/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Instanced rendering tests. *//*--------------------------------------------------------------------*/ #include "es3fInstancedRenderingTests.hpp" #include "gluPixelTransfer.hpp" #include "gluShaderProgram.hpp" #include "gluShaderUtil.hpp" #include "tcuTestLog.hpp" #include "tcuSurface.hpp" #include "tcuImageCompare.hpp" #include "tcuVector.hpp" #include "tcuRenderTarget.hpp" #include "deRandom.hpp" #include "deStringUtil.hpp" #include "deString.h" #include "glw.h" using std::vector; using std::string; namespace deqp { namespace gles3 { namespace Functional { static const int MAX_RENDER_WIDTH = 128; static const int MAX_RENDER_HEIGHT = 128; static const int QUAD_GRID_SIZE = 127; // Attribute divisors for the attributes defining the color's RGB components. static const int ATTRIB_DIVISOR_R = 3; static const int ATTRIB_DIVISOR_G = 2; static const int ATTRIB_DIVISOR_B = 1; static const int OFFSET_COMPONENTS = 3; // \note Affects whether a float or a vecN is used in shader, but only first component is non-zero. // Scale and bias values when converting float to integer, when attribute is of integer type. static const float FLOAT_INT_SCALE = 100.0f; static const float FLOAT_INT_BIAS = -50.0f; static const float FLOAT_UINT_SCALE = 100.0f; static const float FLOAT_UINT_BIAS = 0.0f; // \note Non-anonymous namespace needed; VarComp is used as a template parameter. namespace vcns { union VarComp { float f32; deUint32 u32; deInt32 i32; VarComp(float v) : f32(v) {} VarComp(deUint32 v) : u32(v) {} VarComp(deInt32 v) : i32(v) {} }; DE_STATIC_ASSERT(sizeof(VarComp) == sizeof(deUint32)); } // vcns using namespace vcns; class InstancedRenderingCase : public TestCase { public: enum DrawFunction { FUNCTION_DRAW_ARRAYS_INSTANCED = 0, FUNCTION_DRAW_ELEMENTS_INSTANCED, FUNCTION_LAST }; enum InstancingType { TYPE_INSTANCE_ID = 0, TYPE_ATTRIB_DIVISOR, TYPE_MIXED, TYPE_LAST }; InstancedRenderingCase (Context& context, const char* name, const char* description, DrawFunction function, InstancingType instancingType, glu::DataType rgbAttrType, int numInstances); ~InstancedRenderingCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: InstancedRenderingCase (const InstancedRenderingCase& other); InstancedRenderingCase& operator= (const InstancedRenderingCase& other); void pushVarCompAttrib (vector& vec, float val); void setupVarAttribPointer (const void* attrPtr, int startLocation, int divisor); void setupAndRender (void); void computeReference (tcu::Surface& dst); DrawFunction m_function; InstancingType m_instancingType; glu::DataType m_rgbAttrType; // \note Instance attribute types, color components only. Position offset attribute is always float/vecN. int m_numInstances; vector m_gridVertexPositions; // X and Y components per vertex. vector m_gridIndices; // \note Only used if m_function is FUNCTION_DRAW_ELEMENTS_INSTANCED. // \note Some or all of the following instance attribute parameters may be unused with TYPE_INSTANCE_ID or TYPE_MIXED. vector m_instanceOffsets; // Position offsets. OFFSET_COMPONENTS components per offset. // Attribute data for float, int or uint (or respective vector types) color components. vector m_instanceColorR; vector m_instanceColorG; vector m_instanceColorB; glu::ShaderProgram* m_program; }; InstancedRenderingCase::InstancedRenderingCase (Context& context, const char* name, const char* description, DrawFunction function, InstancingType instancingType, glu::DataType rgbAttrType, int numInstances) : TestCase (context, name, description) , m_function (function) , m_instancingType (instancingType) , m_rgbAttrType (rgbAttrType) , m_numInstances (numInstances) , m_program (DE_NULL) { } InstancedRenderingCase::~InstancedRenderingCase (void) { InstancedRenderingCase::deinit(); } // Helper function that does biasing and scaling when converting float to integer. void InstancedRenderingCase::pushVarCompAttrib (vector& vec, float val) { bool isFloatCase = glu::isDataTypeFloatOrVec(m_rgbAttrType); bool isIntCase = glu::isDataTypeIntOrIVec(m_rgbAttrType); bool isUintCase = glu::isDataTypeUintOrUVec(m_rgbAttrType); bool isMatCase = glu::isDataTypeMatrix(m_rgbAttrType); if (isFloatCase || isMatCase) vec.push_back(VarComp(val)); else if (isIntCase) vec.push_back(VarComp((deInt32)(val*FLOAT_INT_SCALE + FLOAT_INT_BIAS))); else if (isUintCase) vec.push_back(VarComp((deUint32)(val*FLOAT_UINT_SCALE + FLOAT_UINT_BIAS))); else DE_ASSERT(DE_FALSE); } void InstancedRenderingCase::init (void) { bool isFloatCase = glu::isDataTypeFloatOrVec(m_rgbAttrType); bool isIntCase = glu::isDataTypeIntOrIVec(m_rgbAttrType); bool isUintCase = glu::isDataTypeUintOrUVec(m_rgbAttrType); bool isMatCase = glu::isDataTypeMatrix(m_rgbAttrType); int typeSize = glu::getDataTypeScalarSize(m_rgbAttrType); bool isScalarCase = typeSize == 1; string swizzleFirst = isScalarCase ? "" : ".x"; string typeName = glu::getDataTypeName(m_rgbAttrType); string floatIntScaleStr = "(" + de::floatToString(FLOAT_INT_SCALE, 3) + ")"; string floatIntBiasStr = "(" + de::floatToString(FLOAT_INT_BIAS, 3) + ")"; string floatUintScaleStr = "(" + de::floatToString(FLOAT_UINT_SCALE, 3) + ")"; string floatUintBiasStr = "(" + de::floatToString(FLOAT_UINT_BIAS, 3) + ")"; DE_ASSERT(isFloatCase || isIntCase || isUintCase || isMatCase); // Generate shader. // \note For case TYPE_MIXED, vertex position offset and color red component get their values from instance id, while green and blue get their values from instanced attributes. string numInstancesStr = de::toString(m_numInstances) + ".0"; string instanceAttribs; string posExpression; string colorRExpression; string colorGExpression; string colorBExpression; if (m_instancingType == TYPE_INSTANCE_ID || m_instancingType == TYPE_MIXED) { posExpression = "a_position + vec4(float(gl_InstanceID) * 2.0 / " + numInstancesStr + ", 0.0, 0.0, 0.0)"; colorRExpression = "float(gl_InstanceID)/" + numInstancesStr; if (m_instancingType == TYPE_INSTANCE_ID) { colorGExpression = "float(gl_InstanceID)*2.0/" + numInstancesStr; colorBExpression = "1.0 - float(gl_InstanceID)/" + numInstancesStr; } } if (m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED) { if (m_instancingType == TYPE_ATTRIB_DIVISOR) { posExpression = "a_position + vec4(a_instanceOffset"; DE_STATIC_ASSERT(OFFSET_COMPONENTS >= 1 && OFFSET_COMPONENTS <= 4); for (int i = 0; i < 4-OFFSET_COMPONENTS; i++) posExpression += ", 0.0"; posExpression += ")"; if (isFloatCase) colorRExpression = "a_instanceR" + swizzleFirst; else if (isIntCase) colorRExpression = "(float(a_instanceR" + swizzleFirst + ") - " + floatIntBiasStr + ") / " + floatIntScaleStr; else if (isUintCase) colorRExpression = "(float(a_instanceR" + swizzleFirst + ") - " + floatUintBiasStr + ") / " + floatUintScaleStr; else if (isMatCase) colorRExpression = "a_instanceR[0][0]"; else DE_ASSERT(DE_FALSE); instanceAttribs += "in highp " + (OFFSET_COMPONENTS == 1 ? string("float") : "vec" + de::toString(OFFSET_COMPONENTS)) + " a_instanceOffset;\n"; instanceAttribs += "in mediump " + typeName + " a_instanceR;\n"; } if (isFloatCase) { colorGExpression = "a_instanceG" + swizzleFirst; colorBExpression = "a_instanceB" + swizzleFirst; } else if (isIntCase) { colorGExpression = "(float(a_instanceG" + swizzleFirst + ") - " + floatIntBiasStr + ") / " + floatIntScaleStr; colorBExpression = "(float(a_instanceB" + swizzleFirst + ") - " + floatIntBiasStr + ") / " + floatIntScaleStr; } else if (isUintCase) { colorGExpression = "(float(a_instanceG" + swizzleFirst + ") - " + floatUintBiasStr + ") / " + floatUintScaleStr; colorBExpression = "(float(a_instanceB" + swizzleFirst + ") - " + floatUintBiasStr + ") / " + floatUintScaleStr; } else if (isMatCase) { colorGExpression = "a_instanceG[0][0]"; colorBExpression = "a_instanceB[0][0]"; } else DE_ASSERT(DE_FALSE); instanceAttribs += "in mediump " + typeName + " a_instanceG;\n"; instanceAttribs += "in mediump " + typeName + " a_instanceB;\n"; } DE_ASSERT(!posExpression.empty()); DE_ASSERT(!colorRExpression.empty()); DE_ASSERT(!colorGExpression.empty()); DE_ASSERT(!colorBExpression.empty()); std::string vertShaderSourceStr = "#version 300 es\n" "in highp vec4 a_position;\n" + instanceAttribs + "out mediump vec4 v_color;\n" "\n" "void main()\n" "{\n" " gl_Position = " + posExpression + ";\n" " v_color.r = " + colorRExpression + ";\n" " v_color.g = " + colorGExpression + ";\n" " v_color.b = " + colorBExpression + ";\n" " v_color.a = 1.0;\n" "}\n"; static const char* fragShaderSource = "#version 300 es\n" "layout(location = 0) out mediump vec4 o_color;\n" "in mediump vec4 v_color;\n" "\n" "void main()\n" "{\n" " o_color = v_color;\n" "}\n"; // Create shader program and log it. DE_ASSERT(!m_program); m_program = new glu::ShaderProgram(m_context.getRenderContext(), glu::makeVtxFragSources(vertShaderSourceStr, fragShaderSource)); tcu::TestLog& log = m_testCtx.getLog(); log << *m_program; if(!m_program->isOk()) TCU_FAIL("Failed to compile shader"); // Vertex shader attributes. if (m_function == FUNCTION_DRAW_ELEMENTS_INSTANCED) { // Vertex positions. Positions form a vertical bar of width /. for (int y = 0; y < QUAD_GRID_SIZE + 1; y++) for (int x = 0; x < QUAD_GRID_SIZE + 1; x++) { float fx = -1.0f + (float)x / (float)QUAD_GRID_SIZE * 2.0f / (float)m_numInstances; float fy = -1.0f + (float)y / (float)QUAD_GRID_SIZE * 2.0f; m_gridVertexPositions.push_back(fx); m_gridVertexPositions.push_back(fy); } // Indices. for (int y = 0; y < QUAD_GRID_SIZE; y++) for (int x = 0; x < QUAD_GRID_SIZE; x++) { int ndx00 = y*(QUAD_GRID_SIZE + 1) + x; int ndx10 = y*(QUAD_GRID_SIZE + 1) + x + 1; int ndx01 = (y + 1)*(QUAD_GRID_SIZE + 1) + x; int ndx11 = (y + 1)*(QUAD_GRID_SIZE + 1) + x + 1; // Lower-left triangle of a quad. m_gridIndices.push_back(ndx00); m_gridIndices.push_back(ndx10); m_gridIndices.push_back(ndx01); // Upper-right triangle of a quad. m_gridIndices.push_back(ndx11); m_gridIndices.push_back(ndx01); m_gridIndices.push_back(ndx10); } } else { DE_ASSERT(m_function == FUNCTION_DRAW_ARRAYS_INSTANCED); // Vertex positions. Positions form a vertical bar of width /. for (int y = 0; y < QUAD_GRID_SIZE; y++) for (int x = 0; x < QUAD_GRID_SIZE; x++) { float fx0 = -1.0f + (float)(x+0) / (float)QUAD_GRID_SIZE * 2.0f / (float)m_numInstances; float fx1 = -1.0f + (float)(x+1) / (float)QUAD_GRID_SIZE * 2.0f / (float)m_numInstances; float fy0 = -1.0f + (float)(y+0) / (float)QUAD_GRID_SIZE * 2.0f; float fy1 = -1.0f + (float)(y+1) / (float)QUAD_GRID_SIZE * 2.0f; // Vertices of a quad's lower-left triangle: (fx0, fy0), (fx1, fy0) and (fx0, fy1) m_gridVertexPositions.push_back(fx0); m_gridVertexPositions.push_back(fy0); m_gridVertexPositions.push_back(fx1); m_gridVertexPositions.push_back(fy0); m_gridVertexPositions.push_back(fx0); m_gridVertexPositions.push_back(fy1); // Vertices of a quad's upper-right triangle: (fx1, fy1), (fx0, fy1) and (fx1, fy0) m_gridVertexPositions.push_back(fx1); m_gridVertexPositions.push_back(fy1); m_gridVertexPositions.push_back(fx0); m_gridVertexPositions.push_back(fy1); m_gridVertexPositions.push_back(fx1); m_gridVertexPositions.push_back(fy0); } } // Instanced attributes: position offset and color RGB components. if (m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED) { if (m_instancingType == TYPE_ATTRIB_DIVISOR) { // Offsets are such that the vertical bars are drawn next to each other. for (int i = 0; i < m_numInstances; i++) { m_instanceOffsets.push_back((float)i * 2.0f / (float)m_numInstances); DE_STATIC_ASSERT(OFFSET_COMPONENTS >= 1 && OFFSET_COMPONENTS <= 4); for (int j = 0; j < OFFSET_COMPONENTS-1; j++) m_instanceOffsets.push_back(0.0f); } int rInstances = m_numInstances / ATTRIB_DIVISOR_R + (m_numInstances % ATTRIB_DIVISOR_R == 0 ? 0 : 1); for (int i = 0; i < rInstances; i++) { pushVarCompAttrib(m_instanceColorR, (float)i / (float)rInstances); for (int j = 0; j < typeSize - 1; j++) pushVarCompAttrib(m_instanceColorR, 0.0f); } } int gInstances = m_numInstances / ATTRIB_DIVISOR_G + (m_numInstances % ATTRIB_DIVISOR_G == 0 ? 0 : 1); for (int i = 0; i < gInstances; i++) { pushVarCompAttrib(m_instanceColorG, (float)i*2.0f / (float)gInstances); for (int j = 0; j < typeSize - 1; j++) pushVarCompAttrib(m_instanceColorG, 0.0f); } int bInstances = m_numInstances / ATTRIB_DIVISOR_B + (m_numInstances % ATTRIB_DIVISOR_B == 0 ? 0 : 1); for (int i = 0; i < bInstances; i++) { pushVarCompAttrib(m_instanceColorB, 1.0f - (float)i / (float)bInstances); for (int j = 0; j < typeSize - 1; j++) pushVarCompAttrib(m_instanceColorB, 0.0f); } } } void InstancedRenderingCase::deinit (void) { delete m_program; m_program = DE_NULL; } InstancedRenderingCase::IterateResult InstancedRenderingCase::iterate (void) { int width = deMin32(m_context.getRenderTarget().getWidth(), MAX_RENDER_WIDTH); int height = deMin32(m_context.getRenderTarget().getHeight(), MAX_RENDER_HEIGHT); int xOffsetMax = m_context.getRenderTarget().getWidth() - width; int yOffsetMax = m_context.getRenderTarget().getHeight() - height; de::Random rnd (deStringHash(getName())); int xOffset = rnd.getInt(0, xOffsetMax); int yOffset = rnd.getInt(0, yOffsetMax); tcu::Surface referenceImg (width, height); tcu::Surface resultImg (width, height); // Draw result. glViewport(xOffset, yOffset, width, height); setupAndRender(); glu::readPixels(m_context.getRenderContext(), xOffset, yOffset, resultImg.getAccess()); // Compute reference. computeReference(referenceImg); // Compare. bool testOk = tcu::fuzzyCompare(m_testCtx.getLog(), "ComparisonResult", "Image comparison result", referenceImg, resultImg, 0.05f, tcu::COMPARE_LOG_RESULT); m_testCtx.setTestResult(testOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, testOk ? "Pass" : "Fail"); return STOP; } void InstancedRenderingCase::setupVarAttribPointer (const void* attrPtr, int location, int divisor) { bool isFloatCase = glu::isDataTypeFloatOrVec(m_rgbAttrType); bool isIntCase = glu::isDataTypeIntOrIVec(m_rgbAttrType); bool isUintCase = glu::isDataTypeUintOrUVec(m_rgbAttrType); bool isMatCase = glu::isDataTypeMatrix(m_rgbAttrType); int typeSize = glu::getDataTypeScalarSize(m_rgbAttrType); int numSlots = isMatCase ? glu::getDataTypeMatrixNumColumns(m_rgbAttrType) : 1; // Matrix uses as many attribute slots as it has columns. for (int slotNdx = 0; slotNdx < numSlots; slotNdx++) { int curLoc = location + slotNdx; glEnableVertexAttribArray(curLoc); glVertexAttribDivisor(curLoc, divisor); if (isFloatCase) glVertexAttribPointer(curLoc, typeSize, GL_FLOAT, GL_FALSE, 0, attrPtr); else if (isIntCase) glVertexAttribIPointer(curLoc, typeSize, GL_INT, 0, attrPtr); else if (isUintCase) glVertexAttribIPointer(curLoc, typeSize, GL_UNSIGNED_INT, 0, attrPtr); else if (isMatCase) { int numRows = glu::getDataTypeMatrixNumRows(m_rgbAttrType); int numCols = glu::getDataTypeMatrixNumColumns(m_rgbAttrType); glVertexAttribPointer(curLoc, numRows, GL_FLOAT, GL_FALSE, numCols*numRows*sizeof(float), attrPtr); } else DE_ASSERT(DE_FALSE); } } void InstancedRenderingCase::setupAndRender (void) { deUint32 program = m_program->getProgram(); glUseProgram(program); { // Setup attributes. // Position attribute is non-instanced. int positionLoc = glGetAttribLocation(program, "a_position"); glEnableVertexAttribArray(positionLoc); glVertexAttribPointer(positionLoc, 2, GL_FLOAT, GL_FALSE, 0, &m_gridVertexPositions[0]); if (m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED) { if (m_instancingType == TYPE_ATTRIB_DIVISOR) { // Position offset attribute is instanced with separate offset for every instance. int offsetLoc = glGetAttribLocation(program, "a_instanceOffset"); glEnableVertexAttribArray(offsetLoc); glVertexAttribDivisor(offsetLoc, 1); glVertexAttribPointer(offsetLoc, OFFSET_COMPONENTS, GL_FLOAT, GL_FALSE, 0, &m_instanceOffsets[0]); int rLoc = glGetAttribLocation(program, "a_instanceR"); setupVarAttribPointer((void*)&m_instanceColorR[0].u32, rLoc, ATTRIB_DIVISOR_R); } int gLoc = glGetAttribLocation(program, "a_instanceG"); setupVarAttribPointer((void*)&m_instanceColorG[0].u32, gLoc, ATTRIB_DIVISOR_G); int bLoc = glGetAttribLocation(program, "a_instanceB"); setupVarAttribPointer((void*)&m_instanceColorB[0].u32, bLoc, ATTRIB_DIVISOR_B); } } // Draw using appropriate function. if (m_function == FUNCTION_DRAW_ARRAYS_INSTANCED) { const int numPositionComponents = 2; glDrawArraysInstanced(GL_TRIANGLES, 0, ((int)m_gridVertexPositions.size() / numPositionComponents), m_numInstances); } else glDrawElementsInstanced(GL_TRIANGLES, (int)m_gridIndices.size(), GL_UNSIGNED_SHORT, &m_gridIndices[0], m_numInstances); glUseProgram(0); } void InstancedRenderingCase::computeReference (tcu::Surface& dst) { int wid = dst.getWidth(); int hei = dst.getHeight(); // Draw a rectangle (vertical bar) for each instance. for (int instanceNdx = 0; instanceNdx < m_numInstances; instanceNdx++) { int xStart = instanceNdx * wid / m_numInstances; int xEnd = (instanceNdx + 1) * wid / m_numInstances; // Emulate attribute divisors if that is the case. int clrNdxR = m_instancingType == TYPE_ATTRIB_DIVISOR ? instanceNdx / ATTRIB_DIVISOR_R : instanceNdx; int clrNdxG = m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED ? instanceNdx / ATTRIB_DIVISOR_G : instanceNdx; int clrNdxB = m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED ? instanceNdx / ATTRIB_DIVISOR_B : instanceNdx; int rInstances = m_instancingType == TYPE_ATTRIB_DIVISOR ? m_numInstances / ATTRIB_DIVISOR_R + (m_numInstances % ATTRIB_DIVISOR_R == 0 ? 0 : 1) : m_numInstances; int gInstances = m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED ? m_numInstances / ATTRIB_DIVISOR_G + (m_numInstances % ATTRIB_DIVISOR_G == 0 ? 0 : 1) : m_numInstances; int bInstances = m_instancingType == TYPE_ATTRIB_DIVISOR || m_instancingType == TYPE_MIXED ? m_numInstances / ATTRIB_DIVISOR_B + (m_numInstances % ATTRIB_DIVISOR_B == 0 ? 0 : 1) : m_numInstances; // Calculate colors. float r = (float)clrNdxR / (float)rInstances; float g = (float)clrNdxG * 2.0f / (float)gInstances; float b = 1.0f - (float)clrNdxB / (float)bInstances; // Convert to integer and back if shader inputs are integers. if (glu::isDataTypeIntOrIVec(m_rgbAttrType)) { deInt32 intR = (deInt32)(r*FLOAT_INT_SCALE + FLOAT_INT_BIAS); deInt32 intG = (deInt32)(g*FLOAT_INT_SCALE + FLOAT_INT_BIAS); deInt32 intB = (deInt32)(b*FLOAT_INT_SCALE + FLOAT_INT_BIAS); r = (float)(intR - FLOAT_INT_BIAS) / FLOAT_INT_SCALE; g = (float)(intG - FLOAT_INT_BIAS) / FLOAT_INT_SCALE; b = (float)(intB - FLOAT_INT_BIAS) / FLOAT_INT_SCALE; } else if(glu::isDataTypeUintOrUVec(m_rgbAttrType)) { deUint32 uintR = (deInt32)(r*FLOAT_UINT_SCALE + FLOAT_UINT_BIAS); deUint32 uintG = (deInt32)(g*FLOAT_UINT_SCALE + FLOAT_UINT_BIAS); deUint32 uintB = (deInt32)(b*FLOAT_UINT_SCALE + FLOAT_UINT_BIAS); r = (float)(uintR - FLOAT_UINT_BIAS) / FLOAT_UINT_SCALE; g = (float)(uintG - FLOAT_UINT_BIAS) / FLOAT_UINT_SCALE; b = (float)(uintB - FLOAT_UINT_BIAS) / FLOAT_UINT_SCALE; } // Draw rectangle. for (int y = 0; y < hei; y++) for (int x = xStart; x < xEnd; x++) dst.setPixel(x, y, tcu::RGBA(tcu::Vec4(r, g, b, 1.0f))); } } InstancedRenderingTests::InstancedRenderingTests (Context& context) : TestCaseGroup(context, "instanced", "Instanced rendering tests") { } InstancedRenderingTests::~InstancedRenderingTests (void) { } void InstancedRenderingTests::init (void) { // Cases testing function, instancing method and instance count. static const int instanceCounts[] = { 1, 2, 4, 20 }; for (int function = 0; function < (int)InstancedRenderingCase::FUNCTION_LAST; function++) { const char* functionName = function == (int)InstancedRenderingCase::FUNCTION_DRAW_ARRAYS_INSTANCED ? "draw_arrays_instanced" : function == (int)InstancedRenderingCase::FUNCTION_DRAW_ELEMENTS_INSTANCED ? "draw_elements_instanced" : DE_NULL; const char* functionDesc = function == (int)InstancedRenderingCase::FUNCTION_DRAW_ARRAYS_INSTANCED ? "Use glDrawArraysInstanced()" : function == (int)InstancedRenderingCase::FUNCTION_DRAW_ELEMENTS_INSTANCED ? "Use glDrawElementsInstanced()" : DE_NULL; DE_ASSERT(functionName != DE_NULL); DE_ASSERT(functionDesc != DE_NULL); TestCaseGroup* functionGroup = new TestCaseGroup(m_context, functionName, functionDesc); addChild(functionGroup); for (int instancingType = 0; instancingType < (int)InstancedRenderingCase::TYPE_LAST; instancingType++) { const char* instancingTypeName = instancingType == (int)InstancedRenderingCase::TYPE_INSTANCE_ID ? "instance_id" : instancingType == (int)InstancedRenderingCase::TYPE_ATTRIB_DIVISOR ? "attribute_divisor" : instancingType == (int)InstancedRenderingCase::TYPE_MIXED ? "mixed" : DE_NULL; const char* instancingTypeDesc = instancingType == (int)InstancedRenderingCase::TYPE_INSTANCE_ID ? "Use gl_InstanceID for instancing" : instancingType == (int)InstancedRenderingCase::TYPE_ATTRIB_DIVISOR ? "Use vertex attribute divisors for instancing" : instancingType == (int)InstancedRenderingCase::TYPE_MIXED ? "Use both gl_InstanceID and vertex attribute divisors for instancing" : DE_NULL; DE_ASSERT(instancingTypeName != DE_NULL); DE_ASSERT(instancingTypeDesc != DE_NULL); TestCaseGroup* instancingTypeGroup = new TestCaseGroup(m_context, instancingTypeName, instancingTypeDesc); functionGroup->addChild(instancingTypeGroup); for (int countNdx = 0; countNdx < DE_LENGTH_OF_ARRAY(instanceCounts); countNdx++) { std::string countName = de::toString(instanceCounts[countNdx]) + "_instances"; instancingTypeGroup->addChild(new InstancedRenderingCase(m_context, countName.c_str(), "", (InstancedRenderingCase::DrawFunction)function, (InstancedRenderingCase::InstancingType)instancingType, glu::TYPE_FLOAT, instanceCounts[countNdx])); } } } // Data type specific cases. static const glu::DataType s_testTypes[] = { glu::TYPE_FLOAT, glu::TYPE_FLOAT_VEC2, glu::TYPE_FLOAT_VEC3, glu::TYPE_FLOAT_VEC4, glu::TYPE_FLOAT_MAT2, glu::TYPE_FLOAT_MAT2X3, glu::TYPE_FLOAT_MAT2X4, glu::TYPE_FLOAT_MAT3X2, glu::TYPE_FLOAT_MAT3, glu::TYPE_FLOAT_MAT3X4, glu::TYPE_FLOAT_MAT4X2, glu::TYPE_FLOAT_MAT4X3, glu::TYPE_FLOAT_MAT4, glu::TYPE_INT, glu::TYPE_INT_VEC2, glu::TYPE_INT_VEC3, glu::TYPE_INT_VEC4, glu::TYPE_UINT, glu::TYPE_UINT_VEC2, glu::TYPE_UINT_VEC3, glu::TYPE_UINT_VEC4 }; const int typeTestNumInstances = 4; TestCaseGroup* typesGroup = new TestCaseGroup(m_context, "types", "Tests for instanced attributes of particular data types"); addChild(typesGroup); for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_testTypes); typeNdx++) { glu::DataType type = s_testTypes[typeNdx]; typesGroup->addChild(new InstancedRenderingCase(m_context, glu::getDataTypeName(type), "", InstancedRenderingCase::FUNCTION_DRAW_ARRAYS_INSTANCED, InstancedRenderingCase::TYPE_ATTRIB_DIVISOR, type, typeTestNumInstances)); } } } // Functional } // gles3 } // deqp