# Copyright 2015 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import its.image import its.caps import its.device import its.objects import its.target import math import matplotlib import matplotlib.pyplot import numpy import os.path import pylab def main(): """Test that the android.noiseReduction.mode param is applied when set for reprocessing requests. Capture reprocessed images with the camera dimly lit. Uses a high analog gain to ensure the captured image is noisy. Captures three reprocessed images, for NR off, "fast", and "high quality". Also captures a reprocessed image with low gain and NR off, and uses the variance of this as the baseline. """ NAME = os.path.basename(__file__).split(".")[0] RELATIVE_ERROR_TOLERANCE = 0.1 with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.compute_target_exposure(props) and its.caps.per_frame_control(props) and its.caps.noise_reduction_mode(props, 0) and (its.caps.yuv_reprocess(props) or its.caps.private_reprocess(props))) # If reprocessing is supported, ZSL NR mode must be avaiable. assert(its.caps.noise_reduction_mode(props, 4)) reprocess_formats = [] if (its.caps.yuv_reprocess(props)): reprocess_formats.append("yuv") if (its.caps.private_reprocess(props)): reprocess_formats.append("private") for reprocess_format in reprocess_formats: # List of variances for R, G, B. variances = [] nr_modes_reported = [] # NR mode 0 with low gain e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"] req = its.objects.manual_capture_request(s, e) req["android.noiseReduction.mode"] = 0 # Test reprocess_format->JPEG reprocessing # TODO: Switch to reprocess_format->YUV when YUV reprocessing is # supported. size = its.objects.get_available_output_sizes("jpg", props)[0] out_surface = {"width":size[0], "height":size[1], "format":"jpg"} cap = cam.do_capture(req, out_surface, reprocess_format) img = its.image.decompress_jpeg_to_rgb_image(cap["data"]) its.image.write_image(img, "%s_low_gain_fmt=jpg.jpg" % (NAME)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) ref_variance = its.image.compute_image_variances(tile) print "Ref variances:", ref_variance for nr_mode in range(5): # Skip unavailable modes if not its.caps.noise_reduction_mode(props, nr_mode): nr_modes_reported.append(nr_mode) variances.append(0) continue # NR modes with high gain e, s = its.target.get_target_exposure_combos(cam) \ ["maxSensitivity"] req = its.objects.manual_capture_request(s, e) req["android.noiseReduction.mode"] = nr_mode cap = cam.do_capture(req, out_surface, reprocess_format) nr_modes_reported.append( cap["metadata"]["android.noiseReduction.mode"]) img = its.image.decompress_jpeg_to_rgb_image(cap["data"]) its.image.write_image( img, "%s_high_gain_nr=%d_fmt=jpg.jpg" % (NAME, nr_mode)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) # Get the variances for R, G, and B channels variance = its.image.compute_image_variances(tile) variances.append( [variance[chan] / ref_variance[chan] for chan in range(3)]) print "Variances with NR mode [0,1,2,3,4]:", variances # Draw a plot. for chan in range(3): line = [] for nr_mode in range(5): line.append(variances[nr_mode][chan]) pylab.plot(range(5), line, "rgb"[chan]) matplotlib.pyplot.savefig("%s_plot_%s_variances.png" % (NAME, reprocess_format)) assert(nr_modes_reported == [0,1,2,3,4]) for j in range(3): # Smaller variance is better # Verify OFF(0) is not better than FAST(1) assert(variances[0][j] > variances[1][j] * (1.0 - RELATIVE_ERROR_TOLERANCE)) # Verify FAST(1) is not better than HQ(2) assert(variances[1][j] > variances[2][j] * (1.0 - RELATIVE_ERROR_TOLERANCE)) # Verify HQ(2) is better than OFF(0) assert(variances[0][j] > variances[2][j]) if its.caps.noise_reduction_mode(props, 3): # Verify OFF(0) is not better than MINIMAL(3) assert(variances[0][j] > variances[3][j] * (1.0 - RELATIVE_ERROR_TOLERANCE)) # Verify MINIMAL(3) is not better than HQ(2) assert(variances[3][j] > variances[2][j] * (1.0 - RELATIVE_ERROR_TOLERANCE)) # Verify ZSL(4) is close to MINIMAL(3) assert(numpy.isclose(variances[4][j], variances[3][j], RELATIVE_ERROR_TOLERANCE)) else: # Verify ZSL(4) is close to OFF(0) assert(numpy.isclose(variances[4][j], variances[0][j], RELATIVE_ERROR_TOLERANCE)) if __name__ == '__main__': main()