// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/covariance_impl.h" #ifdef CERES_USE_OPENMP #include #endif #include #include #include #include #include "Eigen/SparseCore" // Suppress unused local variable warning from Eigen Ordering.h #included by // SparseQR in Eigen 3.2.0. This was fixed in Eigen 3.2.1, but 3.2.0 is still // widely used (Ubuntu 14.04), and Ceres won't compile otherwise due to -Werror. #if defined(_MSC_VER) #pragma warning( push ) #pragma warning( disable : 4189 ) #else #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-but-set-variable" #endif #include "Eigen/SparseQR" #if defined(_MSC_VER) #pragma warning( pop ) #else #pragma GCC diagnostic pop #endif #include "Eigen/SVD" #include "ceres/compressed_col_sparse_matrix_utils.h" #include "ceres/compressed_row_sparse_matrix.h" #include "ceres/covariance.h" #include "ceres/crs_matrix.h" #include "ceres/internal/eigen.h" #include "ceres/map_util.h" #include "ceres/parameter_block.h" #include "ceres/problem_impl.h" #include "ceres/suitesparse.h" #include "ceres/wall_time.h" #include "glog/logging.h" namespace ceres { namespace internal { typedef vector > CovarianceBlocks; CovarianceImpl::CovarianceImpl(const Covariance::Options& options) : options_(options), is_computed_(false), is_valid_(false) { evaluate_options_.num_threads = options.num_threads; evaluate_options_.apply_loss_function = options.apply_loss_function; } CovarianceImpl::~CovarianceImpl() { } bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks, ProblemImpl* problem) { problem_ = problem; parameter_block_to_row_index_.clear(); covariance_matrix_.reset(NULL); is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) && ComputeCovarianceValues()); is_computed_ = true; return is_valid_; } bool CovarianceImpl::GetCovarianceBlock(const double* original_parameter_block1, const double* original_parameter_block2, double* covariance_block) const { CHECK(is_computed_) << "Covariance::GetCovarianceBlock called before Covariance::Compute"; CHECK(is_valid_) << "Covariance::GetCovarianceBlock called when Covariance::Compute " << "returned false."; // If either of the two parameter blocks is constant, then the // covariance block is also zero. if (constant_parameter_blocks_.count(original_parameter_block1) > 0 || constant_parameter_blocks_.count(original_parameter_block2) > 0) { const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); ParameterBlock* block1 = FindOrDie(parameter_map, const_cast(original_parameter_block1)); ParameterBlock* block2 = FindOrDie(parameter_map, const_cast(original_parameter_block2)); const int block1_size = block1->Size(); const int block2_size = block2->Size(); MatrixRef(covariance_block, block1_size, block2_size).setZero(); return true; } const double* parameter_block1 = original_parameter_block1; const double* parameter_block2 = original_parameter_block2; const bool transpose = parameter_block1 > parameter_block2; if (transpose) { std::swap(parameter_block1, parameter_block2); } // Find where in the covariance matrix the block is located. const int row_begin = FindOrDie(parameter_block_to_row_index_, parameter_block1); const int col_begin = FindOrDie(parameter_block_to_row_index_, parameter_block2); const int* rows = covariance_matrix_->rows(); const int* cols = covariance_matrix_->cols(); const int row_size = rows[row_begin + 1] - rows[row_begin]; const int* cols_begin = cols + rows[row_begin]; // The only part that requires work is walking the compressed column // vector to determine where the set of columns correspnding to the // covariance block begin. int offset = 0; while (cols_begin[offset] != col_begin && offset < row_size) { ++offset; } if (offset == row_size) { LOG(ERROR) << "Unable to find covariance block for " << original_parameter_block1 << " " << original_parameter_block2; return false; } const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); ParameterBlock* block1 = FindOrDie(parameter_map, const_cast(parameter_block1)); ParameterBlock* block2 = FindOrDie(parameter_map, const_cast(parameter_block2)); const LocalParameterization* local_param1 = block1->local_parameterization(); const LocalParameterization* local_param2 = block2->local_parameterization(); const int block1_size = block1->Size(); const int block1_local_size = block1->LocalSize(); const int block2_size = block2->Size(); const int block2_local_size = block2->LocalSize(); ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin], block1_size, row_size); // Fast path when there are no local parameterizations. if (local_param1 == NULL && local_param2 == NULL) { if (transpose) { MatrixRef(covariance_block, block2_size, block1_size) = cov.block(0, offset, block1_size, block2_size).transpose(); } else { MatrixRef(covariance_block, block1_size, block2_size) = cov.block(0, offset, block1_size, block2_size); } return true; } // If local parameterizations are used then the covariance that has // been computed is in the tangent space and it needs to be lifted // back to the ambient space. // // This is given by the formula // // C'_12 = J_1 C_12 J_2' // // Where C_12 is the local tangent space covariance for parameter // blocks 1 and 2. J_1 and J_2 are respectively the local to global // jacobians for parameter blocks 1 and 2. // // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition) // for a proof. // // TODO(sameeragarwal): Add caching of local parameterization, so // that they are computed just once per parameter block. Matrix block1_jacobian(block1_size, block1_local_size); if (local_param1 == NULL) { block1_jacobian.setIdentity(); } else { local_param1->ComputeJacobian(parameter_block1, block1_jacobian.data()); } Matrix block2_jacobian(block2_size, block2_local_size); // Fast path if the user is requesting a diagonal block. if (parameter_block1 == parameter_block2) { block2_jacobian = block1_jacobian; } else { if (local_param2 == NULL) { block2_jacobian.setIdentity(); } else { local_param2->ComputeJacobian(parameter_block2, block2_jacobian.data()); } } if (transpose) { MatrixRef(covariance_block, block2_size, block1_size) = block2_jacobian * cov.block(0, offset, block1_local_size, block2_local_size).transpose() * block1_jacobian.transpose(); } else { MatrixRef(covariance_block, block1_size, block2_size) = block1_jacobian * cov.block(0, offset, block1_local_size, block2_local_size) * block2_jacobian.transpose(); } return true; } // Determine the sparsity pattern of the covariance matrix based on // the block pairs requested by the user. bool CovarianceImpl::ComputeCovarianceSparsity( const CovarianceBlocks& original_covariance_blocks, ProblemImpl* problem) { EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity"); // Determine an ordering for the parameter block, by sorting the // parameter blocks by their pointers. vector all_parameter_blocks; problem->GetParameterBlocks(&all_parameter_blocks); const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map(); constant_parameter_blocks_.clear(); vector& active_parameter_blocks = evaluate_options_.parameter_blocks; active_parameter_blocks.clear(); for (int i = 0; i < all_parameter_blocks.size(); ++i) { double* parameter_block = all_parameter_blocks[i]; ParameterBlock* block = FindOrDie(parameter_map, parameter_block); if (block->IsConstant()) { constant_parameter_blocks_.insert(parameter_block); } else { active_parameter_blocks.push_back(parameter_block); } } sort(active_parameter_blocks.begin(), active_parameter_blocks.end()); // Compute the number of rows. Map each parameter block to the // first row corresponding to it in the covariance matrix using the // ordering of parameter blocks just constructed. int num_rows = 0; parameter_block_to_row_index_.clear(); for (int i = 0; i < active_parameter_blocks.size(); ++i) { double* parameter_block = active_parameter_blocks[i]; const int parameter_block_size = problem->ParameterBlockLocalSize(parameter_block); parameter_block_to_row_index_[parameter_block] = num_rows; num_rows += parameter_block_size; } // Compute the number of non-zeros in the covariance matrix. Along // the way flip any covariance blocks which are in the lower // triangular part of the matrix. int num_nonzeros = 0; CovarianceBlocks covariance_blocks; for (int i = 0; i < original_covariance_blocks.size(); ++i) { const pair& block_pair = original_covariance_blocks[i]; if (constant_parameter_blocks_.count(block_pair.first) > 0 || constant_parameter_blocks_.count(block_pair.second) > 0) { continue; } int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first); int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second); const int size1 = problem->ParameterBlockLocalSize(block_pair.first); const int size2 = problem->ParameterBlockLocalSize(block_pair.second); num_nonzeros += size1 * size2; // Make sure we are constructing a block upper triangular matrix. if (index1 > index2) { covariance_blocks.push_back(make_pair(block_pair.second, block_pair.first)); } else { covariance_blocks.push_back(block_pair); } } if (covariance_blocks.size() == 0) { VLOG(2) << "No non-zero covariance blocks found"; covariance_matrix_.reset(NULL); return true; } // Sort the block pairs. As a consequence we get the covariance // blocks as they will occur in the CompressedRowSparseMatrix that // will store the covariance. sort(covariance_blocks.begin(), covariance_blocks.end()); // Fill the sparsity pattern of the covariance matrix. covariance_matrix_.reset( new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros)); int* rows = covariance_matrix_->mutable_rows(); int* cols = covariance_matrix_->mutable_cols(); // Iterate over parameter blocks and in turn over the rows of the // covariance matrix. For each parameter block, look in the upper // triangular part of the covariance matrix to see if there are any // blocks requested by the user. If this is the case then fill out a // set of compressed rows corresponding to this parameter block. // // The key thing that makes this loop work is the fact that the // row/columns of the covariance matrix are ordered by the pointer // values of the parameter blocks. Thus iterating over the keys of // parameter_block_to_row_index_ corresponds to iterating over the // rows of the covariance matrix in order. int i = 0; // index into covariance_blocks. int cursor = 0; // index into the covariance matrix. for (map::const_iterator it = parameter_block_to_row_index_.begin(); it != parameter_block_to_row_index_.end(); ++it) { const double* row_block = it->first; const int row_block_size = problem->ParameterBlockLocalSize(row_block); int row_begin = it->second; // Iterate over the covariance blocks contained in this row block // and count the number of columns in this row block. int num_col_blocks = 0; int num_columns = 0; for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) { const pair& block_pair = covariance_blocks[j]; if (block_pair.first != row_block) { break; } num_columns += problem->ParameterBlockLocalSize(block_pair.second); } // Fill out all the compressed rows for this parameter block. for (int r = 0; r < row_block_size; ++r) { rows[row_begin + r] = cursor; for (int c = 0; c < num_col_blocks; ++c) { const double* col_block = covariance_blocks[i + c].second; const int col_block_size = problem->ParameterBlockLocalSize(col_block); int col_begin = FindOrDie(parameter_block_to_row_index_, col_block); for (int k = 0; k < col_block_size; ++k) { cols[cursor++] = col_begin++; } } } i+= num_col_blocks; } rows[num_rows] = cursor; return true; } bool CovarianceImpl::ComputeCovarianceValues() { switch (options_.algorithm_type) { case DENSE_SVD: return ComputeCovarianceValuesUsingDenseSVD(); #ifndef CERES_NO_SUITESPARSE case SUITE_SPARSE_QR: return ComputeCovarianceValuesUsingSuiteSparseQR(); #else LOG(ERROR) << "SuiteSparse is required to use the " << "SUITE_SPARSE_QR algorithm."; return false; #endif case EIGEN_SPARSE_QR: return ComputeCovarianceValuesUsingEigenSparseQR(); default: LOG(ERROR) << "Unsupported covariance estimation algorithm type: " << CovarianceAlgorithmTypeToString(options_.algorithm_type); return false; } return false; } bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() { EventLogger event_logger( "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR"); #ifndef CERES_NO_SUITESPARSE if (covariance_matrix_.get() == NULL) { // Nothing to do, all zeros covariance matrix. return true; } CRSMatrix jacobian; problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); event_logger.AddEvent("Evaluate"); // Construct a compressed column form of the Jacobian. const int num_rows = jacobian.num_rows; const int num_cols = jacobian.num_cols; const int num_nonzeros = jacobian.values.size(); vector transpose_rows(num_cols + 1, 0); vector transpose_cols(num_nonzeros, 0); vector transpose_values(num_nonzeros, 0); for (int idx = 0; idx < num_nonzeros; ++idx) { transpose_rows[jacobian.cols[idx] + 1] += 1; } for (int i = 1; i < transpose_rows.size(); ++i) { transpose_rows[i] += transpose_rows[i - 1]; } for (int r = 0; r < num_rows; ++r) { for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { const int c = jacobian.cols[idx]; const int transpose_idx = transpose_rows[c]; transpose_cols[transpose_idx] = r; transpose_values[transpose_idx] = jacobian.values[idx]; ++transpose_rows[c]; } } for (int i = transpose_rows.size() - 1; i > 0 ; --i) { transpose_rows[i] = transpose_rows[i - 1]; } transpose_rows[0] = 0; cholmod_sparse cholmod_jacobian; cholmod_jacobian.nrow = num_rows; cholmod_jacobian.ncol = num_cols; cholmod_jacobian.nzmax = num_nonzeros; cholmod_jacobian.nz = NULL; cholmod_jacobian.p = reinterpret_cast(&transpose_rows[0]); cholmod_jacobian.i = reinterpret_cast(&transpose_cols[0]); cholmod_jacobian.x = reinterpret_cast(&transpose_values[0]); cholmod_jacobian.z = NULL; cholmod_jacobian.stype = 0; // Matrix is not symmetric. cholmod_jacobian.itype = CHOLMOD_LONG; cholmod_jacobian.xtype = CHOLMOD_REAL; cholmod_jacobian.dtype = CHOLMOD_DOUBLE; cholmod_jacobian.sorted = 1; cholmod_jacobian.packed = 1; cholmod_common cc; cholmod_l_start(&cc); cholmod_sparse* R = NULL; SuiteSparse_long* permutation = NULL; // Compute a Q-less QR factorization of the Jacobian. Since we are // only interested in inverting J'J = R'R, we do not need Q. This // saves memory and gives us R as a permuted compressed column // sparse matrix. // // TODO(sameeragarwal): Currently the symbolic factorization and the // numeric factorization is done at the same time, and this does not // explicitly account for the block column and row structure in the // matrix. When using AMD, we have observed in the past that // computing the ordering with the block matrix is significantly // more efficient, both in runtime as well as the quality of // ordering computed. So, it maybe worth doing that analysis // separately. const SuiteSparse_long rank = SuiteSparseQR(SPQR_ORDERING_BESTAMD, SPQR_DEFAULT_TOL, cholmod_jacobian.ncol, &cholmod_jacobian, &R, &permutation, &cc); event_logger.AddEvent("Numeric Factorization"); CHECK_NOTNULL(permutation); CHECK_NOTNULL(R); if (rank < cholmod_jacobian.ncol) { LOG(ERROR) << "Jacobian matrix is rank deficient. " << "Number of columns: " << cholmod_jacobian.ncol << " rank: " << rank; free(permutation); cholmod_l_free_sparse(&R, &cc); cholmod_l_finish(&cc); return false; } vector inverse_permutation(num_cols); for (SuiteSparse_long i = 0; i < num_cols; ++i) { inverse_permutation[permutation[i]] = i; } const int* rows = covariance_matrix_->rows(); const int* cols = covariance_matrix_->cols(); double* values = covariance_matrix_->mutable_values(); // The following loop exploits the fact that the i^th column of A^{-1} // is given by the solution to the linear system // // A x = e_i // // where e_i is a vector with e(i) = 1 and all other entries zero. // // Since the covariance matrix is symmetric, the i^th row and column // are equal. const int num_threads = options_.num_threads; scoped_array workspace(new double[num_threads * num_cols]); #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int r = 0; r < num_cols; ++r) { const int row_begin = rows[r]; const int row_end = rows[r + 1]; if (row_end == row_begin) { continue; } # ifdef CERES_USE_OPENMP int thread_id = omp_get_thread_num(); # else int thread_id = 0; # endif double* solution = workspace.get() + thread_id * num_cols; SolveRTRWithSparseRHS( num_cols, static_cast(R->i), static_cast(R->p), static_cast(R->x), inverse_permutation[r], solution); for (int idx = row_begin; idx < row_end; ++idx) { const int c = cols[idx]; values[idx] = solution[inverse_permutation[c]]; } } free(permutation); cholmod_l_free_sparse(&R, &cc); cholmod_l_finish(&cc); event_logger.AddEvent("Inversion"); return true; #else // CERES_NO_SUITESPARSE return false; #endif // CERES_NO_SUITESPARSE } bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() { EventLogger event_logger( "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD"); if (covariance_matrix_.get() == NULL) { // Nothing to do, all zeros covariance matrix. return true; } CRSMatrix jacobian; problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); event_logger.AddEvent("Evaluate"); Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols); dense_jacobian.setZero(); for (int r = 0; r < jacobian.num_rows; ++r) { for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { const int c = jacobian.cols[idx]; dense_jacobian(r, c) = jacobian.values[idx]; } } event_logger.AddEvent("ConvertToDenseMatrix"); Eigen::JacobiSVD svd(dense_jacobian, Eigen::ComputeThinU | Eigen::ComputeThinV); event_logger.AddEvent("SingularValueDecomposition"); const Vector singular_values = svd.singularValues(); const int num_singular_values = singular_values.rows(); Vector inverse_squared_singular_values(num_singular_values); inverse_squared_singular_values.setZero(); const double max_singular_value = singular_values[0]; const double min_singular_value_ratio = sqrt(options_.min_reciprocal_condition_number); const bool automatic_truncation = (options_.null_space_rank < 0); const int max_rank = min(num_singular_values, num_singular_values - options_.null_space_rank); // Compute the squared inverse of the singular values. Truncate the // computation based on min_singular_value_ratio and // null_space_rank. When either of these two quantities are active, // the resulting covariance matrix is a Moore-Penrose inverse // instead of a regular inverse. for (int i = 0; i < max_rank; ++i) { const double singular_value_ratio = singular_values[i] / max_singular_value; if (singular_value_ratio < min_singular_value_ratio) { // Since the singular values are in decreasing order, if // automatic truncation is enabled, then from this point on // all values will fail the ratio test and there is nothing to // do in this loop. if (automatic_truncation) { break; } else { LOG(ERROR) << "Cholesky factorization of J'J is not reliable. " << "Reciprocal condition number: " << singular_value_ratio * singular_value_ratio << " " << "min_reciprocal_condition_number: " << options_.min_reciprocal_condition_number; return false; } } inverse_squared_singular_values[i] = 1.0 / (singular_values[i] * singular_values[i]); } Matrix dense_covariance = svd.matrixV() * inverse_squared_singular_values.asDiagonal() * svd.matrixV().transpose(); event_logger.AddEvent("PseudoInverse"); const int num_rows = covariance_matrix_->num_rows(); const int* rows = covariance_matrix_->rows(); const int* cols = covariance_matrix_->cols(); double* values = covariance_matrix_->mutable_values(); for (int r = 0; r < num_rows; ++r) { for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { const int c = cols[idx]; values[idx] = dense_covariance(r, c); } } event_logger.AddEvent("CopyToCovarianceMatrix"); return true; } bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() { EventLogger event_logger( "CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR"); if (covariance_matrix_.get() == NULL) { // Nothing to do, all zeros covariance matrix. return true; } CRSMatrix jacobian; problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); event_logger.AddEvent("Evaluate"); typedef Eigen::SparseMatrix EigenSparseMatrix; // Convert the matrix to column major order as required by SparseQR. EigenSparseMatrix sparse_jacobian = Eigen::MappedSparseMatrix( jacobian.num_rows, jacobian.num_cols, static_cast(jacobian.values.size()), jacobian.rows.data(), jacobian.cols.data(), jacobian.values.data()); event_logger.AddEvent("ConvertToSparseMatrix"); Eigen::SparseQR > qr_solver(sparse_jacobian); event_logger.AddEvent("QRDecomposition"); if(qr_solver.info() != Eigen::Success) { LOG(ERROR) << "Eigen::SparseQR decomposition failed."; return false; } if (qr_solver.rank() < jacobian.num_cols) { LOG(ERROR) << "Jacobian matrix is rank deficient. " << "Number of columns: " << jacobian.num_cols << " rank: " << qr_solver.rank(); return false; } const int* rows = covariance_matrix_->rows(); const int* cols = covariance_matrix_->cols(); double* values = covariance_matrix_->mutable_values(); // Compute the inverse column permutation used by QR factorization. Eigen::PermutationMatrix inverse_permutation = qr_solver.colsPermutation().inverse(); // The following loop exploits the fact that the i^th column of A^{-1} // is given by the solution to the linear system // // A x = e_i // // where e_i is a vector with e(i) = 1 and all other entries zero. // // Since the covariance matrix is symmetric, the i^th row and column // are equal. const int num_cols = jacobian.num_cols; const int num_threads = options_.num_threads; scoped_array workspace(new double[num_threads * num_cols]); #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int r = 0; r < num_cols; ++r) { const int row_begin = rows[r]; const int row_end = rows[r + 1]; if (row_end == row_begin) { continue; } # ifdef CERES_USE_OPENMP int thread_id = omp_get_thread_num(); # else int thread_id = 0; # endif double* solution = workspace.get() + thread_id * num_cols; SolveRTRWithSparseRHS( num_cols, qr_solver.matrixR().innerIndexPtr(), qr_solver.matrixR().outerIndexPtr(), &qr_solver.matrixR().data().value(0), inverse_permutation.indices().coeff(r), solution); // Assign the values of the computed covariance using the // inverse permutation used in the QR factorization. for (int idx = row_begin; idx < row_end; ++idx) { const int c = cols[idx]; values[idx] = solution[inverse_permutation.indices().coeff(c)]; } } event_logger.AddEvent("Inverse"); return true; } } // namespace internal } // namespace ceres