/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL (ES) Module * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Uniform block case. *//*--------------------------------------------------------------------*/ #include "glsUniformBlockCase.hpp" #include "gluRenderContext.hpp" #include "gluShaderProgram.hpp" #include "gluPixelTransfer.hpp" #include "gluContextInfo.hpp" #include "gluRenderContext.hpp" #include "gluDrawUtil.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "tcuTestLog.hpp" #include "tcuSurface.hpp" #include "tcuRenderTarget.hpp" #include "deRandom.hpp" #include "deStringUtil.hpp" #include "deMemory.h" #include "deString.h" #include #include using tcu::TestLog; using std::string; using std::vector; using std::map; namespace deqp { namespace gls { namespace ub { static bool isSupportedGLSLVersion (glu::GLSLVersion version) { return version >= (glslVersionIsES(version) ? glu::GLSL_VERSION_300_ES : glu::GLSL_VERSION_330); } struct PrecisionFlagsFmt { deUint32 flags; PrecisionFlagsFmt (deUint32 flags_) : flags(flags_) {} }; std::ostream& operator<< (std::ostream& str, const PrecisionFlagsFmt& fmt) { // Precision. DE_ASSERT(dePop32(fmt.flags & (PRECISION_LOW|PRECISION_MEDIUM|PRECISION_HIGH)) <= 1); str << (fmt.flags & PRECISION_LOW ? "lowp" : fmt.flags & PRECISION_MEDIUM ? "mediump" : fmt.flags & PRECISION_HIGH ? "highp" : ""); return str; } struct LayoutFlagsFmt { deUint32 flags; LayoutFlagsFmt (deUint32 flags_) : flags(flags_) {} }; std::ostream& operator<< (std::ostream& str, const LayoutFlagsFmt& fmt) { static const struct { deUint32 bit; const char* token; } bitDesc[] = { { LAYOUT_SHARED, "shared" }, { LAYOUT_PACKED, "packed" }, { LAYOUT_STD140, "std140" }, { LAYOUT_ROW_MAJOR, "row_major" }, { LAYOUT_COLUMN_MAJOR, "column_major" } }; deUint32 remBits = fmt.flags; for (int descNdx = 0; descNdx < DE_LENGTH_OF_ARRAY(bitDesc); descNdx++) { if (remBits & bitDesc[descNdx].bit) { if (remBits != fmt.flags) str << ", "; str << bitDesc[descNdx].token; remBits &= ~bitDesc[descNdx].bit; } } DE_ASSERT(remBits == 0); return str; } // VarType implementation. VarType::VarType (void) : m_type (TYPE_LAST) , m_flags (0) { } VarType::VarType (const VarType& other) : m_type (TYPE_LAST) , m_flags (0) { *this = other; } VarType::VarType (glu::DataType basicType, deUint32 flags) : m_type (TYPE_BASIC) , m_flags (flags) { m_data.basicType = basicType; } VarType::VarType (const VarType& elementType, int arraySize) : m_type (TYPE_ARRAY) , m_flags (0) { m_data.array.size = arraySize; m_data.array.elementType = new VarType(elementType); } VarType::VarType (const StructType* structPtr) : m_type (TYPE_STRUCT) , m_flags (0) { m_data.structPtr = structPtr; } VarType::~VarType (void) { if (m_type == TYPE_ARRAY) delete m_data.array.elementType; } VarType& VarType::operator= (const VarType& other) { if (this == &other) return *this; // Self-assignment. if (m_type == TYPE_ARRAY) delete m_data.array.elementType; m_type = other.m_type; m_flags = other.m_flags; m_data = Data(); if (m_type == TYPE_ARRAY) { m_data.array.elementType = new VarType(*other.m_data.array.elementType); m_data.array.size = other.m_data.array.size; } else m_data = other.m_data; return *this; } // StructType implementation. void StructType::addMember (const char* name, const VarType& type, deUint32 flags) { m_members.push_back(StructMember(name, type, flags)); } // Uniform implementation. Uniform::Uniform (const char* name, const VarType& type, deUint32 flags) : m_name (name) , m_type (type) , m_flags (flags) { } // UniformBlock implementation. UniformBlock::UniformBlock (const char* blockName) : m_blockName (blockName) , m_arraySize (0) , m_flags (0) { } struct BlockLayoutEntry { BlockLayoutEntry (void) : size(0) { } std::string name; int size; std::vector activeUniformIndices; }; std::ostream& operator<< (std::ostream& stream, const BlockLayoutEntry& entry) { stream << entry.name << " { name = " << entry.name << ", size = " << entry.size << ", activeUniformIndices = ["; for (vector::const_iterator i = entry.activeUniformIndices.begin(); i != entry.activeUniformIndices.end(); i++) { if (i != entry.activeUniformIndices.begin()) stream << ", "; stream << *i; } stream << "] }"; return stream; } struct UniformLayoutEntry { UniformLayoutEntry (void) : type (glu::TYPE_LAST) , size (0) , blockNdx (-1) , offset (-1) , arrayStride (-1) , matrixStride (-1) , isRowMajor (false) { } std::string name; glu::DataType type; int size; int blockNdx; int offset; int arrayStride; int matrixStride; bool isRowMajor; }; std::ostream& operator<< (std::ostream& stream, const UniformLayoutEntry& entry) { stream << entry.name << " { type = " << glu::getDataTypeName(entry.type) << ", size = " << entry.size << ", blockNdx = " << entry.blockNdx << ", offset = " << entry.offset << ", arrayStride = " << entry.arrayStride << ", matrixStride = " << entry.matrixStride << ", isRowMajor = " << (entry.isRowMajor ? "true" : "false") << " }"; return stream; } class UniformLayout { public: std::vector blocks; std::vector uniforms; int getUniformIndex (const char* name) const; int getBlockIndex (const char* name) const; }; // \todo [2012-01-24 pyry] Speed up lookups using hash. int UniformLayout::getUniformIndex (const char* name) const { for (int ndx = 0; ndx < (int)uniforms.size(); ndx++) { if (uniforms[ndx].name == name) return ndx; } return -1; } int UniformLayout::getBlockIndex (const char* name) const { for (int ndx = 0; ndx < (int)blocks.size(); ndx++) { if (blocks[ndx].name == name) return ndx; } return -1; } // ShaderInterface implementation. ShaderInterface::ShaderInterface (void) { } ShaderInterface::~ShaderInterface (void) { for (std::vector::iterator i = m_structs.begin(); i != m_structs.end(); i++) delete *i; for (std::vector::iterator i = m_uniformBlocks.begin(); i != m_uniformBlocks.end(); i++) delete *i; } StructType& ShaderInterface::allocStruct (const char* name) { m_structs.reserve(m_structs.size()+1); m_structs.push_back(new StructType(name)); return *m_structs.back(); } struct StructNameEquals { std::string name; StructNameEquals (const char* name_) : name(name_) {} bool operator() (const StructType* type) const { return type->getTypeName() && name == type->getTypeName(); } }; const StructType* ShaderInterface::findStruct (const char* name) const { std::vector::const_iterator pos = std::find_if(m_structs.begin(), m_structs.end(), StructNameEquals(name)); return pos != m_structs.end() ? *pos : DE_NULL; } void ShaderInterface::getNamedStructs (std::vector& structs) const { for (std::vector::const_iterator i = m_structs.begin(); i != m_structs.end(); i++) { if ((*i)->getTypeName() != DE_NULL) structs.push_back(*i); } } UniformBlock& ShaderInterface::allocBlock (const char* name) { m_uniformBlocks.reserve(m_uniformBlocks.size()+1); m_uniformBlocks.push_back(new UniformBlock(name)); return *m_uniformBlocks.back(); } namespace // Utilities { // Layout computation. int getDataTypeByteSize (glu::DataType type) { return glu::getDataTypeScalarSize(type)*sizeof(deUint32); } int getDataTypeByteAlignment (glu::DataType type) { switch (type) { case glu::TYPE_FLOAT: case glu::TYPE_INT: case glu::TYPE_UINT: case glu::TYPE_BOOL: return 1*sizeof(deUint32); case glu::TYPE_FLOAT_VEC2: case glu::TYPE_INT_VEC2: case glu::TYPE_UINT_VEC2: case glu::TYPE_BOOL_VEC2: return 2*sizeof(deUint32); case glu::TYPE_FLOAT_VEC3: case glu::TYPE_INT_VEC3: case glu::TYPE_UINT_VEC3: case glu::TYPE_BOOL_VEC3: // Fall-through to vec4 case glu::TYPE_FLOAT_VEC4: case glu::TYPE_INT_VEC4: case glu::TYPE_UINT_VEC4: case glu::TYPE_BOOL_VEC4: return 4*sizeof(deUint32); default: DE_ASSERT(false); return 0; } } int getDataTypeArrayStride (glu::DataType type) { DE_ASSERT(!glu::isDataTypeMatrix(type)); int baseStride = getDataTypeByteSize(type); int vec4Alignment = sizeof(deUint32)*4; DE_ASSERT(baseStride <= vec4Alignment); return de::max(baseStride, vec4Alignment); // Really? See rule 4. } static inline int deRoundUp32 (int a, int b) { int d = a/b; return d*b == a ? a : (d+1)*b; } int computeStd140BaseAlignment (const VarType& type) { const int vec4Alignment = sizeof(deUint32)*4; if (type.isBasicType()) { glu::DataType basicType = type.getBasicType(); if (glu::isDataTypeMatrix(basicType)) { bool isRowMajor = !!(type.getFlags() & LAYOUT_ROW_MAJOR); int vecSize = isRowMajor ? glu::getDataTypeMatrixNumColumns(basicType) : glu::getDataTypeMatrixNumRows(basicType); return getDataTypeArrayStride(glu::getDataTypeFloatVec(vecSize)); } else return getDataTypeByteAlignment(basicType); } else if (type.isArrayType()) { int elemAlignment = computeStd140BaseAlignment(type.getElementType()); // Round up to alignment of vec4 return deRoundUp32(elemAlignment, vec4Alignment); } else { DE_ASSERT(type.isStructType()); int maxBaseAlignment = 0; for (StructType::ConstIterator memberIter = type.getStruct().begin(); memberIter != type.getStruct().end(); memberIter++) maxBaseAlignment = de::max(maxBaseAlignment, computeStd140BaseAlignment(memberIter->getType())); return deRoundUp32(maxBaseAlignment, vec4Alignment); } } inline deUint32 mergeLayoutFlags (deUint32 prevFlags, deUint32 newFlags) { const deUint32 packingMask = LAYOUT_PACKED|LAYOUT_SHARED|LAYOUT_STD140; const deUint32 matrixMask = LAYOUT_ROW_MAJOR|LAYOUT_COLUMN_MAJOR; deUint32 mergedFlags = 0; mergedFlags |= ((newFlags & packingMask) ? newFlags : prevFlags) & packingMask; mergedFlags |= ((newFlags & matrixMask) ? newFlags : prevFlags) & matrixMask; return mergedFlags; } void computeStd140Layout (UniformLayout& layout, int& curOffset, int curBlockNdx, const std::string& curPrefix, const VarType& type, deUint32 layoutFlags) { int baseAlignment = computeStd140BaseAlignment(type); curOffset = deAlign32(curOffset, baseAlignment); if (type.isBasicType()) { glu::DataType basicType = type.getBasicType(); UniformLayoutEntry entry; entry.name = curPrefix; entry.type = basicType; entry.size = 1; entry.arrayStride = 0; entry.matrixStride = 0; entry.blockNdx = curBlockNdx; if (glu::isDataTypeMatrix(basicType)) { // Array of vectors as specified in rules 5 & 7. bool isRowMajor = !!(layoutFlags & LAYOUT_ROW_MAJOR); int vecSize = isRowMajor ? glu::getDataTypeMatrixNumColumns(basicType) : glu::getDataTypeMatrixNumRows(basicType); int numVecs = isRowMajor ? glu::getDataTypeMatrixNumRows(basicType) : glu::getDataTypeMatrixNumColumns(basicType); int stride = getDataTypeArrayStride(glu::getDataTypeFloatVec(vecSize)); entry.offset = curOffset; entry.matrixStride = stride; entry.isRowMajor = isRowMajor; curOffset += numVecs*stride; } else { // Scalar or vector. entry.offset = curOffset; curOffset += getDataTypeByteSize(basicType); } layout.uniforms.push_back(entry); } else if (type.isArrayType()) { const VarType& elemType = type.getElementType(); if (elemType.isBasicType() && !glu::isDataTypeMatrix(elemType.getBasicType())) { // Array of scalars or vectors. glu::DataType elemBasicType = elemType.getBasicType(); UniformLayoutEntry entry; int stride = getDataTypeArrayStride(elemBasicType); entry.name = curPrefix + "[0]"; // Array uniforms are always postfixed with [0] entry.type = elemBasicType; entry.blockNdx = curBlockNdx; entry.offset = curOffset; entry.size = type.getArraySize(); entry.arrayStride = stride; entry.matrixStride = 0; curOffset += stride*type.getArraySize(); layout.uniforms.push_back(entry); } else if (elemType.isBasicType() && glu::isDataTypeMatrix(elemType.getBasicType())) { // Array of matrices. glu::DataType elemBasicType = elemType.getBasicType(); bool isRowMajor = !!(layoutFlags & LAYOUT_ROW_MAJOR); int vecSize = isRowMajor ? glu::getDataTypeMatrixNumColumns(elemBasicType) : glu::getDataTypeMatrixNumRows(elemBasicType); int numVecs = isRowMajor ? glu::getDataTypeMatrixNumRows(elemBasicType) : glu::getDataTypeMatrixNumColumns(elemBasicType); int stride = getDataTypeArrayStride(glu::getDataTypeFloatVec(vecSize)); UniformLayoutEntry entry; entry.name = curPrefix + "[0]"; // Array uniforms are always postfixed with [0] entry.type = elemBasicType; entry.blockNdx = curBlockNdx; entry.offset = curOffset; entry.size = type.getArraySize(); entry.arrayStride = stride*numVecs; entry.matrixStride = stride; entry.isRowMajor = isRowMajor; curOffset += numVecs*type.getArraySize()*stride; layout.uniforms.push_back(entry); } else { DE_ASSERT(elemType.isStructType() || elemType.isArrayType()); for (int elemNdx = 0; elemNdx < type.getArraySize(); elemNdx++) computeStd140Layout(layout, curOffset, curBlockNdx, curPrefix + "[" + de::toString(elemNdx) + "]", type.getElementType(), layoutFlags); } } else { DE_ASSERT(type.isStructType()); for (StructType::ConstIterator memberIter = type.getStruct().begin(); memberIter != type.getStruct().end(); memberIter++) computeStd140Layout(layout, curOffset, curBlockNdx, curPrefix + "." + memberIter->getName(), memberIter->getType(), layoutFlags); curOffset = deAlign32(curOffset, baseAlignment); } } void computeStd140Layout (UniformLayout& layout, const ShaderInterface& interface) { // \todo [2012-01-23 pyry] Uniforms in default block. int numUniformBlocks = interface.getNumUniformBlocks(); for (int blockNdx = 0; blockNdx < numUniformBlocks; blockNdx++) { const UniformBlock& block = interface.getUniformBlock(blockNdx); bool hasInstanceName = block.getInstanceName() != DE_NULL; std::string blockPrefix = hasInstanceName ? (std::string(block.getBlockName()) + ".") : std::string(""); int curOffset = 0; int activeBlockNdx = (int)layout.blocks.size(); int firstUniformNdx = (int)layout.uniforms.size(); for (UniformBlock::ConstIterator uniformIter = block.begin(); uniformIter != block.end(); uniformIter++) { const Uniform& uniform = *uniformIter; computeStd140Layout(layout, curOffset, activeBlockNdx, blockPrefix + uniform.getName(), uniform.getType(), mergeLayoutFlags(block.getFlags(), uniform.getFlags())); } int uniformIndicesEnd = (int)layout.uniforms.size(); int blockSize = curOffset; int numInstances = block.isArray() ? block.getArraySize() : 1; // Create block layout entries for each instance. for (int instanceNdx = 0; instanceNdx < numInstances; instanceNdx++) { // Allocate entry for instance. layout.blocks.push_back(BlockLayoutEntry()); BlockLayoutEntry& blockEntry = layout.blocks.back(); blockEntry.name = block.getBlockName(); blockEntry.size = blockSize; // Compute active uniform set for block. for (int uniformNdx = firstUniformNdx; uniformNdx < uniformIndicesEnd; uniformNdx++) blockEntry.activeUniformIndices.push_back(uniformNdx); if (block.isArray()) blockEntry.name += "[" + de::toString(instanceNdx) + "]"; } } } // Value generator. void generateValue (const UniformLayoutEntry& entry, void* basePtr, de::Random& rnd) { glu::DataType scalarType = glu::getDataTypeScalarType(entry.type); int scalarSize = glu::getDataTypeScalarSize(entry.type); bool isMatrix = glu::isDataTypeMatrix(entry.type); int numVecs = isMatrix ? (entry.isRowMajor ? glu::getDataTypeMatrixNumRows(entry.type) : glu::getDataTypeMatrixNumColumns(entry.type)) : 1; int vecSize = scalarSize / numVecs; bool isArray = entry.size > 1; const int compSize = sizeof(deUint32); DE_ASSERT(scalarSize%numVecs == 0); for (int elemNdx = 0; elemNdx < entry.size; elemNdx++) { deUint8* elemPtr = (deUint8*)basePtr + entry.offset + (isArray ? elemNdx*entry.arrayStride : 0); for (int vecNdx = 0; vecNdx < numVecs; vecNdx++) { deUint8* vecPtr = elemPtr + (isMatrix ? vecNdx*entry.matrixStride : 0); for (int compNdx = 0; compNdx < vecSize; compNdx++) { deUint8* compPtr = vecPtr + compSize*compNdx; switch (scalarType) { case glu::TYPE_FLOAT: *((float*)compPtr) = (float)rnd.getInt(-9, 9); break; case glu::TYPE_INT: *((int*)compPtr) = rnd.getInt(-9, 9); break; case glu::TYPE_UINT: *((deUint32*)compPtr) = (deUint32)rnd.getInt(0, 9); break; // \note Random bit pattern is used for true values. Spec states that all non-zero values are // interpreted as true but some implementations fail this. case glu::TYPE_BOOL: *((deUint32*)compPtr) = rnd.getBool() ? rnd.getUint32()|1u : 0u; break; default: DE_ASSERT(false); } } } } } void generateValues (const UniformLayout& layout, const std::map& blockPointers, deUint32 seed) { de::Random rnd (seed); int numBlocks = (int)layout.blocks.size(); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { void* basePtr = blockPointers.find(blockNdx)->second; int numEntries = (int)layout.blocks[blockNdx].activeUniformIndices.size(); for (int entryNdx = 0; entryNdx < numEntries; entryNdx++) { const UniformLayoutEntry& entry = layout.uniforms[layout.blocks[blockNdx].activeUniformIndices[entryNdx]]; generateValue(entry, basePtr, rnd); } } } // Shader generator. const char* getCompareFuncForType (glu::DataType type) { switch (type) { case glu::TYPE_FLOAT: return "mediump float compare_float (highp float a, highp float b) { return abs(a - b) < 0.05 ? 1.0 : 0.0; }\n"; case glu::TYPE_FLOAT_VEC2: return "mediump float compare_vec2 (highp vec2 a, highp vec2 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y); }\n"; case glu::TYPE_FLOAT_VEC3: return "mediump float compare_vec3 (highp vec3 a, highp vec3 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y)*compare_float(a.z, b.z); }\n"; case glu::TYPE_FLOAT_VEC4: return "mediump float compare_vec4 (highp vec4 a, highp vec4 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y)*compare_float(a.z, b.z)*compare_float(a.w, b.w); }\n"; case glu::TYPE_FLOAT_MAT2: return "mediump float compare_mat2 (highp mat2 a, highp mat2 b) { return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1]); }\n"; case glu::TYPE_FLOAT_MAT2X3: return "mediump float compare_mat2x3 (highp mat2x3 a, highp mat2x3 b){ return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1]); }\n"; case glu::TYPE_FLOAT_MAT2X4: return "mediump float compare_mat2x4 (highp mat2x4 a, highp mat2x4 b){ return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1]); }\n"; case glu::TYPE_FLOAT_MAT3X2: return "mediump float compare_mat3x2 (highp mat3x2 a, highp mat3x2 b){ return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1])*compare_vec2(a[2], b[2]); }\n"; case glu::TYPE_FLOAT_MAT3: return "mediump float compare_mat3 (highp mat3 a, highp mat3 b) { return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1])*compare_vec3(a[2], b[2]); }\n"; case glu::TYPE_FLOAT_MAT3X4: return "mediump float compare_mat3x4 (highp mat3x4 a, highp mat3x4 b){ return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1])*compare_vec4(a[2], b[2]); }\n"; case glu::TYPE_FLOAT_MAT4X2: return "mediump float compare_mat4x2 (highp mat4x2 a, highp mat4x2 b){ return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1])*compare_vec2(a[2], b[2])*compare_vec2(a[3], b[3]); }\n"; case glu::TYPE_FLOAT_MAT4X3: return "mediump float compare_mat4x3 (highp mat4x3 a, highp mat4x3 b){ return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1])*compare_vec3(a[2], b[2])*compare_vec3(a[3], b[3]); }\n"; case glu::TYPE_FLOAT_MAT4: return "mediump float compare_mat4 (highp mat4 a, highp mat4 b) { return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1])*compare_vec4(a[2], b[2])*compare_vec4(a[3], b[3]); }\n"; case glu::TYPE_INT: return "mediump float compare_int (highp int a, highp int b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_INT_VEC2: return "mediump float compare_ivec2 (highp ivec2 a, highp ivec2 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_INT_VEC3: return "mediump float compare_ivec3 (highp ivec3 a, highp ivec3 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_INT_VEC4: return "mediump float compare_ivec4 (highp ivec4 a, highp ivec4 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_UINT: return "mediump float compare_uint (highp uint a, highp uint b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_UINT_VEC2: return "mediump float compare_uvec2 (highp uvec2 a, highp uvec2 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_UINT_VEC3: return "mediump float compare_uvec3 (highp uvec3 a, highp uvec3 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_UINT_VEC4: return "mediump float compare_uvec4 (highp uvec4 a, highp uvec4 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_BOOL: return "mediump float compare_bool (bool a, bool b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_BOOL_VEC2: return "mediump float compare_bvec2 (bvec2 a, bvec2 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_BOOL_VEC3: return "mediump float compare_bvec3 (bvec3 a, bvec3 b) { return a == b ? 1.0 : 0.0; }\n"; case glu::TYPE_BOOL_VEC4: return "mediump float compare_bvec4 (bvec4 a, bvec4 b) { return a == b ? 1.0 : 0.0; }\n"; default: DE_ASSERT(false); return DE_NULL; } } void getCompareDependencies (std::set& compareFuncs, glu::DataType basicType) { switch (basicType) { case glu::TYPE_FLOAT_VEC2: case glu::TYPE_FLOAT_VEC3: case glu::TYPE_FLOAT_VEC4: compareFuncs.insert(glu::TYPE_FLOAT); compareFuncs.insert(basicType); break; case glu::TYPE_FLOAT_MAT2: case glu::TYPE_FLOAT_MAT2X3: case glu::TYPE_FLOAT_MAT2X4: case glu::TYPE_FLOAT_MAT3X2: case glu::TYPE_FLOAT_MAT3: case glu::TYPE_FLOAT_MAT3X4: case glu::TYPE_FLOAT_MAT4X2: case glu::TYPE_FLOAT_MAT4X3: case glu::TYPE_FLOAT_MAT4: compareFuncs.insert(glu::TYPE_FLOAT); compareFuncs.insert(glu::getDataTypeFloatVec(glu::getDataTypeMatrixNumRows(basicType))); compareFuncs.insert(basicType); break; default: compareFuncs.insert(basicType); break; } } void collectUniqueBasicTypes (std::set& basicTypes, const VarType& type) { if (type.isStructType()) { for (StructType::ConstIterator iter = type.getStruct().begin(); iter != type.getStruct().end(); ++iter) collectUniqueBasicTypes(basicTypes, iter->getType()); } else if (type.isArrayType()) collectUniqueBasicTypes(basicTypes, type.getElementType()); else { DE_ASSERT(type.isBasicType()); basicTypes.insert(type.getBasicType()); } } void collectUniqueBasicTypes (std::set& basicTypes, const UniformBlock& uniformBlock) { for (UniformBlock::ConstIterator iter = uniformBlock.begin(); iter != uniformBlock.end(); ++iter) collectUniqueBasicTypes(basicTypes, iter->getType()); } void collectUniqueBasicTypes (std::set& basicTypes, const ShaderInterface& interface) { for (int ndx = 0; ndx < interface.getNumUniformBlocks(); ++ndx) collectUniqueBasicTypes(basicTypes, interface.getUniformBlock(ndx)); } void generateCompareFuncs (std::ostream& str, const ShaderInterface& interface) { std::set types; std::set compareFuncs; // Collect unique basic types collectUniqueBasicTypes(types, interface); // Set of compare functions required for (std::set::const_iterator iter = types.begin(); iter != types.end(); ++iter) { getCompareDependencies(compareFuncs, *iter); } for (int type = 0; type < glu::TYPE_LAST; ++type) { if (compareFuncs.find(glu::DataType(type)) != compareFuncs.end()) str << getCompareFuncForType(glu::DataType(type)); } } struct Indent { int level; Indent (int level_) : level(level_) {} }; std::ostream& operator<< (std::ostream& str, const Indent& indent) { for (int i = 0; i < indent.level; i++) str << "\t"; return str; } void generateDeclaration (std::ostringstream& src, const VarType& type, const char* name, int indentLevel, deUint32 unusedHints); void generateDeclaration (std::ostringstream& src, const Uniform& uniform, int indentLevel); void generateDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel); void generateLocalDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel); void generateFullDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel); void generateDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel) { DE_ASSERT(structType.getTypeName() != DE_NULL); generateFullDeclaration(src, structType, indentLevel); src << ";\n"; } void generateFullDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel) { src << "struct"; if (structType.getTypeName()) src << " " << structType.getTypeName(); src << "\n" << Indent(indentLevel) << "{\n"; for (StructType::ConstIterator memberIter = structType.begin(); memberIter != structType.end(); memberIter++) { src << Indent(indentLevel+1); generateDeclaration(src, memberIter->getType(), memberIter->getName(), indentLevel+1, memberIter->getFlags() & UNUSED_BOTH); } src << Indent(indentLevel) << "}"; } void generateLocalDeclaration (std::ostringstream& src, const StructType& structType, int indentLevel) { if (structType.getTypeName() == DE_NULL) generateFullDeclaration(src, structType, indentLevel); else src << structType.getTypeName(); } void generateDeclaration (std::ostringstream& src, const VarType& type, const char* name, int indentLevel, deUint32 unusedHints) { deUint32 flags = type.getFlags(); if ((flags & LAYOUT_MASK) != 0) src << "layout(" << LayoutFlagsFmt(flags & LAYOUT_MASK) << ") "; if ((flags & PRECISION_MASK) != 0) src << PrecisionFlagsFmt(flags & PRECISION_MASK) << " "; if (type.isBasicType()) src << glu::getDataTypeName(type.getBasicType()) << " " << name; else if (type.isArrayType()) { std::vector arraySizes; const VarType* curType = &type; while (curType->isArrayType()) { arraySizes.push_back(curType->getArraySize()); curType = &curType->getElementType(); } if (curType->isBasicType()) { if ((curType->getFlags() & PRECISION_MASK) != 0) src << PrecisionFlagsFmt(curType->getFlags() & PRECISION_MASK) << " "; src << glu::getDataTypeName(curType->getBasicType()); } else { DE_ASSERT(curType->isStructType()); generateLocalDeclaration(src, curType->getStruct(), indentLevel+1); } src << " " << name; for (std::vector::const_iterator sizeIter = arraySizes.begin(); sizeIter != arraySizes.end(); sizeIter++) src << "[" << *sizeIter << "]"; } else { generateLocalDeclaration(src, type.getStruct(), indentLevel+1); src << " " << name; } src << ";"; // Print out unused hints. if (unusedHints != 0) src << " // unused in " << (unusedHints == UNUSED_BOTH ? "both shaders" : unusedHints == UNUSED_VERTEX ? "vertex shader" : unusedHints == UNUSED_FRAGMENT ? "fragment shader" : "???"); src << "\n"; } void generateDeclaration (std::ostringstream& src, const Uniform& uniform, int indentLevel) { if ((uniform.getFlags() & LAYOUT_MASK) != 0) src << "layout(" << LayoutFlagsFmt(uniform.getFlags() & LAYOUT_MASK) << ") "; generateDeclaration(src, uniform.getType(), uniform.getName(), indentLevel, uniform.getFlags() & UNUSED_BOTH); } void generateDeclaration (std::ostringstream& src, const UniformBlock& block) { if ((block.getFlags() & LAYOUT_MASK) != 0) src << "layout(" << LayoutFlagsFmt(block.getFlags() & LAYOUT_MASK) << ") "; src << "uniform " << block.getBlockName(); src << "\n{\n"; for (UniformBlock::ConstIterator uniformIter = block.begin(); uniformIter != block.end(); uniformIter++) { src << Indent(1); generateDeclaration(src, *uniformIter, 1 /* indent level */); } src << "}"; if (block.getInstanceName() != DE_NULL) { src << " " << block.getInstanceName(); if (block.isArray()) src << "[" << block.getArraySize() << "]"; } else DE_ASSERT(!block.isArray()); src << ";\n"; } void generateValueSrc (std::ostringstream& src, const UniformLayoutEntry& entry, const void* basePtr, int elementNdx) { glu::DataType scalarType = glu::getDataTypeScalarType(entry.type); int scalarSize = glu::getDataTypeScalarSize(entry.type); bool isArray = entry.size > 1; const deUint8* elemPtr = (const deUint8*)basePtr + entry.offset + (isArray ? elementNdx*entry.arrayStride : 0); const int compSize = sizeof(deUint32); if (scalarSize > 1) src << glu::getDataTypeName(entry.type) << "("; if (glu::isDataTypeMatrix(entry.type)) { int numRows = glu::getDataTypeMatrixNumRows(entry.type); int numCols = glu::getDataTypeMatrixNumColumns(entry.type); DE_ASSERT(scalarType == glu::TYPE_FLOAT); // Constructed in column-wise order. for (int colNdx = 0; colNdx < numCols; colNdx++) { for (int rowNdx = 0; rowNdx < numRows; rowNdx++) { const deUint8* compPtr = elemPtr + (entry.isRowMajor ? rowNdx*entry.matrixStride + colNdx*compSize : colNdx*entry.matrixStride + rowNdx*compSize); if (colNdx > 0 || rowNdx > 0) src << ", "; src << de::floatToString(*((const float*)compPtr), 1); } } } else { for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++) { const deUint8* compPtr = elemPtr + scalarNdx*compSize; if (scalarNdx > 0) src << ", "; switch (scalarType) { case glu::TYPE_FLOAT: src << de::floatToString(*((const float*)compPtr), 1); break; case glu::TYPE_INT: src << *((const int*)compPtr); break; case glu::TYPE_UINT: src << *((const deUint32*)compPtr) << "u"; break; case glu::TYPE_BOOL: src << (*((const deUint32*)compPtr) != 0u ? "true" : "false"); break; default: DE_ASSERT(false); } } } if (scalarSize > 1) src << ")"; } void generateCompareSrc (std::ostringstream& src, const char* resultVar, const VarType& type, const char* srcName, const char* apiName, const UniformLayout& layout, const void* basePtr, deUint32 unusedMask) { if (type.isBasicType() || (type.isArrayType() && type.getElementType().isBasicType())) { // Basic type or array of basic types. bool isArray = type.isArrayType(); glu::DataType elementType = isArray ? type.getElementType().getBasicType() : type.getBasicType(); const char* typeName = glu::getDataTypeName(elementType); std::string fullApiName = string(apiName) + (isArray ? "[0]" : ""); // Arrays are always postfixed with [0] int uniformNdx = layout.getUniformIndex(fullApiName.c_str()); const UniformLayoutEntry& entry = layout.uniforms[uniformNdx]; if (isArray) { for (int elemNdx = 0; elemNdx < type.getArraySize(); elemNdx++) { src << "\tresult *= compare_" << typeName << "(" << srcName << "[" << elemNdx << "], "; generateValueSrc(src, entry, basePtr, elemNdx); src << ");\n"; } } else { src << "\tresult *= compare_" << typeName << "(" << srcName << ", "; generateValueSrc(src, entry, basePtr, 0); src << ");\n"; } } else if (type.isArrayType()) { const VarType& elementType = type.getElementType(); for (int elementNdx = 0; elementNdx < type.getArraySize(); elementNdx++) { std::string op = string("[") + de::toString(elementNdx) + "]"; generateCompareSrc(src, resultVar, elementType, (string(srcName) + op).c_str(), (string(apiName) + op).c_str(), layout, basePtr, unusedMask); } } else { DE_ASSERT(type.isStructType()); for (StructType::ConstIterator memberIter = type.getStruct().begin(); memberIter != type.getStruct().end(); memberIter++) { if (memberIter->getFlags() & unusedMask) continue; // Skip member. string op = string(".") + memberIter->getName(); generateCompareSrc(src, resultVar, memberIter->getType(), (string(srcName) + op).c_str(), (string(apiName) + op).c_str(), layout, basePtr, unusedMask); } } } void generateCompareSrc (std::ostringstream& src, const char* resultVar, const ShaderInterface& interface, const UniformLayout& layout, const std::map& blockPointers, bool isVertex) { deUint32 unusedMask = isVertex ? UNUSED_VERTEX : UNUSED_FRAGMENT; for (int blockNdx = 0; blockNdx < interface.getNumUniformBlocks(); blockNdx++) { const UniformBlock& block = interface.getUniformBlock(blockNdx); if ((block.getFlags() & (isVertex ? DECLARE_VERTEX : DECLARE_FRAGMENT)) == 0) continue; // Skip. bool hasInstanceName = block.getInstanceName() != DE_NULL; bool isArray = block.isArray(); int numInstances = isArray ? block.getArraySize() : 1; std::string apiPrefix = hasInstanceName ? string(block.getBlockName()) + "." : string(""); DE_ASSERT(!isArray || hasInstanceName); for (int instanceNdx = 0; instanceNdx < numInstances; instanceNdx++) { std::string instancePostfix = isArray ? string("[") + de::toString(instanceNdx) + "]" : string(""); std::string blockInstanceName = block.getBlockName() + instancePostfix; std::string srcPrefix = hasInstanceName ? string(block.getInstanceName()) + instancePostfix + "." : string(""); int activeBlockNdx = layout.getBlockIndex(blockInstanceName.c_str()); void* basePtr = blockPointers.find(activeBlockNdx)->second; for (UniformBlock::ConstIterator uniformIter = block.begin(); uniformIter != block.end(); uniformIter++) { const Uniform& uniform = *uniformIter; if (uniform.getFlags() & unusedMask) continue; // Don't read from that uniform. generateCompareSrc(src, resultVar, uniform.getType(), (srcPrefix + uniform.getName()).c_str(), (apiPrefix + uniform.getName()).c_str(), layout, basePtr, unusedMask); } } } } void generateVertexShader (std::ostringstream& src, glu::GLSLVersion glslVersion, const ShaderInterface& interface, const UniformLayout& layout, const std::map& blockPointers) { DE_ASSERT(isSupportedGLSLVersion(glslVersion)); src << glu::getGLSLVersionDeclaration(glslVersion) << "\n"; src << "in highp vec4 a_position;\n"; src << "out mediump float v_vtxResult;\n"; src << "\n"; std::vector namedStructs; interface.getNamedStructs(namedStructs); for (std::vector::const_iterator structIter = namedStructs.begin(); structIter != namedStructs.end(); structIter++) generateDeclaration(src, **structIter, 0); for (int blockNdx = 0; blockNdx < interface.getNumUniformBlocks(); blockNdx++) { const UniformBlock& block = interface.getUniformBlock(blockNdx); if (block.getFlags() & DECLARE_VERTEX) generateDeclaration(src, block); } // Comparison utilities. src << "\n"; generateCompareFuncs(src, interface); src << "\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " mediump float result = 1.0;\n"; // Value compare. generateCompareSrc(src, "result", interface, layout, blockPointers, true); src << " v_vtxResult = result;\n" "}\n"; } void generateFragmentShader (std::ostringstream& src, glu::GLSLVersion glslVersion, const ShaderInterface& interface, const UniformLayout& layout, const std::map& blockPointers) { DE_ASSERT(isSupportedGLSLVersion(glslVersion)); src << glu::getGLSLVersionDeclaration(glslVersion) << "\n"; src << "in mediump float v_vtxResult;\n"; src << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n"; src << "\n"; std::vector namedStructs; interface.getNamedStructs(namedStructs); for (std::vector::const_iterator structIter = namedStructs.begin(); structIter != namedStructs.end(); structIter++) generateDeclaration(src, **structIter, 0); for (int blockNdx = 0; blockNdx < interface.getNumUniformBlocks(); blockNdx++) { const UniformBlock& block = interface.getUniformBlock(blockNdx); if (block.getFlags() & DECLARE_FRAGMENT) generateDeclaration(src, block); } // Comparison utilities. src << "\n"; generateCompareFuncs(src, interface); src << "\n" "void main (void)\n" "{\n" " mediump float result = 1.0;\n"; // Value compare. generateCompareSrc(src, "result", interface, layout, blockPointers, false); src << " dEQP_FragColor = vec4(1.0, v_vtxResult, result, 1.0);\n" "}\n"; } void getGLUniformLayout (const glw::Functions& gl, UniformLayout& layout, deUint32 program) { int numActiveUniforms = 0; int numActiveBlocks = 0; gl.getProgramiv(program, GL_ACTIVE_UNIFORMS, &numActiveUniforms); gl.getProgramiv(program, GL_ACTIVE_UNIFORM_BLOCKS, &numActiveBlocks); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to get number of uniforms and uniform blocks"); // Block entries. layout.blocks.resize(numActiveBlocks); for (int blockNdx = 0; blockNdx < numActiveBlocks; blockNdx++) { BlockLayoutEntry& entry = layout.blocks[blockNdx]; int size; int nameLen; int numBlockUniforms; gl.getActiveUniformBlockiv(program, (deUint32)blockNdx, GL_UNIFORM_BLOCK_DATA_SIZE, &size); gl.getActiveUniformBlockiv(program, (deUint32)blockNdx, GL_UNIFORM_BLOCK_NAME_LENGTH, &nameLen); gl.getActiveUniformBlockiv(program, (deUint32)blockNdx, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, &numBlockUniforms); GLU_EXPECT_NO_ERROR(gl.getError(), "Uniform block query failed"); // \note Some implementations incorrectly return 0 as name length even though the length should include null terminator. std::vector nameBuf(nameLen > 0 ? nameLen : 1); gl.getActiveUniformBlockName(program, (deUint32)blockNdx, (glw::GLsizei)nameBuf.size(), DE_NULL, &nameBuf[0]); entry.name = std::string(&nameBuf[0]); entry.size = size; entry.activeUniformIndices.resize(numBlockUniforms); if (numBlockUniforms > 0) gl.getActiveUniformBlockiv(program, (deUint32)blockNdx, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, &entry.activeUniformIndices[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "Uniform block query failed"); } if (numActiveUniforms > 0) { // Uniform entries. std::vector uniformIndices(numActiveUniforms); for (int i = 0; i < numActiveUniforms; i++) uniformIndices[i] = (deUint32)i; std::vector types (numActiveUniforms); std::vector sizes (numActiveUniforms); std::vector nameLengths (numActiveUniforms); std::vector blockIndices (numActiveUniforms); std::vector offsets (numActiveUniforms); std::vector arrayStrides (numActiveUniforms); std::vector matrixStrides (numActiveUniforms); std::vector rowMajorFlags (numActiveUniforms); // Execute queries. gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_TYPE, &types[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_SIZE, &sizes[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_NAME_LENGTH, &nameLengths[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_BLOCK_INDEX, &blockIndices[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_OFFSET, &offsets[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_ARRAY_STRIDE, &arrayStrides[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_MATRIX_STRIDE, &matrixStrides[0]); gl.getActiveUniformsiv(program, (glw::GLsizei)uniformIndices.size(), &uniformIndices[0], GL_UNIFORM_IS_ROW_MAJOR, &rowMajorFlags[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "Active uniform query failed"); // Translate to LayoutEntries layout.uniforms.resize(numActiveUniforms); for (int uniformNdx = 0; uniformNdx < numActiveUniforms; uniformNdx++) { UniformLayoutEntry& entry = layout.uniforms[uniformNdx]; std::vector nameBuf (nameLengths[uniformNdx]); glw::GLsizei nameLen = 0; int size = 0; deUint32 type = GL_NONE; gl.getActiveUniform(program, (deUint32)uniformNdx, (glw::GLsizei)nameBuf.size(), &nameLen, &size, &type, &nameBuf[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "Uniform name query failed"); // \note glGetActiveUniform() returns length without \0 and glGetActiveUniformsiv() with \0 if (nameLen+1 != nameLengths[uniformNdx] || size != sizes[uniformNdx] || type != (deUint32)types[uniformNdx]) TCU_FAIL("Values returned by glGetActiveUniform() don't match with values queried with glGetActiveUniformsiv()."); entry.name = std::string(&nameBuf[0]); entry.type = glu::getDataTypeFromGLType(types[uniformNdx]); entry.size = sizes[uniformNdx]; entry.blockNdx = blockIndices[uniformNdx]; entry.offset = offsets[uniformNdx]; entry.arrayStride = arrayStrides[uniformNdx]; entry.matrixStride = matrixStrides[uniformNdx]; entry.isRowMajor = rowMajorFlags[uniformNdx] != GL_FALSE; } } } void copyUniformData (const UniformLayoutEntry& dstEntry, void* dstBlockPtr, const UniformLayoutEntry& srcEntry, const void* srcBlockPtr) { deUint8* dstBasePtr = (deUint8*)dstBlockPtr + dstEntry.offset; const deUint8* srcBasePtr = (const deUint8*)srcBlockPtr + srcEntry.offset; DE_ASSERT(dstEntry.size <= srcEntry.size); DE_ASSERT(dstEntry.type == srcEntry.type); int scalarSize = glu::getDataTypeScalarSize(dstEntry.type); bool isMatrix = glu::isDataTypeMatrix(dstEntry.type); const int compSize = sizeof(deUint32); for (int elementNdx = 0; elementNdx < dstEntry.size; elementNdx++) { deUint8* dstElemPtr = dstBasePtr + elementNdx*dstEntry.arrayStride; const deUint8* srcElemPtr = srcBasePtr + elementNdx*srcEntry.arrayStride; if (isMatrix) { int numRows = glu::getDataTypeMatrixNumRows(dstEntry.type); int numCols = glu::getDataTypeMatrixNumColumns(dstEntry.type); for (int colNdx = 0; colNdx < numCols; colNdx++) { for (int rowNdx = 0; rowNdx < numRows; rowNdx++) { deUint8* dstCompPtr = dstElemPtr + (dstEntry.isRowMajor ? rowNdx*dstEntry.matrixStride + colNdx*compSize : colNdx*dstEntry.matrixStride + rowNdx*compSize); const deUint8* srcCompPtr = srcElemPtr + (srcEntry.isRowMajor ? rowNdx*srcEntry.matrixStride + colNdx*compSize : colNdx*srcEntry.matrixStride + rowNdx*compSize); deMemcpy(dstCompPtr, srcCompPtr, compSize); } } } else deMemcpy(dstElemPtr, srcElemPtr, scalarSize*compSize); } } void copyUniformData (const UniformLayout& dstLayout, const std::map& dstBlockPointers, const UniformLayout& srcLayout, const std::map& srcBlockPointers) { // \note Src layout is used as reference in case of activeUniforms happens to be incorrect in dstLayout blocks. int numBlocks = (int)srcLayout.blocks.size(); for (int srcBlockNdx = 0; srcBlockNdx < numBlocks; srcBlockNdx++) { const BlockLayoutEntry& srcBlock = srcLayout.blocks[srcBlockNdx]; const void* srcBlockPtr = srcBlockPointers.find(srcBlockNdx)->second; int dstBlockNdx = dstLayout.getBlockIndex(srcBlock.name.c_str()); void* dstBlockPtr = dstBlockNdx >= 0 ? dstBlockPointers.find(dstBlockNdx)->second : DE_NULL; if (dstBlockNdx < 0) continue; for (vector::const_iterator srcUniformNdxIter = srcBlock.activeUniformIndices.begin(); srcUniformNdxIter != srcBlock.activeUniformIndices.end(); srcUniformNdxIter++) { const UniformLayoutEntry& srcEntry = srcLayout.uniforms[*srcUniformNdxIter]; int dstUniformNdx = dstLayout.getUniformIndex(srcEntry.name.c_str()); if (dstUniformNdx < 0) continue; copyUniformData(dstLayout.uniforms[dstUniformNdx], dstBlockPtr, srcEntry, srcBlockPtr); } } } } // anonymous (utilities) class UniformBufferManager { public: UniformBufferManager (const glu::RenderContext& renderCtx); ~UniformBufferManager (void); deUint32 allocBuffer (void); private: UniformBufferManager (const UniformBufferManager& other); UniformBufferManager& operator= (const UniformBufferManager& other); const glu::RenderContext& m_renderCtx; std::vector m_buffers; }; UniformBufferManager::UniformBufferManager (const glu::RenderContext& renderCtx) : m_renderCtx(renderCtx) { } UniformBufferManager::~UniformBufferManager (void) { if (!m_buffers.empty()) m_renderCtx.getFunctions().deleteBuffers((glw::GLsizei)m_buffers.size(), &m_buffers[0]); } deUint32 UniformBufferManager::allocBuffer (void) { deUint32 buf = 0; m_buffers.reserve(m_buffers.size()+1); m_renderCtx.getFunctions().genBuffers(1, &buf); GLU_EXPECT_NO_ERROR(m_renderCtx.getFunctions().getError(), "Failed to allocate uniform buffer"); m_buffers.push_back(buf); return buf; } } // ub using namespace ub; // UniformBlockCase. UniformBlockCase::UniformBlockCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, glu::GLSLVersion glslVersion, BufferMode bufferMode) : TestCase (testCtx, name, description) , m_renderCtx (renderCtx) , m_glslVersion (glslVersion) , m_bufferMode (bufferMode) { TCU_CHECK_INTERNAL(isSupportedGLSLVersion(glslVersion)); } UniformBlockCase::~UniformBlockCase (void) { } UniformBlockCase::IterateResult UniformBlockCase::iterate (void) { TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); UniformLayout refLayout; //!< std140 layout. vector data; //!< Data. map blockPointers; //!< Reference block pointers. // Initialize result to pass. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); // Compute reference layout. computeStd140Layout(refLayout, m_interface); // Assign storage for reference values. { int totalSize = 0; for (vector::const_iterator blockIter = refLayout.blocks.begin(); blockIter != refLayout.blocks.end(); blockIter++) totalSize += blockIter->size; data.resize(totalSize); // Pointers for each block. int curOffset = 0; for (int blockNdx = 0; blockNdx < (int)refLayout.blocks.size(); blockNdx++) { blockPointers[blockNdx] = &data[0] + curOffset; curOffset += refLayout.blocks[blockNdx].size; } } // Generate values. generateValues(refLayout, blockPointers, 1 /* seed */); // Generate shaders and build program. std::ostringstream vtxSrc; std::ostringstream fragSrc; generateVertexShader(vtxSrc, m_glslVersion, m_interface, refLayout, blockPointers); generateFragmentShader(fragSrc, m_glslVersion, m_interface, refLayout, blockPointers); glu::ShaderProgram program(m_renderCtx, glu::makeVtxFragSources(vtxSrc.str(), fragSrc.str())); log << program; if (!program.isOk()) { // Compile failed. m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compile failed"); return STOP; } // Query layout from GL. UniformLayout glLayout; getGLUniformLayout(gl, glLayout, program.getProgram()); // Print layout to log. log << TestLog::Section("ActiveUniformBlocks", "Active Uniform Blocks"); for (int blockNdx = 0; blockNdx < (int)glLayout.blocks.size(); blockNdx++) log << TestLog::Message << blockNdx << ": " << glLayout.blocks[blockNdx] << TestLog::EndMessage; log << TestLog::EndSection; log << TestLog::Section("ActiveUniforms", "Active Uniforms"); for (int uniformNdx = 0; uniformNdx < (int)glLayout.uniforms.size(); uniformNdx++) log << TestLog::Message << uniformNdx << ": " << glLayout.uniforms[uniformNdx] << TestLog::EndMessage; log << TestLog::EndSection; // Check that we can even try rendering with given layout. if (!checkLayoutIndices(glLayout) || !checkLayoutBounds(glLayout) || !compareTypes(refLayout, glLayout)) { m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Invalid layout"); return STOP; // It is not safe to use the given layout. } // Verify all std140 blocks. if (!compareStd140Blocks(refLayout, glLayout)) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Invalid std140 layout"); // Verify all shared blocks - all uniforms should be active, and certain properties match. if (!compareSharedBlocks(refLayout, glLayout)) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Invalid shared layout"); // Check consistency with index queries if (!checkIndexQueries(program.getProgram(), glLayout)) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Inconsintent block index query results"); // Use program. gl.useProgram(program.getProgram()); // Assign binding points to all active uniform blocks. for (int blockNdx = 0; blockNdx < (int)glLayout.blocks.size(); blockNdx++) { deUint32 binding = (deUint32)blockNdx; // \todo [2012-01-25 pyry] Randomize order? gl.uniformBlockBinding(program.getProgram(), (deUint32)blockNdx, binding); } GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to set uniform block bindings"); // Allocate buffers, write data and bind to targets. UniformBufferManager bufferManager(m_renderCtx); if (m_bufferMode == BUFFERMODE_PER_BLOCK) { int numBlocks = (int)glLayout.blocks.size(); vector > glData (numBlocks); map glBlockPointers; for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { glData[blockNdx].resize(glLayout.blocks[blockNdx].size); glBlockPointers[blockNdx] = &glData[blockNdx][0]; } copyUniformData(glLayout, glBlockPointers, refLayout, blockPointers); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { deUint32 buffer = bufferManager.allocBuffer(); deUint32 binding = (deUint32)blockNdx; gl.bindBuffer(GL_UNIFORM_BUFFER, buffer); gl.bufferData(GL_UNIFORM_BUFFER, (glw::GLsizeiptr)glData[blockNdx].size(), &glData[blockNdx][0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to upload uniform buffer data"); gl.bindBufferBase(GL_UNIFORM_BUFFER, binding, buffer); GLU_EXPECT_NO_ERROR(gl.getError(), "glBindBufferBase(GL_UNIFORM_BUFFER) failed"); } } else { DE_ASSERT(m_bufferMode == BUFFERMODE_SINGLE); int totalSize = 0; int curOffset = 0; int numBlocks = (int)glLayout.blocks.size(); int bindingAlignment = 0; map glBlockOffsets; gl.getIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &bindingAlignment); // Compute total size and offsets. curOffset = 0; for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { if (bindingAlignment > 0) curOffset = deRoundUp32(curOffset, bindingAlignment); glBlockOffsets[blockNdx] = curOffset; curOffset += glLayout.blocks[blockNdx].size; } totalSize = curOffset; // Assign block pointers. vector glData(totalSize); map glBlockPointers; for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) glBlockPointers[blockNdx] = &glData[glBlockOffsets[blockNdx]]; // Copy to gl format. copyUniformData(glLayout, glBlockPointers, refLayout, blockPointers); // Allocate buffer and upload data. deUint32 buffer = bufferManager.allocBuffer(); gl.bindBuffer(GL_UNIFORM_BUFFER, buffer); if (!glData.empty()) gl.bufferData(GL_UNIFORM_BUFFER, (glw::GLsizeiptr)glData.size(), &glData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to upload uniform buffer data"); // Bind ranges to binding points. for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { deUint32 binding = (deUint32)blockNdx; gl.bindBufferRange(GL_UNIFORM_BUFFER, binding, buffer, (glw::GLintptr)glBlockOffsets[blockNdx], (glw::GLsizeiptr)glLayout.blocks[blockNdx].size); GLU_EXPECT_NO_ERROR(gl.getError(), "glBindBufferRange(GL_UNIFORM_BUFFER) failed"); } } bool renderOk = render(program.getProgram()); if (!renderOk) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image compare failed"); return STOP; } bool UniformBlockCase::compareStd140Blocks (const UniformLayout& refLayout, const UniformLayout& cmpLayout) const { TestLog& log = m_testCtx.getLog(); bool isOk = true; int numBlocks = m_interface.getNumUniformBlocks(); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const UniformBlock& block = m_interface.getUniformBlock(blockNdx); bool isArray = block.isArray(); std::string instanceName = string(block.getBlockName()) + (isArray ? "[0]" : ""); int refBlockNdx = refLayout.getBlockIndex(instanceName.c_str()); int cmpBlockNdx = cmpLayout.getBlockIndex(instanceName.c_str()); bool isUsed = (block.getFlags() & (DECLARE_VERTEX|DECLARE_FRAGMENT)) != 0; if ((block.getFlags() & LAYOUT_STD140) == 0) continue; // Not std140 layout. DE_ASSERT(refBlockNdx >= 0); if (cmpBlockNdx < 0) { // Not found, should it? if (isUsed) { log << TestLog::Message << "Error: Uniform block '" << instanceName << "' not found" << TestLog::EndMessage; isOk = false; } continue; // Skip block. } const BlockLayoutEntry& refBlockLayout = refLayout.blocks[refBlockNdx]; const BlockLayoutEntry& cmpBlockLayout = cmpLayout.blocks[cmpBlockNdx]; // \todo [2012-01-24 pyry] Verify that activeUniformIndices is correct. // \todo [2012-01-24 pyry] Verify all instances. if (refBlockLayout.activeUniformIndices.size() != cmpBlockLayout.activeUniformIndices.size()) { log << TestLog::Message << "Error: Number of active uniforms differ in block '" << instanceName << "' (expected " << refBlockLayout.activeUniformIndices.size() << ", got " << cmpBlockLayout.activeUniformIndices.size() << ")" << TestLog::EndMessage; isOk = false; } for (vector::const_iterator ndxIter = refBlockLayout.activeUniformIndices.begin(); ndxIter != refBlockLayout.activeUniformIndices.end(); ndxIter++) { const UniformLayoutEntry& refEntry = refLayout.uniforms[*ndxIter]; int cmpEntryNdx = cmpLayout.getUniformIndex(refEntry.name.c_str()); if (cmpEntryNdx < 0) { log << TestLog::Message << "Error: Uniform '" << refEntry.name << "' not found" << TestLog::EndMessage; isOk = false; continue; } const UniformLayoutEntry& cmpEntry = cmpLayout.uniforms[cmpEntryNdx]; if (refEntry.type != cmpEntry.type || refEntry.size != cmpEntry.size || refEntry.offset != cmpEntry.offset || refEntry.arrayStride != cmpEntry.arrayStride || refEntry.matrixStride != cmpEntry.matrixStride || refEntry.isRowMajor != cmpEntry.isRowMajor) { log << TestLog::Message << "Error: Layout mismatch in '" << refEntry.name << "':\n" << " expected: type = " << glu::getDataTypeName(refEntry.type) << ", size = " << refEntry.size << ", offset = " << refEntry.offset << ", array stride = "<< refEntry.arrayStride << ", matrix stride = " << refEntry.matrixStride << ", row major = " << (refEntry.isRowMajor ? "true" : "false") << "\n" << " got: type = " << glu::getDataTypeName(cmpEntry.type) << ", size = " << cmpEntry.size << ", offset = " << cmpEntry.offset << ", array stride = "<< cmpEntry.arrayStride << ", matrix stride = " << cmpEntry.matrixStride << ", row major = " << (cmpEntry.isRowMajor ? "true" : "false") << TestLog::EndMessage; isOk = false; } } } return isOk; } bool UniformBlockCase::compareSharedBlocks (const UniformLayout& refLayout, const UniformLayout& cmpLayout) const { TestLog& log = m_testCtx.getLog(); bool isOk = true; int numBlocks = m_interface.getNumUniformBlocks(); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const UniformBlock& block = m_interface.getUniformBlock(blockNdx); bool isArray = block.isArray(); std::string instanceName = string(block.getBlockName()) + (isArray ? "[0]" : ""); int refBlockNdx = refLayout.getBlockIndex(instanceName.c_str()); int cmpBlockNdx = cmpLayout.getBlockIndex(instanceName.c_str()); bool isUsed = (block.getFlags() & (DECLARE_VERTEX|DECLARE_FRAGMENT)) != 0; if ((block.getFlags() & LAYOUT_SHARED) == 0) continue; // Not shared layout. DE_ASSERT(refBlockNdx >= 0); if (cmpBlockNdx < 0) { // Not found, should it? if (isUsed) { log << TestLog::Message << "Error: Uniform block '" << instanceName << "' not found" << TestLog::EndMessage; isOk = false; } continue; // Skip block. } const BlockLayoutEntry& refBlockLayout = refLayout.blocks[refBlockNdx]; const BlockLayoutEntry& cmpBlockLayout = cmpLayout.blocks[cmpBlockNdx]; if (refBlockLayout.activeUniformIndices.size() != cmpBlockLayout.activeUniformIndices.size()) { log << TestLog::Message << "Error: Number of active uniforms differ in block '" << instanceName << "' (expected " << refBlockLayout.activeUniformIndices.size() << ", got " << cmpBlockLayout.activeUniformIndices.size() << ")" << TestLog::EndMessage; isOk = false; } for (vector::const_iterator ndxIter = refBlockLayout.activeUniformIndices.begin(); ndxIter != refBlockLayout.activeUniformIndices.end(); ndxIter++) { const UniformLayoutEntry& refEntry = refLayout.uniforms[*ndxIter]; int cmpEntryNdx = cmpLayout.getUniformIndex(refEntry.name.c_str()); if (cmpEntryNdx < 0) { log << TestLog::Message << "Error: Uniform '" << refEntry.name << "' not found" << TestLog::EndMessage; isOk = false; continue; } const UniformLayoutEntry& cmpEntry = cmpLayout.uniforms[cmpEntryNdx]; if (refEntry.type != cmpEntry.type || refEntry.size != cmpEntry.size || refEntry.isRowMajor != cmpEntry.isRowMajor) { log << TestLog::Message << "Error: Layout mismatch in '" << refEntry.name << "':\n" << " expected: type = " << glu::getDataTypeName(refEntry.type) << ", size = " << refEntry.size << ", row major = " << (refEntry.isRowMajor ? "true" : "false") << "\n" << " got: type = " << glu::getDataTypeName(cmpEntry.type) << ", size = " << cmpEntry.size << ", row major = " << (cmpEntry.isRowMajor ? "true" : "false") << TestLog::EndMessage; isOk = false; } } } return isOk; } bool UniformBlockCase::compareTypes (const UniformLayout& refLayout, const UniformLayout& cmpLayout) const { TestLog& log = m_testCtx.getLog(); bool isOk = true; int numBlocks = m_interface.getNumUniformBlocks(); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const UniformBlock& block = m_interface.getUniformBlock(blockNdx); bool isArray = block.isArray(); int numInstances = isArray ? block.getArraySize() : 1; for (int instanceNdx = 0; instanceNdx < numInstances; instanceNdx++) { std::ostringstream instanceName; instanceName << block.getBlockName(); if (isArray) instanceName << "[" << instanceNdx << "]"; int cmpBlockNdx = cmpLayout.getBlockIndex(instanceName.str().c_str()); if (cmpBlockNdx < 0) continue; const BlockLayoutEntry& cmpBlockLayout = cmpLayout.blocks[cmpBlockNdx]; for (vector::const_iterator ndxIter = cmpBlockLayout.activeUniformIndices.begin(); ndxIter != cmpBlockLayout.activeUniformIndices.end(); ndxIter++) { const UniformLayoutEntry& cmpEntry = cmpLayout.uniforms[*ndxIter]; int refEntryNdx = refLayout.getUniformIndex(cmpEntry.name.c_str()); if (refEntryNdx < 0) { log << TestLog::Message << "Error: Uniform '" << cmpEntry.name << "' not found in reference layout" << TestLog::EndMessage; isOk = false; continue; } const UniformLayoutEntry& refEntry = refLayout.uniforms[refEntryNdx]; // \todo [2012-11-26 pyry] Should we check other properties as well? if (refEntry.type != cmpEntry.type) { log << TestLog::Message << "Error: Uniform type mismatch in '" << refEntry.name << "':\n" << " expected: " << glu::getDataTypeName(refEntry.type) << "\n" << " got: " << glu::getDataTypeName(cmpEntry.type) << TestLog::EndMessage; isOk = false; } } } } return isOk; } bool UniformBlockCase::checkLayoutIndices (const UniformLayout& layout) const { TestLog& log = m_testCtx.getLog(); int numUniforms = (int)layout.uniforms.size(); int numBlocks = (int)layout.blocks.size(); bool isOk = true; // Check uniform block indices. for (int uniformNdx = 0; uniformNdx < numUniforms; uniformNdx++) { const UniformLayoutEntry& uniform = layout.uniforms[uniformNdx]; if (uniform.blockNdx < 0 || !deInBounds32(uniform.blockNdx, 0, numBlocks)) { log << TestLog::Message << "Error: Invalid block index in uniform '" << uniform.name << "'" << TestLog::EndMessage; isOk = false; } } // Check active uniforms. for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const BlockLayoutEntry& block = layout.blocks[blockNdx]; for (vector::const_iterator uniformIter = block.activeUniformIndices.begin(); uniformIter != block.activeUniformIndices.end(); uniformIter++) { if (!deInBounds32(*uniformIter, 0, numUniforms)) { log << TestLog::Message << "Error: Invalid active uniform index " << *uniformIter << " in block '" << block.name << "'" << TestLog::EndMessage; isOk = false; } } } return isOk; } bool UniformBlockCase::checkLayoutBounds (const UniformLayout& layout) const { TestLog& log = m_testCtx.getLog(); int numUniforms = (int)layout.uniforms.size(); bool isOk = true; for (int uniformNdx = 0; uniformNdx < numUniforms; uniformNdx++) { const UniformLayoutEntry& uniform = layout.uniforms[uniformNdx]; if (uniform.blockNdx < 0) continue; const BlockLayoutEntry& block = layout.blocks[uniform.blockNdx]; bool isMatrix = glu::isDataTypeMatrix(uniform.type); int numVecs = isMatrix ? (uniform.isRowMajor ? glu::getDataTypeMatrixNumRows(uniform.type) : glu::getDataTypeMatrixNumColumns(uniform.type)) : 1; int numComps = isMatrix ? (uniform.isRowMajor ? glu::getDataTypeMatrixNumColumns(uniform.type) : glu::getDataTypeMatrixNumRows(uniform.type)) : glu::getDataTypeScalarSize(uniform.type); int numElements = uniform.size; const int compSize = sizeof(deUint32); int vecSize = numComps*compSize; int minOffset = 0; int maxOffset = 0; // For negative strides. minOffset = de::min(minOffset, (numVecs-1)*uniform.matrixStride); minOffset = de::min(minOffset, (numElements-1)*uniform.arrayStride); minOffset = de::min(minOffset, (numElements-1)*uniform.arrayStride + (numVecs-1)*uniform.matrixStride); maxOffset = de::max(maxOffset, vecSize); maxOffset = de::max(maxOffset, (numVecs-1)*uniform.matrixStride + vecSize); maxOffset = de::max(maxOffset, (numElements-1)*uniform.arrayStride + vecSize); maxOffset = de::max(maxOffset, (numElements-1)*uniform.arrayStride + (numVecs-1)*uniform.matrixStride + vecSize); if (uniform.offset+minOffset < 0 || uniform.offset+maxOffset > block.size) { log << TestLog::Message << "Error: Uniform '" << uniform.name << "' out of block bounds" << TestLog::EndMessage; isOk = false; } } return isOk; } bool UniformBlockCase::checkIndexQueries (deUint32 program, const UniformLayout& layout) const { tcu::TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); bool allOk = true; // \note Spec mandates that uniform blocks are assigned consecutive locations from 0 // to ACTIVE_UNIFORM_BLOCKS. BlockLayoutEntries are stored in that order in UniformLayout. for (int blockNdx = 0; blockNdx < (int)layout.blocks.size(); blockNdx++) { const BlockLayoutEntry& block = layout.blocks[blockNdx]; const int queriedNdx = gl.getUniformBlockIndex(program, block.name.c_str()); if (queriedNdx != blockNdx) { log << TestLog::Message << "ERROR: glGetUniformBlockIndex(" << block.name << ") returned " << queriedNdx << ", expected " << blockNdx << "!" << TestLog::EndMessage; allOk = false; } GLU_EXPECT_NO_ERROR(gl.getError(), "glGetUniformBlockIndex()"); } return allOk; } bool UniformBlockCase::render (deUint32 program) const { tcu::TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); de::Random rnd (deStringHash(getName())); const tcu::RenderTarget& renderTarget = m_renderCtx.getRenderTarget(); const int viewportW = de::min(renderTarget.getWidth(), 128); const int viewportH = de::min(renderTarget.getHeight(), 128); const int viewportX = rnd.getInt(0, renderTarget.getWidth() - viewportW); const int viewportY = rnd.getInt(0, renderTarget.getHeight() - viewportH); gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); // Draw { const float position[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, +1.0f, 0.0f, 1.0f, +1.0f, -1.0f, 0.0f, 1.0f, +1.0f, +1.0f, 0.0f, 1.0f }; const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 }; gl.viewport(viewportX, viewportY, viewportW, viewportH); glu::VertexArrayBinding posArray = glu::va::Float("a_position", 4, 4, 0, &position[0]); glu::draw(m_renderCtx, program, 1, &posArray, glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); GLU_EXPECT_NO_ERROR(gl.getError(), "Draw failed"); } // Verify that all pixels are white. { tcu::Surface pixels (viewportW, viewportH); int numFailedPixels = 0; glu::readPixels(m_renderCtx, viewportX, viewportY, pixels.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "Reading pixels failed"); for (int y = 0; y < pixels.getHeight(); y++) { for (int x = 0; x < pixels.getWidth(); x++) { if (pixels.getPixel(x, y) != tcu::RGBA::white) numFailedPixels += 1; } } if (numFailedPixels > 0) { log << TestLog::Image("Image", "Rendered image", pixels); log << TestLog::Message << "Image comparison failed, got " << numFailedPixels << " non-white pixels" << TestLog::EndMessage; } return numFailedPixels == 0; } } } // gls } // deqp