/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "reference_processor.h" #include "base/time_utils.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/reference-inl.h" #include "reference_processor-inl.h" #include "reflection.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "task_processor.h" #include "utils.h" #include "well_known_classes.h" namespace art { namespace gc { static constexpr bool kAsyncReferenceQueueAdd = false; ReferenceProcessor::ReferenceProcessor() : process_references_args_(nullptr, nullptr, nullptr), preserving_references_(false), condition_("reference processor condition", *Locks::reference_processor_lock_) , soft_reference_queue_(Locks::reference_queue_soft_references_lock_), weak_reference_queue_(Locks::reference_queue_weak_references_lock_), finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), cleared_references_(Locks::reference_queue_cleared_references_lock_) { } void ReferenceProcessor::EnableSlowPath() { mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); } void ReferenceProcessor::DisableSlowPath(Thread* self) { mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); condition_.Broadcast(self); } mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) { mirror::Object* const referent = reference->GetReferent(); // If the referent is null then it is already cleared, we can just return null since there is no // scenario where it becomes non-null during the reference processing phase. if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { return referent; } MutexLock mu(self, *Locks::reference_processor_lock_); while (SlowPathEnabled()) { mirror::HeapReference* const referent_addr = reference->GetReferentReferenceAddr(); // If the referent became cleared, return it. Don't need barrier since thread roots can't get // updated until after we leave the function due to holding the mutator lock. if (referent_addr->AsMirrorPtr() == nullptr) { return nullptr; } // Try to see if the referent is already marked by using the is_marked_callback. We can return // it to the mutator as long as the GC is not preserving references. IsHeapReferenceMarkedCallback* const is_marked_callback = process_references_args_.is_marked_callback_; if (LIKELY(is_marked_callback != nullptr)) { // If it's null it means not marked, but it could become marked if the referent is reachable // by finalizer referents. So we can not return in this case and must block. Otherwise, we // can return it to the mutator as long as the GC is not preserving references, in which // case only black nodes can be safely returned. If the GC is preserving references, the // mutator could take a white field from a grey or white node and move it somewhere else // in the heap causing corruption since this field would get swept. if (is_marked_callback(referent_addr, process_references_args_.arg_)) { if (!preserving_references_ || (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) { return referent_addr->AsMirrorPtr(); } } } condition_.WaitHoldingLocks(self); } return reference->GetReferent(); } bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference* obj, void* arg) { auto* const args = reinterpret_cast(arg); // TODO: Add smarter logic for preserving soft references. mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_); DCHECK(new_obj != nullptr); obj->Assign(new_obj); return true; } void ReferenceProcessor::StartPreservingReferences(Thread* self) { MutexLock mu(self, *Locks::reference_processor_lock_); preserving_references_ = true; } void ReferenceProcessor::StopPreservingReferences(Thread* self) { MutexLock mu(self, *Locks::reference_processor_lock_); preserving_references_ = false; // We are done preserving references, some people who are blocked may see a marked referent. condition_.Broadcast(self); } // Process reference class instances and schedule finalizations. void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, bool clear_soft_references, IsHeapReferenceMarkedCallback* is_marked_callback, MarkObjectCallback* mark_object_callback, ProcessMarkStackCallback* process_mark_stack_callback, void* arg) { TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::reference_processor_lock_); process_references_args_.is_marked_callback_ = is_marked_callback; process_references_args_.mark_callback_ = mark_object_callback; process_references_args_.arg_ = arg; CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; } // Unless required to clear soft references with white references, preserve some white referents. if (!clear_soft_references) { TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings); if (concurrent) { StartPreservingReferences(self); } soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback, &process_references_args_); process_mark_stack_callback(arg); if (concurrent) { StopPreservingReferences(self); } } // Clear all remaining soft and weak references with white referents. soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); { TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings); if (concurrent) { StartPreservingReferences(self); } // Preserve all white objects with finalize methods and schedule them for finalization. finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback, mark_object_callback, arg); process_mark_stack_callback(arg); if (concurrent) { StopPreservingReferences(self); } } // Clear all finalizer referent reachable soft and weak references with white referents. soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); // Clear all phantom references with white referents. phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); // At this point all reference queues other than the cleared references should be empty. DCHECK(soft_reference_queue_.IsEmpty()); DCHECK(weak_reference_queue_.IsEmpty()); DCHECK(finalizer_reference_queue_.IsEmpty()); DCHECK(phantom_reference_queue_.IsEmpty()); { MutexLock mu(self, *Locks::reference_processor_lock_); // Need to always do this since the next GC may be concurrent. Doing this for only concurrent // could result in a stale is_marked_callback_ being called before the reference processing // starts since there is a small window of time where slow_path_enabled_ is enabled but the // callback isn't yet set. process_references_args_.is_marked_callback_ = nullptr; if (concurrent) { // Done processing, disable the slow path and broadcast to the waiters. DisableSlowPath(self); } } } // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been // marked, put it on the appropriate list in the heap for later processing. void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, IsHeapReferenceMarkedCallback* is_marked_callback, void* arg) { // klass can be the class of the old object if the visitor already updated the class of ref. DCHECK(klass != nullptr); DCHECK(klass->IsTypeOfReferenceClass()); mirror::HeapReference* referent = ref->GetReferentReferenceAddr(); if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) { Thread* self = Thread::Current(); // TODO: Remove these locks, and use atomic stacks for storing references? // We need to check that the references haven't already been enqueued since we can end up // scanning the same reference multiple times due to dirty cards. if (klass->IsSoftReferenceClass()) { soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsWeakReferenceClass()) { weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsFinalizerReferenceClass()) { finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsPhantomReferenceClass()) { phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else { LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex << klass->GetAccessFlags(); } } } void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) { cleared_references_.UpdateRoots(callback, arg); } class ClearedReferenceTask : public HeapTask { public: explicit ClearedReferenceTask(jobject cleared_references) : HeapTask(NanoTime()), cleared_references_(cleared_references) { } virtual void Run(Thread* thread) { ScopedObjectAccess soa(thread); jvalue args[1]; args[0].l = cleared_references_; InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); soa.Env()->DeleteGlobalRef(cleared_references_); } private: const jobject cleared_references_; }; void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { Locks::mutator_lock_->AssertNotHeld(self); // When a runtime isn't started there are no reference queues to care about so ignore. if (!cleared_references_.IsEmpty()) { if (LIKELY(Runtime::Current()->IsStarted())) { jobject cleared_references; { ReaderMutexLock mu(self, *Locks::mutator_lock_); cleared_references = self->GetJniEnv()->vm->AddGlobalRef( self, cleared_references_.GetList()); } if (kAsyncReferenceQueueAdd) { // TODO: This can cause RunFinalization to terminate before newly freed objects are // finalized since they may not be enqueued by the time RunFinalization starts. Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( self, new ClearedReferenceTask(cleared_references)); } else { ClearedReferenceTask task(cleared_references); task.Run(self); } } cleared_references_.Clear(); } } bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::reference_processor_lock_); // Wait untul we are done processing reference. while (SlowPathEnabled()) { condition_.WaitHoldingLocks(self); } // At this point, since the sentinel of the reference is live, it is guaranteed to not be // enqueued if we just finished processing references. Otherwise, we may be doing the main GC // phase. Since we are holding the reference processor lock, it guarantees that reference // processing can't begin. The GC could have just enqueued the reference one one of the internal // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this // race. MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); if (!reference->IsEnqueued()) { CHECK(reference->IsFinalizerReferenceInstance()); if (Runtime::Current()->IsActiveTransaction()) { reference->SetPendingNext(reference); } else { reference->SetPendingNext(reference); } return true; } return false; } } // namespace gc } // namespace art