECK_EQ(rd % 2, 0); EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, ad); } void Arm32Assembler::ldm(BlockAddressMode am, Register base, RegList regs, Condition cond) { EmitMultiMemOp(cond, am, true, base, regs); } void Arm32Assembler::stm(BlockAddressMode am, Register base, RegList regs, Condition cond) { EmitMultiMemOp(cond, am, false, base, regs); } void Arm32Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm); } void Arm32Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm); } bool Arm32Assembler::vmovs(SRegister sd, float s_imm, Condition cond) { uint32_t imm32 = bit_cast(s_imm); if (((imm32 & ((1 << 19) - 1)) == 0) && ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) || (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) { uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) | ((imm32 >> 19) & ((1 << 6) -1)); EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf), sd, S0, S0); return true; } return false; } bool Arm32Assembler::vmovd(DRegister dd, double d_imm, Condition cond) { uint64_t imm64 = bit_cast(d_imm); if (((imm64 & ((1LL << 48) - 1)) == 0) && ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) || (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) { uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) | ((imm64 >> 48) & ((1 << 6) -1)); EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf), dd, D0, D0); return true; } return false; } void Arm32Assembler::vadds(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21 | B20, sd, sn, sm); } void Arm32Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21 | B20, dd, dn, dm); } void Arm32Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm); } void Arm32Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm); } void Arm32Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21, sd, sn, sm); } void Arm32Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21, dd, dn, dm); } void Arm32Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, 0, sd, sn, sm); } void Arm32Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, 0, dd, dn, dm); } void Arm32Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B6, sd, sn, sm); } void Arm32Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B6, dd, dn, dm); } void Arm32Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B23, sd, sn, sm); } void Arm32Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B23, dd, dn, dm); } void Arm32Assembler::vabss(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm); } void Arm32Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm); } void Arm32Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm); } void Arm32Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm); } void Arm32Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm); } void Arm32Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm); } void Arm32Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm); } void Arm32Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm); } void Arm32Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm); } void Arm32Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm); } void Arm32Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm); } void Arm32Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm); } void Arm32Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm); } void Arm32Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm); } void Arm32Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm); } void Arm32Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm); } void Arm32Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm); } void Arm32Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm); } void Arm32Assembler::vcmpsz(SRegister sd, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0); } void Arm32Assembler::vcmpdz(DRegister dd, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0); } void Arm32Assembler::b(Label* label, Condition cond) { EmitBranch(cond, label, false); } void Arm32Assembler::bl(Label* label, Condition cond) { EmitBranch(cond, label, true); } void Arm32Assembler::MarkExceptionHandler(Label* label) { EmitType01(AL, 1, TST, 1, PC, R0, ShifterOperand(0)); Label l; b(&l); EmitBranch(AL, label, false); Bind(&l); } void Arm32Assembler::Emit(int32_t value) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit(value); } void Arm32Assembler::EmitType01(Condition cond, int type, Opcode opcode, int set_cc, Register rn, Register rd, const ShifterOperand& so) { CHECK_NE(rd, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = static_cast(cond) << kConditionShift | type << kTypeShift | static_cast(opcode) << kOpcodeShift | set_cc << kSShift | static_cast(rn) << kRnShift | static_cast(rd) << kRdShift | so.encodingArm(); Emit(encoding); } void Arm32Assembler::EmitType5(Condition cond, int offset, bool link) { CHECK_NE(cond, kNoCondition); int32_t encoding = static_cast(cond) << kConditionShift | 5 << kTypeShift | (link ? 1 : 0) << kLinkShift; Emit(Arm32Assembler::EncodeBranchOffset(offset, encoding)); } void Arm32Assembler::EmitMemOp(Condition cond, bool load, bool byte, Register rd, const Address& ad) { CHECK_NE(rd, kNoRegister); CHECK_NE(cond, kNoCondition); const Address& addr = static_cast(ad); int32_t encoding = 0; if (!ad.IsImmediate() && ad.GetRegisterOffset() == PC) { // PC relative LDR(literal) int32_t offset = ad.GetOffset(); int32_t u = B23; if (offset < 0) { offset = -offset; u = 0; } CHECK_LT(offset, (1 << 12)); encoding = (static_cast(cond) << kConditionShift) | B26 | B24 | u | B20 | (load ? L : 0) | (byte ? B : 0) | (static_cast(rd) << kRdShift) | 0xf << 16 | (offset & 0xfff); } else { encoding = (static_cast(cond) << kConditionShift) | B26 | (load ? L : 0) | (byte ? B : 0) | (static_cast(rd) << kRdShift) | addr.encodingArm(); } Emit(encoding); } void Arm32Assembler::EmitMemOpAddressMode3(Condition cond, int32_t mode, Register rd, const Address& ad) { CHECK_NE(rd, kNoRegister); CHECK_NE(cond, kNoCondition); const Address& addr = static_cast(ad); int32_t encoding = (static_cast(cond) << kConditionShift) | B22 | mode | (static_cast(rd) << kRdShift) | addr.encoding3(); Emit(encoding); } void Arm32Assembler::EmitMultiMemOp(Condition cond, BlockAddressMode am, bool load, Register base, RegList regs) { CHECK_NE(base, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | am | (load ? L : 0) | (static_cast(base) << kRnShift) | regs; Emit(encoding); } void Arm32Assembler::EmitShiftImmediate(Condition cond, Shift opcode, Register rd, Register rm, const ShifterOperand& so) { CHECK_NE(cond, kNoCondition); CHECK(so.IsImmediate()); int32_t encoding = static_cast(cond) << kConditionShift | static_cast(MOV) << kOpcodeShift | static_cast(rd) << kRdShift | so.encodingArm() << kShiftImmShift | static_cast(opcode) << kShiftShift | static_cast(rm); Emit(encoding); } void Arm32Assembler::EmitShiftRegister(Condition cond, Shift opcode, Register rd, Register rm, const ShifterOperand& so) { CHECK_NE(cond, kNoCondition); CHECK(so.IsRegister()); int32_t encoding = static_cast(cond) << kConditionShift | static_cast(MOV) << kOpcodeShift | static_cast(rd) << kRdShift | so.encodingArm() << kShiftRegisterShift | static_cast(opcode) << kShiftShift | B4 | static_cast(rm); Emit(encoding); } void Arm32Assembler::EmitBranch(Condition cond, Label* label, bool link) { if (label->IsBound()) { EmitType5(cond, label->Position() - buffer_.Size(), link); } else { int position = buffer_.Size(); // Use the offset field of the branch instruction for linking the sites. EmitType5(cond, label->position_, link); label->LinkTo(position); } } void Arm32Assembler::clz(Register rd, Register rm, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rm, kNoRegister); CHECK_NE(cond, kNoCondition); CHECK_NE(rd, PC); CHECK_NE(rm, PC); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B22 | B21 | (0xf << 16) | (static_cast(rd) << kRdShift) | (0xf << 8) | B4 | static_cast(rm); Emit(encoding); } void Arm32Assembler::movw(Register rd, uint16_t imm16, Condition cond) { CHECK_NE(cond, kNoCondition); int32_t encoding = static_cast(cond) << kConditionShift | B25 | B24 | ((imm16 >> 12) << 16) | static_cast(rd) << kRdShift | (imm16 & 0xfff); Emit(encoding); } void Arm32Assembler::movt(Register rd, uint16_t imm16, Condition cond) { CHECK_NE(cond, kNoCondition); int32_t encoding = static_cast(cond) << kConditionShift | B25 | B24 | B22 | ((imm16 >> 12) << 16) | static_cast(rd) << kRdShift | (imm16 & 0xfff); Emit(encoding); } void Arm32Assembler::EmitMulOp(Condition cond, int32_t opcode, Register rd, Register rn, Register rm, Register rs) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(rm, kNoRegister); CHECK_NE(rs, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = opcode | (static_cast(cond) << kConditionShift) | (static_cast(rn) << kRnShift) | (static_cast(rd) << kRdShift) | (static_cast(rs) << kRsShift) | B7 | B4 | (static_cast(rm) << kRmShift); Emit(encoding); } void Arm32Assembler::ldrex(Register rt, Register rn, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B23 | L | (static_cast(rn) << kLdExRnShift) | (static_cast(rt) << kLdExRtShift) | B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0; Emit(encoding); } void Arm32Assembler::ldrexd(Register rt, Register rt2, Register rn, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt, R14); CHECK_EQ(0u, static_cast(rt) % 2); CHECK_EQ(static_cast(rt) + 1, static_cast(rt2)); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B23 | B21 | B20 | static_cast(rn) << 16 | static_cast(rt) << 12 | B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0; Emit(encoding); } void Arm32Assembler::strex(Register rd, Register rt, Register rn, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rd, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B23 | (static_cast(rn) << kStrExRnShift) | (static_cast(rd) << kStrExRdShift) | B11 | B10 | B9 | B8 | B7 | B4 | (static_cast(rt) << kStrExRtShift); Emit(encoding); } void Arm32Assembler::strexd(Register rd, Register rt, Register rt2, Register rn, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt, R14); CHECK_NE(rd, rt); CHECK_NE(rd, rt2); CHECK_EQ(0u, static_cast(rt) % 2); CHECK_EQ(static_cast(rt) + 1, static_cast(rt2)); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B23 | B21 | static_cast(rn) << 16 | static_cast(rd) << 12 | B11 | B10 | B9 | B8 | B7 | B4 | static_cast(rt); Emit(encoding); } void Arm32Assembler::clrex(Condition cond) { CHECK_EQ(cond, AL); // This cannot be conditional on ARM. int32_t encoding = (kSpecialCondition << kConditionShift) | B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf; Emit(encoding); } void Arm32Assembler::nop(Condition cond) { CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B25 | B24 | B21 | (0xf << 12); Emit(encoding); } void Arm32Assembler::vmovsr(SRegister sn, Register rt, Condition cond) { CHECK_NE(sn, kNoSRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | ((static_cast(sn) >> 1)*B16) | (static_cast(rt)*B12) | B11 | B9 | ((static_cast(sn) & 1)*B7) | B4; Emit(encoding); } void Arm32Assembler::vmovrs(Register rt, SRegister sn, Condition cond) { CHECK_NE(sn, kNoSRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B20 | ((static_cast(sn) >> 1)*B16) | (static_cast(rt)*B12) | B11 | B9 | ((static_cast(sn) & 1)*B7) | B4; Emit(encoding); } void Arm32Assembler::vmovsrr(SRegister sm, Register rt, Register rt2, Condition cond) { CHECK_NE(sm, kNoSRegister); CHECK_NE(sm, S31); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B22 | (static_cast(rt2)*B16) | (static_cast(rt)*B12) | B11 | B9 | ((static_cast(sm) & 1)*B5) | B4 | (static_cast(sm) >> 1); Emit(encoding); } void Arm32Assembler::vmovrrs(Register rt, Register rt2, SRegister sm, Condition cond) { CHECK_NE(sm, kNoSRegister); CHECK_NE(sm, S31); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(rt, rt2); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B22 | B20 | (static_cast(rt2)*B16) | (static_cast(rt)*B12) | B11 | B9 | ((static_cast(sm) & 1)*B5) | B4 | (static_cast(sm) >> 1); Emit(encoding); } void Arm32Assembler::vmovdrr(DRegister dm, Register rt, Register rt2, Condition cond) { CHECK_NE(dm, kNoDRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B22 | (static_cast(rt2)*B16) | (static_cast(rt)*B12) | B11 | B9 | B8 | ((static_cast(dm) >> 4)*B5) | B4 | (static_cast(dm) & 0xf); Emit(encoding); } void Arm32Assembler::vmovrrd(Register rt, Register rt2, DRegister dm, Condition cond) { CHECK_NE(dm, kNoDRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(rt, rt2); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B22 | B20 | (static_cast(rt2)*B16) | (static_cast(rt)*B12) | B11 | B9 | B8 | ((static_cast(dm) >> 4)*B5) | B4 | (static_cast(dm) & 0xf); Emit(encoding); } void Arm32Assembler::vldrs(SRegister sd, const Address& ad, Condition cond) { const Address& addr = static_cast(ad); CHECK_NE(sd, kNoSRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B24 | B20 | ((static_cast(sd) & 1)*B22) | ((static_cast(sd) >> 1)*B12) | B11 | B9 | addr.vencoding(); Emit(encoding); } void Arm32Assembler::vstrs(SRegister sd, const Address& ad, Condition cond) { const Address& addr = static_cast(ad); CHECK_NE(static_cast(addr.encodingArm() & (0xf << kRnShift)), PC); CHECK_NE(sd, kNoSRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B24 | ((static_cast(sd) & 1)*B22) | ((static_cast(sd) >> 1)*B12) | B11 | B9 | addr.vencoding(); Emit(encoding); } void Arm32Assembler::vldrd(DRegister dd, const Address& ad, Condition cond) { const Address& addr = static_cast(ad); CHECK_NE(dd, kNoDRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B24 | B20 | ((static_cast(dd) >> 4)*B22) | ((static_cast(dd) & 0xf)*B12) | B11 | B9 | B8 | addr.vencoding(); Emit(encoding); } void Arm32Assembler::vstrd(DRegister dd, const Address& ad, Condition cond) { const Address& addr = static_cast(ad); CHECK_NE(static_cast(addr.encodingArm() & (0xf << kRnShift)), PC); CHECK_NE(dd, kNoDRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B24 | ((static_cast(dd) >> 4)*B22) | ((static_cast(dd) & 0xf)*B12) | B11 | B9 | B8 | addr.vencoding(); Emit(encoding); } void Arm32Assembler::vpushs(SRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast(reg), nregs, true, false, cond); } void Arm32Assembler::vpushd(DRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast(reg), nregs, true, true, cond); } void Arm32Assembler::vpops(SRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast(reg), nregs, false, false, cond); } void Arm32Assembler::vpopd(DRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast(reg), nregs, false, true, cond); } void Arm32Assembler::EmitVPushPop(uint32_t reg, int nregs, bool push, bool dbl, Condition cond) { CHECK_NE(cond, kNoCondition); CHECK_GT(nregs, 0); uint32_t D; uint32_t Vd; if (dbl) { // Encoded as D:Vd. D = (reg >> 4) & 1; Vd = reg & 15U /* 0b1111 */; } else { // Encoded as Vd:D. D = reg & 1; Vd = (reg >> 1) & 15U /* 0b1111 */; } int32_t encoding = B27 | B26 | B21 | B19 | B18 | B16 | B11 | B9 | (dbl ? B8 : 0) | (push ? B24 : (B23 | B20)) | static_cast(cond) << kConditionShift | nregs << (dbl ? 1 : 0) | D << 22 | Vd << 12; Emit(encoding); } void Arm32Assembler::EmitVFPsss(Condition cond, int32_t opcode, SRegister sd, SRegister sn, SRegister sm) { CHECK_NE(sd, kNoSRegister); CHECK_NE(sn, kNoSRegister); CHECK_NE(sm, kNoSRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast(sd) & 1)*B22) | ((static_cast(sn) >> 1)*B16) | ((static_cast(sd) >> 1)*B12) | ((static_cast(sn) & 1)*B7) | ((static_cast(sm) & 1)*B5) | (static_cast(sm) >> 1); Emit(encoding); } void Arm32Assembler::EmitVFPddd(Condition cond, int32_t opcode, DRegister dd, DRegister dn, DRegister dm) { CHECK_NE(dd, kNoDRegister); CHECK_NE(dn, kNoDRegister); CHECK_NE(dm, kNoDRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | B8 | opcode | ((static_cast(dd) >> 4)*B22) | ((static_cast(dn) & 0xf)*B16) | ((static_cast(dd) & 0xf)*B12) | ((static_cast(dn) >> 4)*B7) | ((static_cast(dm) >> 4)*B5) | (static_cast(dm) & 0xf); Emit(encoding); } void Arm32Assembler::EmitVFPsd(Condition cond, int32_t opcode, SRegister sd, DRegister dm) { CHECK_NE(sd, kNoSRegister); CHECK_NE(dm, kNoDRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast(sd) & 1)*B22) | ((static_cast(sd) >> 1)*B12) | ((static_cast(dm) >> 4)*B5) | (static_cast(dm) & 0xf); Emit(encoding); } void Arm32Assembler::EmitVFPds(Condition cond, int32_t opcode, DRegister dd, SRegister sm) { CHECK_NE(dd, kNoDRegister); CHECK_NE(sm, kNoSRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast(dd) >> 4)*B22) | ((static_cast(dd) & 0xf)*B12) | ((static_cast(sm) & 1)*B5) | (static_cast(sm) >> 1); Emit(encoding); } void Arm32Assembler::Lsl(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK_LE(shift_imm, 31u); if (setcc) { movs(rd, ShifterOperand(rm, LSL, shift_imm), cond); } else { mov(rd, ShifterOperand(rm, LSL, shift_imm), cond); } } void Arm32Assembler::Lsr(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 32u); if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax. if (setcc) { movs(rd, ShifterOperand(rm, LSR, shift_imm), cond); } else { mov(rd, ShifterOperand(rm, LSR, shift_imm), cond); } } void Arm32Assembler::Asr(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 32u); if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax. if (setcc) { movs(rd, ShifterOperand(rm, ASR, shift_imm), cond); } else { mov(rd, ShifterOperand(rm, ASR, shift_imm), cond); } } void Arm32Assembler::Ror(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 31u); if (setcc) { movs(rd, ShifterOperand(rm, ROR, shift_imm), cond); } else { mov(rd, ShifterOperand(rm, ROR, shift_imm), cond); } } void Arm32Assembler::Rrx(Register rd, Register rm, bool setcc, Condition cond) { if (setcc) { movs(rd, ShifterOperand(rm, ROR, 0), cond); } else { mov(rd, ShifterOperand(rm, ROR, 0), cond); } } void Arm32Assembler::Lsl(Register rd, Register rm, Register rn, bool setcc, Condition cond) { if (setcc) { movs(rd, ShifterOperand(rm, LSL, rn), cond); } else { mov(rd, ShifterOperand(rm, LSL, rn), cond); } } void Arm32Assembler::Lsr(Register rd, Register rm, Register rn, bool setcc, Condition cond) { if (setcc) { movs(rd, ShifterOperand(rm, LSR, rn), cond); } else { mov(rd, ShifterOperand(rm, LSR, rn), cond); } } void Arm32Assembler::Asr(Register rd, Register rm, Register rn, bool setcc, Condition cond) { if (setcc) { movs(rd, ShifterOperand(rm, ASR, rn), cond); } else { mov(rd, ShifterOperand(rm, ASR, rn), cond); } } void Arm32Assembler::Ror(Register rd, Register rm, Register rn, bool setcc, Condition cond) { if (setcc) { movs(rd, ShifterOperand(rm, ROR, rn), cond); } else { mov(rd, ShifterOperand(rm, ROR, rn), cond); } } void Arm32Assembler::vmstat(Condition cond) { // VMRS APSR_nzcv, FPSCR CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | (static_cast(PC)*B12) | B11 | B9 | B4; Emit(encoding); } void Arm32Assembler::svc(uint32_t imm24) { CHECK(IsUint<24>(imm24)) << imm24; int32_t encoding = (AL << kConditionShift) | B27 | B26 | B25 | B24 | imm24; Emit(encoding); } void Arm32Assembler::bkpt(uint16_t imm16) { int32_t encoding = (AL << kConditionShift) | B24 | B21 | ((imm16 >> 4) << 8) | B6 | B5 | B4 | (imm16 & 0xf); Emit(encoding); } void Arm32Assembler::blx(Register rm, Condition cond) { CHECK_NE(rm, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B21 | (0xfff << 8) | B5 | B4 | (static_cast(rm) << kRmShift); Emit(encoding); } void Arm32Assembler::bx(Register rm, Condition cond) { CHECK_NE(rm, kNoRegister); CHECK_NE(cond, kNoCondition); int32_t encoding = (static_cast(cond) << kConditionShift) | B24 | B21 | (0xfff << 8) | B4 | (static_cast(rm) << kRmShift); Emit(encoding); } void Arm32Assembler::Push(Register rd, Condition cond) { str(rd, Address(SP, -kRegisterSize, Address::PreIndex), cond); } void Arm32Assembler::Pop(Register rd, Condition cond) { ldr(rd, Address(SP, kRegisterSize, Address::PostIndex), cond); } void Arm32Assembler::PushList(RegList regs, Condition cond) { stm(DB_W, SP, regs, cond); } void Arm32Assembler::PopList(RegList regs, Condition cond) { ldm(IA_W, SP, regs, cond); } void Arm32Assembler::Mov(Register rd, Register rm, Condition cond) { if (rd != rm) { mov(rd, ShifterOperand(rm), cond); } } void Arm32Assembler::Bind(Label* label) { CHECK(!label->IsBound()); int bound_pc = buffer_.Size(); while (label->IsLinked()) { int32_t position = label->Position(); int32_t next = buffer_.Load(position); int32_t encoded = Arm32Assembler::EncodeBranchOffset(bound_pc - position, next); buffer_.Store(position, encoded); label->position_ = Arm32Assembler::DecodeBranchOffset(next); } label->BindTo(bound_pc); } int32_t Arm32Assembler::EncodeBranchOffset(int offset, int32_t inst) { // The offset is off by 8 due to the way the ARM CPUs read PC. offset -= 8; CHECK_ALIGNED(offset, 4); CHECK(IsInt(POPCOUNT(kBranchOffsetMask), offset)) << offset; // Properly preserve only the bits supported in the instruction. offset >>= 2; offset &= kBranchOffsetMask; return (inst & ~kBranchOffsetMask) | offset; } int Arm32Assembler::DecodeBranchOffset(int32_t inst) { // Sign-extend, left-shift by 2, then add 8. return ((((inst & kBranchOffsetMask) << 8) >> 6) + 8); } void Arm32Assembler::AddConstant(Register rd, int32_t value, Condition cond) { AddConstant(rd, rd, value, cond); } void Arm32Assembler::AddConstant(Register rd, Register rn, int32_t value, Condition cond) { if (value == 0) { if (rd != rn) { mov(rd, ShifterOperand(rn), cond); } return; } // We prefer to select the shorter code sequence rather than selecting add for // positive values and sub for negatives ones, which would slightly improve // the readability of generated code for some constants. ShifterOperand shifter_op; if (ShifterOperandCanHoldArm32(value, &shifter_op)) { add(rd, rn, shifter_op, cond); } else if (ShifterOperandCanHoldArm32(-value, &shifter_op)) { sub(rd, rn, shifter_op, cond); } else { CHECK(rn != IP); if (ShifterOperandCanHoldArm32(~value, &shifter_op)) { mvn(IP, shifter_op, cond); add(rd, rn, ShifterOperand(IP), cond); } else if (ShifterOperandCanHoldArm32(~(-value), &shifter_op)) { mvn(IP, shifter_op, cond); sub(rd, rn, ShifterOperand(IP), cond); } else { movw(IP, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(IP, value_high, cond); } add(rd, rn, ShifterOperand(IP), cond); } } } void Arm32Assembler::AddConstantSetFlags(Register rd, Register rn, int32_t value, Condition cond) { ShifterOperand shifter_op; if (ShifterOperandCanHoldArm32(value, &shifter_op)) { adds(rd, rn, shifter_op, cond); } else if (ShifterOperandCanHoldArm32(-value, &shifter_op)) { subs(rd, rn, shifter_op, cond); } else { CHECK(rn != IP); if (ShifterOperandCanHoldArm32(~value, &shifter_op)) { mvn(IP, shifter_op, cond); adds(rd, rn, ShifterOperand(IP), cond); } else if (ShifterOperandCanHoldArm32(~(-value), &shifter_op)) { mvn(IP, shifter_op, cond); subs(rd, rn, ShifterOperand(IP), cond); } else { movw(IP, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(IP, value_high, cond); } adds(rd, rn, ShifterOperand(IP), cond); } } } void Arm32Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) { ShifterOperand shifter_op; if (ShifterOperandCanHoldArm32(value, &shifter_op)) { mov(rd, shifter_op, cond); } else if (ShifterOperandCanHoldArm32(~value, &shifter_op)) { mvn(rd, shifter_op, cond); } else { movw(rd, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(rd, value_high, cond); } } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetArm. void Arm32Assembler::LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetArm(type, offset)) { CHECK(base != IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetArm(type, offset)); switch (type) { case kLoadSignedByte: ldrsb(reg, Address(base, offset), cond); break; case kLoadUnsignedByte: ldrb(reg, Address(base, offset), cond); break; case kLoadSignedHalfword: ldrsh(reg, Address(base, offset), cond); break; case kLoadUnsignedHalfword: ldrh(reg, Address(base, offset), cond); break; case kLoadWord: ldr(reg, Address(base, offset), cond); break; case kLoadWordPair: ldrd(reg, Address(base, offset), cond); break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetArm, as expected by JIT::GuardedLoadFromOffset. void Arm32Assembler::LoadSFromOffset(SRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetArm(kLoadSWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetArm(kLoadSWord, offset)); vldrs(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetArm, as expected by JIT::GuardedLoadFromOffset. void Arm32Assembler::LoadDFromOffset(DRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetArm(kLoadDWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetArm(kLoadDWord, offset)); vldrd(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetArm. void Arm32Assembler::StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldStoreOffsetArm(type, offset)) { CHECK(reg != IP); CHECK(base != IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldStoreOffsetArm(type, offset)); switch (type) { case kStoreByte: strb(reg, Address(base, offset), cond); break; case kStoreHalfword: strh(reg, Address(base, offset), cond); break; case kStoreWord: str(reg, Address(base, offset), cond); break; case kStoreWordPair: strd(reg, Address(base, offset), cond); break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetArm, as expected by JIT::GuardedStoreToOffset. void Arm32Assembler::StoreSToOffset(SRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldStoreOffsetArm(kStoreSWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldStoreOffsetArm(kStoreSWord, offset)); vstrs(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetArm, as expected by JIT::GuardedStoreSToOffset. void Arm32Assembler::StoreDToOffset(DRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldStoreOffsetArm(kStoreDWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldStoreOffsetArm(kStoreDWord, offset)); vstrd(reg, Address(base, offset), cond); } void Arm32Assembler::MemoryBarrier(ManagedRegister mscratch) { CHECK_EQ(mscratch.AsArm().AsCoreRegister(), R12); dmb(SY); } void Arm32Assembler::dmb(DmbOptions flavor) { int32_t encoding = 0xf57ff05f; // dmb Emit(encoding | flavor); } void Arm32Assembler::cbz(Register rn ATTRIBUTE_UNUSED, Label* target ATTRIBUTE_UNUSED) { LOG(FATAL) << "cbz is not supported on ARM32"; } void Arm32Assembler::cbnz(Register rn ATTRIBUTE_UNUSED, Label* target ATTRIBUTE_UNUSED) { LOG(FATAL) << "cbnz is not supported on ARM32"; } void Arm32Assembler::CompareAndBranchIfZero(Register r, Label* label) { cmp(r, ShifterOperand(0)); b(label, EQ); } void Arm32Assembler::CompareAndBranchIfNonZero(Register r, Label* label) { cmp(r, ShifterOperand(0)); b(label, NE); } } // namespace arm } // namespace art