//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Instrumentation-based profile-guided optimization // //===----------------------------------------------------------------------===// #include "CodeGenPGO.h" #include "CodeGenFunction.h" #include "CoverageMappingGen.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/Endian.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MD5.h" using namespace clang; using namespace CodeGen; void CodeGenPGO::setFuncName(StringRef Name, llvm::GlobalValue::LinkageTypes Linkage) { StringRef RawFuncName = Name; // Function names may be prefixed with a binary '1' to indicate // that the backend should not modify the symbols due to any platform // naming convention. Do not include that '1' in the PGO profile name. if (RawFuncName[0] == '\1') RawFuncName = RawFuncName.substr(1); FuncName = RawFuncName; if (llvm::GlobalValue::isLocalLinkage(Linkage)) { // For local symbols, prepend the main file name to distinguish them. // Do not include the full path in the file name since there's no guarantee // that it will stay the same, e.g., if the files are checked out from // version control in different locations. if (CGM.getCodeGenOpts().MainFileName.empty()) FuncName = FuncName.insert(0, ":"); else FuncName = FuncName.insert(0, CGM.getCodeGenOpts().MainFileName + ":"); } // If we're generating a profile, create a variable for the name. if (CGM.getCodeGenOpts().ProfileInstrGenerate) createFuncNameVar(Linkage); } void CodeGenPGO::setFuncName(llvm::Function *Fn) { setFuncName(Fn->getName(), Fn->getLinkage()); } void CodeGenPGO::createFuncNameVar(llvm::GlobalValue::LinkageTypes Linkage) { // We generally want to match the function's linkage, but available_externally // and extern_weak both have the wrong semantics, and anything that doesn't // need to link across compilation units doesn't need to be visible at all. if (Linkage == llvm::GlobalValue::ExternalWeakLinkage) Linkage = llvm::GlobalValue::LinkOnceAnyLinkage; else if (Linkage == llvm::GlobalValue::AvailableExternallyLinkage) Linkage = llvm::GlobalValue::LinkOnceODRLinkage; else if (Linkage == llvm::GlobalValue::InternalLinkage || Linkage == llvm::GlobalValue::ExternalLinkage) Linkage = llvm::GlobalValue::PrivateLinkage; auto *Value = llvm::ConstantDataArray::getString(CGM.getLLVMContext(), FuncName, false); FuncNameVar = new llvm::GlobalVariable(CGM.getModule(), Value->getType(), true, Linkage, Value, "__llvm_profile_name_" + FuncName); // Hide the symbol so that we correctly get a copy for each executable. if (!llvm::GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) FuncNameVar->setVisibility(llvm::GlobalValue::HiddenVisibility); } namespace { /// \brief Stable hasher for PGO region counters. /// /// PGOHash produces a stable hash of a given function's control flow. /// /// Changing the output of this hash will invalidate all previously generated /// profiles -- i.e., don't do it. /// /// \note When this hash does eventually change (years?), we still need to /// support old hashes. We'll need to pull in the version number from the /// profile data format and use the matching hash function. class PGOHash { uint64_t Working; unsigned Count; llvm::MD5 MD5; static const int NumBitsPerType = 6; static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType; static const unsigned TooBig = 1u << NumBitsPerType; public: /// \brief Hash values for AST nodes. /// /// Distinct values for AST nodes that have region counters attached. /// /// These values must be stable. All new members must be added at the end, /// and no members should be removed. Changing the enumeration value for an /// AST node will affect the hash of every function that contains that node. enum HashType : unsigned char { None = 0, LabelStmt = 1, WhileStmt, DoStmt, ForStmt, CXXForRangeStmt, ObjCForCollectionStmt, SwitchStmt, CaseStmt, DefaultStmt, IfStmt, CXXTryStmt, CXXCatchStmt, ConditionalOperator, BinaryOperatorLAnd, BinaryOperatorLOr, BinaryConditionalOperator, // Keep this last. It's for the static assert that follows. LastHashType }; static_assert(LastHashType <= TooBig, "Too many types in HashType"); // TODO: When this format changes, take in a version number here, and use the // old hash calculation for file formats that used the old hash. PGOHash() : Working(0), Count(0) {} void combine(HashType Type); uint64_t finalize(); }; const int PGOHash::NumBitsPerType; const unsigned PGOHash::NumTypesPerWord; const unsigned PGOHash::TooBig; /// A RecursiveASTVisitor that fills a map of statements to PGO counters. struct MapRegionCounters : public RecursiveASTVisitor { /// The next counter value to assign. unsigned NextCounter; /// The function hash. PGOHash Hash; /// The map of statements to counters. llvm::DenseMap &CounterMap; MapRegionCounters(llvm::DenseMap &CounterMap) : NextCounter(0), CounterMap(CounterMap) {} // Blocks and lambdas are handled as separate functions, so we need not // traverse them in the parent context. bool TraverseBlockExpr(BlockExpr *BE) { return true; } bool TraverseLambdaBody(LambdaExpr *LE) { return true; } bool TraverseCapturedStmt(CapturedStmt *CS) { return true; } bool VisitDecl(const Decl *D) { switch (D->getKind()) { default: break; case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: case Decl::ObjCMethod: case Decl::Block: case Decl::Captured: CounterMap[D->getBody()] = NextCounter++; break; } return true; } bool VisitStmt(const Stmt *S) { auto Type = getHashType(S); if (Type == PGOHash::None) return true; CounterMap[S] = NextCounter++; Hash.combine(Type); return true; } PGOHash::HashType getHashType(const Stmt *S) { switch (S->getStmtClass()) { default: break; case Stmt::LabelStmtClass: return PGOHash::LabelStmt; case Stmt::WhileStmtClass: return PGOHash::WhileStmt; case Stmt::DoStmtClass: return PGOHash::DoStmt; case Stmt::ForStmtClass: return PGOHash::ForStmt; case Stmt::CXXForRangeStmtClass: return PGOHash::CXXForRangeStmt; case Stmt::ObjCForCollectionStmtClass: return PGOHash::ObjCForCollectionStmt; case Stmt::SwitchStmtClass: return PGOHash::SwitchStmt; case Stmt::CaseStmtClass: return PGOHash::CaseStmt; case Stmt::DefaultStmtClass: return PGOHash::DefaultStmt; case Stmt::IfStmtClass: return PGOHash::IfStmt; case Stmt::CXXTryStmtClass: return PGOHash::CXXTryStmt; case Stmt::CXXCatchStmtClass: return PGOHash::CXXCatchStmt; case Stmt::ConditionalOperatorClass: return PGOHash::ConditionalOperator; case Stmt::BinaryConditionalOperatorClass: return PGOHash::BinaryConditionalOperator; case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast(S); if (BO->getOpcode() == BO_LAnd) return PGOHash::BinaryOperatorLAnd; if (BO->getOpcode() == BO_LOr) return PGOHash::BinaryOperatorLOr; break; } } return PGOHash::None; } }; /// A StmtVisitor that propagates the raw counts through the AST and /// records the count at statements where the value may change. struct ComputeRegionCounts : public ConstStmtVisitor { /// PGO state. CodeGenPGO &PGO; /// A flag that is set when the current count should be recorded on the /// next statement, such as at the exit of a loop. bool RecordNextStmtCount; /// The map of statements to count values. llvm::DenseMap &CountMap; /// BreakContinueStack - Keep counts of breaks and continues inside loops. struct BreakContinue { uint64_t BreakCount; uint64_t ContinueCount; BreakContinue() : BreakCount(0), ContinueCount(0) {} }; SmallVector BreakContinueStack; ComputeRegionCounts(llvm::DenseMap &CountMap, CodeGenPGO &PGO) : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {} void RecordStmtCount(const Stmt *S) { if (RecordNextStmtCount) { CountMap[S] = PGO.getCurrentRegionCount(); RecordNextStmtCount = false; } } void VisitStmt(const Stmt *S) { RecordStmtCount(S); for (Stmt::const_child_range I = S->children(); I; ++I) { if (*I) this->Visit(*I); } } void VisitFunctionDecl(const FunctionDecl *D) { // Counter tracks entry to the function body. RegionCounter Cnt(PGO, D->getBody()); Cnt.beginRegion(); CountMap[D->getBody()] = PGO.getCurrentRegionCount(); Visit(D->getBody()); } // Skip lambda expressions. We visit these as FunctionDecls when we're // generating them and aren't interested in the body when generating a // parent context. void VisitLambdaExpr(const LambdaExpr *LE) {} void VisitCapturedDecl(const CapturedDecl *D) { // Counter tracks entry to the capture body. RegionCounter Cnt(PGO, D->getBody()); Cnt.beginRegion(); CountMap[D->getBody()] = PGO.getCurrentRegionCount(); Visit(D->getBody()); } void VisitObjCMethodDecl(const ObjCMethodDecl *D) { // Counter tracks entry to the method body. RegionCounter Cnt(PGO, D->getBody()); Cnt.beginRegion(); CountMap[D->getBody()] = PGO.getCurrentRegionCount(); Visit(D->getBody()); } void VisitBlockDecl(const BlockDecl *D) { // Counter tracks entry to the block body. RegionCounter Cnt(PGO, D->getBody()); Cnt.beginRegion(); CountMap[D->getBody()] = PGO.getCurrentRegionCount(); Visit(D->getBody()); } void VisitReturnStmt(const ReturnStmt *S) { RecordStmtCount(S); if (S->getRetValue()) Visit(S->getRetValue()); PGO.setCurrentRegionUnreachable(); RecordNextStmtCount = true; } void VisitGotoStmt(const GotoStmt *S) { RecordStmtCount(S); PGO.setCurrentRegionUnreachable(); RecordNextStmtCount = true; } void VisitLabelStmt(const LabelStmt *S) { RecordNextStmtCount = false; // Counter tracks the block following the label. RegionCounter Cnt(PGO, S); Cnt.beginRegion(); CountMap[S] = PGO.getCurrentRegionCount(); Visit(S->getSubStmt()); } void VisitBreakStmt(const BreakStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "break not in a loop or switch!"); BreakContinueStack.back().BreakCount += PGO.getCurrentRegionCount(); PGO.setCurrentRegionUnreachable(); RecordNextStmtCount = true; } void VisitContinueStmt(const ContinueStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); BreakContinueStack.back().ContinueCount += PGO.getCurrentRegionCount(); PGO.setCurrentRegionUnreachable(); RecordNextStmtCount = true; } void VisitWhileStmt(const WhileStmt *S) { RecordStmtCount(S); // Counter tracks the body of the loop. RegionCounter Cnt(PGO, S); BreakContinueStack.push_back(BreakContinue()); // Visit the body region first so the break/continue adjustments can be // included when visiting the condition. Cnt.beginRegion(); CountMap[S->getBody()] = PGO.getCurrentRegionCount(); Visit(S->getBody()); Cnt.adjustForControlFlow(); // ...then go back and propagate counts through the condition. The count // at the start of the condition is the sum of the incoming edges, // the backedge from the end of the loop body, and the edges from // continue statements. BreakContinue BC = BreakContinueStack.pop_back_val(); Cnt.setCurrentRegionCount(Cnt.getParentCount() + Cnt.getAdjustedCount() + BC.ContinueCount); CountMap[S->getCond()] = PGO.getCurrentRegionCount(); Visit(S->getCond()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount); RecordNextStmtCount = true; } void VisitDoStmt(const DoStmt *S) { RecordStmtCount(S); // Counter tracks the body of the loop. RegionCounter Cnt(PGO, S); BreakContinueStack.push_back(BreakContinue()); Cnt.beginRegion(/*AddIncomingFallThrough=*/true); CountMap[S->getBody()] = PGO.getCurrentRegionCount(); Visit(S->getBody()); Cnt.adjustForControlFlow(); BreakContinue BC = BreakContinueStack.pop_back_val(); // The count at the start of the condition is equal to the count at the // end of the body. The adjusted count does not include either the // fall-through count coming into the loop or the continue count, so add // both of those separately. This is coincidentally the same equation as // with while loops but for different reasons. Cnt.setCurrentRegionCount(Cnt.getParentCount() + Cnt.getAdjustedCount() + BC.ContinueCount); CountMap[S->getCond()] = PGO.getCurrentRegionCount(); Visit(S->getCond()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount); RecordNextStmtCount = true; } void VisitForStmt(const ForStmt *S) { RecordStmtCount(S); if (S->getInit()) Visit(S->getInit()); // Counter tracks the body of the loop. RegionCounter Cnt(PGO, S); BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) Cnt.beginRegion(); CountMap[S->getBody()] = PGO.getCurrentRegionCount(); Visit(S->getBody()); Cnt.adjustForControlFlow(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. if (S->getInc()) { Cnt.setCurrentRegionCount(PGO.getCurrentRegionCount() + BreakContinueStack.back().ContinueCount); CountMap[S->getInc()] = PGO.getCurrentRegionCount(); Visit(S->getInc()); Cnt.adjustForControlFlow(); } BreakContinue BC = BreakContinueStack.pop_back_val(); // ...then go back and propagate counts through the condition. if (S->getCond()) { Cnt.setCurrentRegionCount(Cnt.getParentCount() + Cnt.getAdjustedCount() + BC.ContinueCount); CountMap[S->getCond()] = PGO.getCurrentRegionCount(); Visit(S->getCond()); Cnt.adjustForControlFlow(); } Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount); RecordNextStmtCount = true; } void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { RecordStmtCount(S); Visit(S->getRangeStmt()); Visit(S->getBeginEndStmt()); // Counter tracks the body of the loop. RegionCounter Cnt(PGO, S); BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) Cnt.beginRegion(); CountMap[S->getLoopVarStmt()] = PGO.getCurrentRegionCount(); Visit(S->getLoopVarStmt()); Visit(S->getBody()); Cnt.adjustForControlFlow(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. Cnt.setCurrentRegionCount(PGO.getCurrentRegionCount() + BreakContinueStack.back().ContinueCount); CountMap[S->getInc()] = PGO.getCurrentRegionCount(); Visit(S->getInc()); Cnt.adjustForControlFlow(); BreakContinue BC = BreakContinueStack.pop_back_val(); // ...then go back and propagate counts through the condition. Cnt.setCurrentRegionCount(Cnt.getParentCount() + Cnt.getAdjustedCount() + BC.ContinueCount); CountMap[S->getCond()] = PGO.getCurrentRegionCount(); Visit(S->getCond()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount); RecordNextStmtCount = true; } void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { RecordStmtCount(S); Visit(S->getElement()); // Counter tracks the body of the loop. RegionCounter Cnt(PGO, S); BreakContinueStack.push_back(BreakContinue()); Cnt.beginRegion(); CountMap[S->getBody()] = PGO.getCurrentRegionCount(); Visit(S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount); RecordNextStmtCount = true; } void VisitSwitchStmt(const SwitchStmt *S) { RecordStmtCount(S); Visit(S->getCond()); PGO.setCurrentRegionUnreachable(); BreakContinueStack.push_back(BreakContinue()); Visit(S->getBody()); // If the switch is inside a loop, add the continue counts. BreakContinue BC = BreakContinueStack.pop_back_val(); if (!BreakContinueStack.empty()) BreakContinueStack.back().ContinueCount += BC.ContinueCount; // Counter tracks the exit block of the switch. RegionCounter ExitCnt(PGO, S); ExitCnt.beginRegion(); RecordNextStmtCount = true; } void VisitCaseStmt(const CaseStmt *S) { RecordNextStmtCount = false; // Counter for this particular case. This counts only jumps from the // switch header and does not include fallthrough from the case before // this one. RegionCounter Cnt(PGO, S); Cnt.beginRegion(/*AddIncomingFallThrough=*/true); CountMap[S] = Cnt.getCount(); RecordNextStmtCount = true; Visit(S->getSubStmt()); } void VisitDefaultStmt(const DefaultStmt *S) { RecordNextStmtCount = false; // Counter for this default case. This does not include fallthrough from // the previous case. RegionCounter Cnt(PGO, S); Cnt.beginRegion(/*AddIncomingFallThrough=*/true); CountMap[S] = Cnt.getCount(); RecordNextStmtCount = true; Visit(S->getSubStmt()); } void VisitIfStmt(const IfStmt *S) { RecordStmtCount(S); // Counter tracks the "then" part of an if statement. The count for // the "else" part, if it exists, will be calculated from this counter. RegionCounter Cnt(PGO, S); Visit(S->getCond()); Cnt.beginRegion(); CountMap[S->getThen()] = PGO.getCurrentRegionCount(); Visit(S->getThen()); Cnt.adjustForControlFlow(); if (S->getElse()) { Cnt.beginElseRegion(); CountMap[S->getElse()] = PGO.getCurrentRegionCount(); Visit(S->getElse()); Cnt.adjustForControlFlow(); } Cnt.applyAdjustmentsToRegion(0); RecordNextStmtCount = true; } void VisitCXXTryStmt(const CXXTryStmt *S) { RecordStmtCount(S); Visit(S->getTryBlock()); for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) Visit(S->getHandler(I)); // Counter tracks the continuation block of the try statement. RegionCounter Cnt(PGO, S); Cnt.beginRegion(); RecordNextStmtCount = true; } void VisitCXXCatchStmt(const CXXCatchStmt *S) { RecordNextStmtCount = false; // Counter tracks the catch statement's handler block. RegionCounter Cnt(PGO, S); Cnt.beginRegion(); CountMap[S] = PGO.getCurrentRegionCount(); Visit(S->getHandlerBlock()); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { RecordStmtCount(E); // Counter tracks the "true" part of a conditional operator. The // count in the "false" part will be calculated from this counter. RegionCounter Cnt(PGO, E); Visit(E->getCond()); Cnt.beginRegion(); CountMap[E->getTrueExpr()] = PGO.getCurrentRegionCount(); Visit(E->getTrueExpr()); Cnt.adjustForControlFlow(); Cnt.beginElseRegion(); CountMap[E->getFalseExpr()] = PGO.getCurrentRegionCount(); Visit(E->getFalseExpr()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(0); RecordNextStmtCount = true; } void VisitBinLAnd(const BinaryOperator *E) { RecordStmtCount(E); // Counter tracks the right hand side of a logical and operator. RegionCounter Cnt(PGO, E); Visit(E->getLHS()); Cnt.beginRegion(); CountMap[E->getRHS()] = PGO.getCurrentRegionCount(); Visit(E->getRHS()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(0); RecordNextStmtCount = true; } void VisitBinLOr(const BinaryOperator *E) { RecordStmtCount(E); // Counter tracks the right hand side of a logical or operator. RegionCounter Cnt(PGO, E); Visit(E->getLHS()); Cnt.beginRegion(); CountMap[E->getRHS()] = PGO.getCurrentRegionCount(); Visit(E->getRHS()); Cnt.adjustForControlFlow(); Cnt.applyAdjustmentsToRegion(0); RecordNextStmtCount = true; } }; } void PGOHash::combine(HashType Type) { // Check that we never combine 0 and only have six bits. assert(Type && "Hash is invalid: unexpected type 0"); assert(unsigned(Type) < TooBig && "Hash is invalid: too many types"); // Pass through MD5 if enough work has built up. if (Count && Count % NumTypesPerWord == 0) { using namespace llvm::support; uint64_t Swapped = endian::byte_swap(Working); MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); Working = 0; } // Accumulate the current type. ++Count; Working = Working << NumBitsPerType | Type; } uint64_t PGOHash::finalize() { // Use Working as the hash directly if we never used MD5. if (Count <= NumTypesPerWord) // No need to byte swap here, since none of the math was endian-dependent. // This number will be byte-swapped as required on endianness transitions, // so we will see the same value on the other side. return Working; // Check for remaining work in Working. if (Working) MD5.update(Working); // Finalize the MD5 and return the hash. llvm::MD5::MD5Result Result; MD5.final(Result); using namespace llvm::support; return endian::read(Result); } void CodeGenPGO::checkGlobalDecl(GlobalDecl GD) { // Make sure we only emit coverage mapping for one constructor/destructor. // Clang emits several functions for the constructor and the destructor of // a class. Every function is instrumented, but we only want to provide // coverage for one of them. Because of that we only emit the coverage mapping // for the base constructor/destructor. if ((isa(GD.getDecl()) && GD.getCtorType() != Ctor_Base) || (isa(GD.getDecl()) && GD.getDtorType() != Dtor_Base)) { SkipCoverageMapping = true; } } void CodeGenPGO::assignRegionCounters(const Decl *D, llvm::Function *Fn) { bool InstrumentRegions = CGM.getCodeGenOpts().ProfileInstrGenerate; llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); if (!InstrumentRegions && !PGOReader) return; if (D->isImplicit()) return; CGM.ClearUnusedCoverageMapping(D); setFuncName(Fn); mapRegionCounters(D); if (CGM.getCodeGenOpts().CoverageMapping) emitCounterRegionMapping(D); if (PGOReader) { SourceManager &SM = CGM.getContext().getSourceManager(); loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation())); computeRegionCounts(D); applyFunctionAttributes(PGOReader, Fn); } } void CodeGenPGO::mapRegionCounters(const Decl *D) { RegionCounterMap.reset(new llvm::DenseMap); MapRegionCounters Walker(*RegionCounterMap); if (const FunctionDecl *FD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(FD)); else if (const ObjCMethodDecl *MD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(MD)); else if (const BlockDecl *BD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(BD)); else if (const CapturedDecl *CD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(CD)); assert(Walker.NextCounter > 0 && "no entry counter mapped for decl"); NumRegionCounters = Walker.NextCounter; FunctionHash = Walker.Hash.finalize(); } void CodeGenPGO::emitCounterRegionMapping(const Decl *D) { if (SkipCoverageMapping) return; // Don't map the functions inside the system headers auto Loc = D->getBody()->getLocStart(); if (CGM.getContext().getSourceManager().isInSystemHeader(Loc)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts(), RegionCounterMap.get()); MappingGen.emitCounterMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping); } void CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef FuncName, llvm::GlobalValue::LinkageTypes Linkage) { if (SkipCoverageMapping) return; // Don't map the functions inside the system headers auto Loc = D->getBody()->getLocStart(); if (CGM.getContext().getSourceManager().isInSystemHeader(Loc)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts()); MappingGen.emitEmptyMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; setFuncName(FuncName, Linkage); CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping); } void CodeGenPGO::computeRegionCounts(const Decl *D) { StmtCountMap.reset(new llvm::DenseMap); ComputeRegionCounts Walker(*StmtCountMap, *this); if (const FunctionDecl *FD = dyn_cast_or_null(D)) Walker.VisitFunctionDecl(FD); else if (const ObjCMethodDecl *MD = dyn_cast_or_null(D)) Walker.VisitObjCMethodDecl(MD); else if (const BlockDecl *BD = dyn_cast_or_null(D)) Walker.VisitBlockDecl(BD); else if (const CapturedDecl *CD = dyn_cast_or_null(D)) Walker.VisitCapturedDecl(const_cast(CD)); } void CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader, llvm::Function *Fn) { if (!haveRegionCounts()) return; uint64_t MaxFunctionCount = PGOReader->getMaximumFunctionCount(); uint64_t FunctionCount = getRegionCount(0); if (FunctionCount >= (uint64_t)(0.3 * (double)MaxFunctionCount)) // Turn on InlineHint attribute for hot functions. // FIXME: 30% is from preliminary tuning on SPEC, it may not be optimal. Fn->addFnAttr(llvm::Attribute::InlineHint); else if (FunctionCount <= (uint64_t)(0.01 * (double)MaxFunctionCount)) // Turn on Cold attribute for cold functions. // FIXME: 1% is from preliminary tuning on SPEC, it may not be optimal. Fn->addFnAttr(llvm::Attribute::Cold); } void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, unsigned Counter) { if (!CGM.getCodeGenOpts().ProfileInstrGenerate || !RegionCounterMap) return; if (!Builder.GetInsertPoint()) return; auto *I8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext()); Builder.CreateCall4(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment), llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FunctionHash), Builder.getInt32(NumRegionCounters), Builder.getInt32(Counter)); } void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader, bool IsInMainFile) { CGM.getPGOStats().addVisited(IsInMainFile); RegionCounts.clear(); if (std::error_code EC = PGOReader->getFunctionCounts(FuncName, FunctionHash, RegionCounts)) { if (EC == llvm::instrprof_error::unknown_function) CGM.getPGOStats().addMissing(IsInMainFile); else if (EC == llvm::instrprof_error::hash_mismatch) CGM.getPGOStats().addMismatched(IsInMainFile); else if (EC == llvm::instrprof_error::malformed) // TODO: Consider a more specific warning for this case. CGM.getPGOStats().addMismatched(IsInMainFile); RegionCounts.clear(); } } /// \brief Calculate what to divide by to scale weights. /// /// Given the maximum weight, calculate a divisor that will scale all the /// weights to strictly less than UINT32_MAX. static uint64_t calculateWeightScale(uint64_t MaxWeight) { return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1; } /// \brief Scale an individual branch weight (and add 1). /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// /// According to Laplace's Rule of Succession, it is better to compute the /// weight based on the count plus 1, so universally add 1 to the value. /// /// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no /// greater than \c Weight. static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) { assert(Scale && "scale by 0?"); uint64_t Scaled = Weight / Scale + 1; assert(Scaled <= UINT32_MAX && "overflow 32-bits"); return Scaled; } llvm::MDNode *CodeGenPGO::createBranchWeights(uint64_t TrueCount, uint64_t FalseCount) { // Check for empty weights. if (!TrueCount && !FalseCount) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale), scaleBranchWeight(FalseCount, Scale)); } llvm::MDNode *CodeGenPGO::createBranchWeights(ArrayRef Weights) { // We need at least two elements to create meaningful weights. if (Weights.size() < 2) return nullptr; // Check for empty weights. uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end()); if (MaxWeight == 0) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(MaxWeight); SmallVector ScaledWeights; ScaledWeights.reserve(Weights.size()); for (uint64_t W : Weights) ScaledWeights.push_back(scaleBranchWeight(W, Scale)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(ScaledWeights); } llvm::MDNode *CodeGenPGO::createLoopWeights(const Stmt *Cond, RegionCounter &Cnt) { if (!haveRegionCounts()) return nullptr; uint64_t LoopCount = Cnt.getCount(); Optional CondCount = getStmtCount(Cond); assert(CondCount.hasValue() && "missing expected loop condition count"); if (*CondCount == 0) return nullptr; return createBranchWeights(LoopCount, std::max(*CondCount, LoopCount) - LoopCount); }