/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_BIT_UTILS_H_ #define ART_RUNTIME_BASE_BIT_UTILS_H_ #include #include #include #include "base/logging.h" #include "base/iteration_range.h" namespace art { template static constexpr int CLZ(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4] "T too large, must be smaller than long long"); return (sizeof(T) == sizeof(uint32_t)) ? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0 : __builtin_clzll(x); } template static constexpr int CTZ(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. return (sizeof(T) == sizeof(uint32_t)) ? __builtin_ctz(x) : __builtin_ctzll(x); } template static constexpr int POPCOUNT(T x) { return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); } // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. template static constexpr ssize_t MostSignificantBit(T value) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); return (value == 0) ? -1 : std::numeric_limits::digits - 1 - CLZ(value); } // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. template static constexpr ssize_t LeastSignificantBit(T value) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); return (value == 0) ? -1 : CTZ(value); } // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. template static constexpr size_t MinimumBitsToStore(T value) { return static_cast(MostSignificantBit(value) + 1); } template static constexpr inline T RoundUpToPowerOfTwo(T x) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); // NOTE: Undefined if x > (1 << (std::numeric_limits::digits - 1)). return (x < 2u) ? x : static_cast(1u) << (std::numeric_limits::digits - CLZ(x - 1u)); } template static constexpr bool IsPowerOfTwo(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. return (x & (x - 1)) == 0; } template static inline int WhichPowerOf2(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. DCHECK((x != 0) && IsPowerOfTwo(x)); return CTZ(x); } // For rounding integers. // NOTE: In the absence of std::omit_from_type_deduction or std::identity, use std::decay. template static constexpr T RoundDown(T x, typename std::decay::type n) WARN_UNUSED; template static constexpr T RoundDown(T x, typename std::decay::type n) { return DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) (x & -n); } template static constexpr T RoundUp(T x, typename std::remove_reference::type n) WARN_UNUSED; template static constexpr T RoundUp(T x, typename std::remove_reference::type n) { return RoundDown(x + n - 1, n); } // For aligning pointers. template static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; template static inline T* AlignDown(T* x, uintptr_t n) { return reinterpret_cast(RoundDown(reinterpret_cast(x), n)); } template static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; template static inline T* AlignUp(T* x, uintptr_t n) { return reinterpret_cast(RoundUp(reinterpret_cast(x), n)); } template static inline bool IsAligned(T x) { static_assert((n & (n - 1)) == 0, "n is not a power of two"); return (x & (n - 1)) == 0; } template static inline bool IsAligned(T* x) { return IsAligned(reinterpret_cast(x)); } template static inline bool IsAlignedParam(T x, int n) { return (x & (n - 1)) == 0; } #define CHECK_ALIGNED(value, alignment) \ CHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define DCHECK_ALIGNED(value, alignment) \ DCHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define DCHECK_ALIGNED_PARAM(value, alignment) \ DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast(value) // Like sizeof, but count how many bits a type takes. Pass type explicitly. template static constexpr size_t BitSizeOf() { static_assert(std::is_integral::value, "T must be integral"); typedef typename std::make_unsigned::type unsigned_type; static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); return std::numeric_limits::digits; } // Like sizeof, but count how many bits a type takes. Infers type from parameter. template static constexpr size_t BitSizeOf(T /*x*/) { return BitSizeOf(); } static inline uint16_t Low16Bits(uint32_t value) { return static_cast(value); } static inline uint16_t High16Bits(uint32_t value) { return static_cast(value >> 16); } static inline uint32_t Low32Bits(uint64_t value) { return static_cast(value); } static inline uint32_t High32Bits(uint64_t value) { return static_cast(value >> 32); } // Check whether an N-bit two's-complement representation can hold value. template static inline bool IsInt(size_t N, T value) { if (N == BitSizeOf()) { return true; } else { CHECK_LT(0u, N); CHECK_LT(N, BitSizeOf()); T limit = static_cast(1) << (N - 1u); return (-limit <= value) && (value < limit); } } template static constexpr T GetIntLimit(size_t bits) { return DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0) DCHECK_CONSTEXPR(bits < BitSizeOf(), "kBits must be < max.", 0) static_cast(1) << (bits - 1); } template static constexpr bool IsInt(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_signed::value, "Needs a signed type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. return (kBits == BitSizeOf()) ? true : (-GetIntLimit(kBits) <= value) && (value < GetIntLimit(kBits)); } template static constexpr bool IsUint(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_integral::value, "Needs an integral type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf(), // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. return (0 <= value) && (kBits == BitSizeOf() || (static_cast::type>(value) <= GetIntLimit::type>(kBits) * 2u - 1u)); } template static constexpr bool IsAbsoluteUint(T value) { static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_integral::value, "Needs an integral type."); typedef typename std::make_unsigned::type unsigned_type; return (kBits == BitSizeOf()) ? true : IsUint(value < 0 ? static_cast(-1 - value) + 1u // Avoid overflow. : static_cast(value)); } // Using the Curiously Recurring Template Pattern to implement everything shared // by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*(). template class BitIteratorBase : public std::iterator { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size"); public: BitIteratorBase() : bits_(0u) { } explicit BitIteratorBase(T bits) : bits_(bits) { } Iter& operator++() { DCHECK_NE(bits_, 0u); uint32_t bit = *static_cast(*this); bits_ &= ~(static_cast(1u) << bit); return static_cast(*this); } Iter& operator++(int) { Iter tmp(static_cast(*this)); ++*this; return tmp; } protected: T bits_; template friend bool operator==(const BitIteratorBase& lhs, const BitIteratorBase& rhs); }; template bool operator==(const BitIteratorBase& lhs, const BitIteratorBase& rhs) { return lhs.bits_ == rhs.bits_; } template bool operator!=(const BitIteratorBase& lhs, const BitIteratorBase& rhs) { return !(lhs == rhs); } template class LowToHighBitIterator : public BitIteratorBase> { public: using BitIteratorBase>::BitIteratorBase; uint32_t operator*() const { DCHECK_NE(this->bits_, 0u); return CTZ(this->bits_); } }; template class HighToLowBitIterator : public BitIteratorBase> { public: using BitIteratorBase>::BitIteratorBase; uint32_t operator*() const { DCHECK_NE(this->bits_, 0u); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); return std::numeric_limits::digits - 1u - CLZ(this->bits_); } }; template IterationRange> LowToHighBits(T bits) { return IterationRange>( LowToHighBitIterator(bits), LowToHighBitIterator()); } template IterationRange> HighToLowBits(T bits) { return IterationRange>( HighToLowBitIterator(bits), HighToLowBitIterator()); } } // namespace art #endif // ART_RUNTIME_BASE_BIT_UTILS_H_