#ifndef _TCUINTERVAL_HPP #define _TCUINTERVAL_HPP /*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Interval arithmetic and floating point precisions. *//*--------------------------------------------------------------------*/ #include "tcuDefs.hpp" #include "deMath.h" #include #include #define TCU_INFINITY (::std::numeric_limits::infinity()) #define TCU_NAN (::std::numeric_limits::quiet_NaN()) namespace tcu { // RAII context for temporarily changing the rounding mode class ScopedRoundingMode { public: ScopedRoundingMode (deRoundingMode mode) : m_oldMode (deGetRoundingMode()) { deSetRoundingMode(mode); } ScopedRoundingMode (void) : m_oldMode (deGetRoundingMode()) {} ~ScopedRoundingMode (void) { deSetRoundingMode(m_oldMode); } private: ScopedRoundingMode (const ScopedRoundingMode&); ScopedRoundingMode& operator= (const ScopedRoundingMode&); const deRoundingMode m_oldMode; }; class Interval { public: // Empty interval. Interval (void) : m_hasNaN (false) , m_lo (TCU_INFINITY) , m_hi (-TCU_INFINITY) {} // Intentionally not explicit. Conversion from double to Interval is common // and reasonable. Interval (double val) : m_hasNaN (!!deIsNaN(val)) , m_lo (m_hasNaN ? TCU_INFINITY : val) , m_hi (m_hasNaN ? -TCU_INFINITY : val) {} Interval (const Interval& a, const Interval& b) : m_hasNaN (a.m_hasNaN || b.m_hasNaN) , m_lo (de::min(a.lo(), b.lo())) , m_hi (de::max(a.hi(), b.hi())) {} double length (void) const { return m_hi - m_lo; } double lo (void) const { return m_lo; } double hi (void) const { return m_hi; } bool hasNaN (void) const { return m_hasNaN; } Interval nan (void) const { return m_hasNaN ? TCU_NAN : Interval(); } bool empty (void) const { return m_lo > m_hi; } bool isFinite (void) const { return m_lo > -TCU_INFINITY && m_hi < TCU_INFINITY; } bool isOrdinary (void) const { return !hasNaN() && !empty() && isFinite(); } Interval operator| (const Interval& other) const { return Interval(m_hasNaN || other.m_hasNaN, de::min(m_lo, other.m_lo), de::max(m_hi, other.m_hi)); } Interval& operator|= (const Interval& other) { return (*this = *this | other); } Interval operator& (const Interval& other) const { return Interval(m_hasNaN && other.m_hasNaN, de::max(m_lo, other.m_lo), de::min(m_hi, other.m_hi)); } Interval& operator&= (const Interval& other) { return (*this = *this & other); } bool contains (const Interval& other) const { return (other.lo() >= lo() && other.hi() <= hi() && (!other.hasNaN() || hasNaN())); } bool intersects (const Interval& other) const { return ((other.hi() >= lo() && other.lo() <= hi()) || (other.hasNaN() && hasNaN())); } Interval operator- (void) const { return Interval(hasNaN(), -hi(), -lo()); } static Interval unbounded (bool nan = false) { return Interval(nan, -TCU_INFINITY, TCU_INFINITY); } double midpoint (void) const { return 0.5 * (hi() + lo()); // returns NaN when not bounded } bool operator== (const Interval& other) const { return ((m_hasNaN == other.m_hasNaN) && ((empty() && other.empty()) || (m_lo == other.m_lo && m_hi == other.m_hi))); } private: Interval (bool hasNaN_, double lo_, double hi_) : m_hasNaN(hasNaN_), m_lo(lo_), m_hi(hi_) {} bool m_hasNaN; double m_lo; double m_hi; } DE_WARN_UNUSED_TYPE; inline Interval operator+ (const Interval& x) { return x; } Interval exp2 (const Interval& x); Interval exp (const Interval& x); int sign (const Interval& x); Interval abs (const Interval& x); Interval inverseSqrt (const Interval& x); Interval operator+ (const Interval& x, const Interval& y); Interval operator- (const Interval& x, const Interval& y); Interval operator* (const Interval& x, const Interval& y); Interval operator/ (const Interval& nom, const Interval& den); inline Interval& operator+= (Interval& x, const Interval& y) { return (x = x + y); } inline Interval& operator-= (Interval& x, const Interval& y) { return (x = x - y); } inline Interval& operator*= (Interval& x, const Interval& y) { return (x = x * y); } inline Interval& operator/= (Interval& x, const Interval& y) { return (x = x / y); } std::ostream& operator<< (std::ostream& os, const Interval& interval); #define TCU_SET_INTERVAL_BOUNDS(DST, VAR, SETLOW, SETHIGH) do \ { \ ::tcu::ScopedRoundingMode VAR##_ctx_; \ ::tcu::Interval& VAR##_dst_ = (DST); \ ::tcu::Interval VAR##_lo_; \ ::tcu::Interval VAR##_hi_; \ \ { \ ::tcu::Interval& VAR = VAR##_lo_; \ ::deSetRoundingMode(DE_ROUNDINGMODE_TO_NEGATIVE_INF); \ SETLOW; \ } \ { \ ::tcu::Interval& VAR = VAR##_hi_; \ ::deSetRoundingMode(DE_ROUNDINGMODE_TO_POSITIVE_INF); \ SETHIGH; \ } \ \ VAR##_dst_ = VAR##_lo_ | VAR##_hi_; \ } while (::deGetFalse()) #define TCU_SET_INTERVAL(DST, VAR, BODY) \ TCU_SET_INTERVAL_BOUNDS(DST, VAR, BODY, BODY) //! Set the interval DST to the image of BODY on ARG, assuming that BODY on //! ARG is a monotone function. In practice, BODY is evaluated on both the //! upper and lower bound of ARG, and DST is set to the union of these //! results. While evaluating BODY, PARAM is bound to the bound of ARG, and //! the output of BODY should be stored in VAR. #define TCU_INTERVAL_APPLY_MONOTONE1(DST, PARAM, ARG, VAR, BODY) do \ { \ const ::tcu::Interval& VAR##_arg_ = (ARG); \ ::tcu::Interval& VAR##_dst_ = (DST); \ ::tcu::Interval VAR##_lo_; \ ::tcu::Interval VAR##_hi_; \ if (VAR##_arg_.empty()) \ VAR##_dst_ = Interval(); \ else \ { \ { \ const double PARAM = VAR##_arg_.lo(); \ ::tcu::Interval& VAR = VAR##_lo_; \ BODY; \ } \ { \ const double PARAM = VAR##_arg_.hi(); \ ::tcu::Interval& VAR = VAR##_hi_; \ BODY; \ } \ VAR##_dst_ = VAR##_lo_ | VAR##_hi_; \ } \ if (VAR##_arg_.hasNaN()) \ VAR##_dst_ |= TCU_NAN; \ } while (::deGetFalse()) #define TCU_INTERVAL_APPLY_MONOTONE2(DST, P0, A0, P1, A1, VAR, BODY) \ TCU_INTERVAL_APPLY_MONOTONE1( \ DST, P0, A0, tmp2_, \ TCU_INTERVAL_APPLY_MONOTONE1(tmp2_, P1, A1, VAR, BODY)) #define TCU_INTERVAL_APPLY_MONOTONE3(DST, P0, A0, P1, A1, P2, A2, VAR, BODY) \ TCU_INTERVAL_APPLY_MONOTONE1( \ DST, P0, A0, tmp3_, \ TCU_INTERVAL_APPLY_MONOTONE2(tmp3_, P1, A1, P2, A2, VAR, BODY)) typedef double DoubleFunc1 (double); typedef double DoubleFunc2 (double, double); typedef double DoubleFunc3 (double, double, double); typedef Interval DoubleIntervalFunc1 (double); typedef Interval DoubleIntervalFunc2 (double, double); typedef Interval DoubleIntervalFunc3 (double, double, double); Interval applyMonotone (DoubleFunc1& func, const Interval& arg0); Interval applyMonotone (DoubleFunc2& func, const Interval& arg0, const Interval& arg1); Interval applyMonotone (DoubleIntervalFunc1& func, const Interval& arg0); Interval applyMonotone (DoubleIntervalFunc2& func, const Interval& arg0, const Interval& arg1); } // tcu #endif // _TCUINTERVAL_HPP