# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import its.image import its.caps import its.device import its.objects import its.target import numpy import math import pylab import os.path import matplotlib import matplotlib.pyplot def main(): """Test that device processing can be inverted to linear pixels. Captures a sequence of shots with the device pointed at a uniform target. Attempts to invert all the ISP processing to get back to linear R,G,B pixel data. """ NAME = os.path.basename(__file__).split(".")[0] RESIDUAL_THRESHOLD = 0.0003 # approximately each sample is off by 2/255 # The HAL3.2 spec requires that curves up to 64 control points in length # must be supported. L = 64 LM1 = float(L-1) gamma_lut = numpy.array( sum([[i/LM1, math.pow(i/LM1, 1/2.2)] for i in xrange(L)], [])) inv_gamma_lut = numpy.array( sum([[i/LM1, math.pow(i/LM1, 2.2)] for i in xrange(L)], [])) with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.compute_target_exposure(props) and its.caps.per_frame_control(props)) e,s = its.target.get_target_exposure_combos(cam)["midSensitivity"] s /= 2 sens_range = props['android.sensor.info.sensitivityRange'] sensitivities = [s*1.0/3.0, s*2.0/3.0, s, s*4.0/3.0, s*5.0/3.0] sensitivities = [s for s in sensitivities if s > sens_range[0] and s < sens_range[1]] req = its.objects.manual_capture_request(0, e) req["android.blackLevel.lock"] = True req["android.tonemap.mode"] = 0 req["android.tonemap.curveRed"] = gamma_lut.tolist() req["android.tonemap.curveGreen"] = gamma_lut.tolist() req["android.tonemap.curveBlue"] = gamma_lut.tolist() r_means = [] g_means = [] b_means = [] for sens in sensitivities: req["android.sensor.sensitivity"] = sens cap = cam.do_capture(req) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image( img, "%s_sens=%04d.jpg" % (NAME, sens)) img = its.image.apply_lut_to_image(img, inv_gamma_lut[1::2] * LM1) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) rgb_means = its.image.compute_image_means(tile) r_means.append(rgb_means[0]) g_means.append(rgb_means[1]) b_means.append(rgb_means[2]) pylab.plot(sensitivities, r_means, 'r') pylab.plot(sensitivities, g_means, 'g') pylab.plot(sensitivities, b_means, 'b') pylab.ylim([0,1]) matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME)) # Check that each plot is actually linear. for means in [r_means, g_means, b_means]: line,residuals,_,_,_ = numpy.polyfit(range(5),means,1,full=True) print "Line: m=%f, b=%f, resid=%f"%(line[0], line[1], residuals[0]) assert(residuals[0] < RESIDUAL_THRESHOLD) if __name__ == '__main__': main()