// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // Copyright (C) 2008-2009 Benoit Jacob // Copyright (C) 2009 Kenneth Riddile // Copyright (C) 2010 Hauke Heibel // Copyright (C) 2010 Thomas Capricelli // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************************** *** Platform checks for aligned malloc functions *** *****************************************************************************/ #ifndef EIGEN_MEMORY_H #define EIGEN_MEMORY_H #ifndef EIGEN_MALLOC_ALREADY_ALIGNED // Try to determine automatically if malloc is already aligned. // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html // This is true at least since glibc 2.8. // This leaves the question how to detect 64-bit. According to this document, // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed // quite safe, at least within the context of glibc, to equate 64-bit with LP64. #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 #endif // FreeBSD 6 seems to have 16-byte aligned malloc // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 #endif #if defined(__APPLE__) \ || defined(_WIN64) \ || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED #define EIGEN_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_MALLOC_ALREADY_ALIGNED 0 #endif #endif // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554) // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first. // Currently, let's include it only on unix systems: #if defined(__unix__) || defined(__unix) #include #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0) #define EIGEN_HAS_POSIX_MEMALIGN 1 #endif #endif #ifndef EIGEN_HAS_POSIX_MEMALIGN #define EIGEN_HAS_POSIX_MEMALIGN 0 #endif #if defined(EIGEN_VECTORIZE_SSE) && !defined(EIGEN_ANDROID_POSIX_MEMALIGN_WR) #define EIGEN_HAS_MM_MALLOC 1 #else #define EIGEN_HAS_MM_MALLOC 0 #endif namespace Eigen { namespace internal { inline void throw_std_bad_alloc() { #ifdef EIGEN_EXCEPTIONS throw std::bad_alloc(); #else std::size_t huge = -1; new int[huge]; #endif } /***************************************************************************** *** Implementation of handmade aligned functions *** *****************************************************************************/ /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. */ inline void* handmade_aligned_malloc(std::size_t size) { void *original = std::malloc(size+16); if (original == 0) return 0; void *aligned = reinterpret_cast((reinterpret_cast(original) & ~(std::size_t(15))) + 16); *(reinterpret_cast(aligned) - 1) = original; return aligned; } /** \internal Frees memory allocated with handmade_aligned_malloc */ inline void handmade_aligned_free(void *ptr) { if (ptr) std::free(*(reinterpret_cast(ptr) - 1)); } /** \internal * \brief Reallocates aligned memory. * Since we know that our handmade version is based on std::realloc * we can use std::realloc to implement efficient reallocation. */ inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) { if (ptr == 0) return handmade_aligned_malloc(size); void *original = *(reinterpret_cast(ptr) - 1); std::ptrdiff_t previous_offset = static_cast(ptr)-static_cast(original); original = std::realloc(original,size+16); if (original == 0) return 0; void *aligned = reinterpret_cast((reinterpret_cast(original) & ~(std::size_t(15))) + 16); void *previous_aligned = static_cast(original)+previous_offset; if(aligned!=previous_aligned) std::memmove(aligned, previous_aligned, size); *(reinterpret_cast(aligned) - 1) = original; return aligned; } /***************************************************************************** *** Implementation of generic aligned realloc (when no realloc can be used)*** *****************************************************************************/ void* aligned_malloc(std::size_t size); void aligned_free(void *ptr); /** \internal * \brief Reallocates aligned memory. * Allows reallocation with aligned ptr types. This implementation will * always create a new memory chunk and copy the old data. */ inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size) { if (ptr==0) return aligned_malloc(size); if (size==0) { aligned_free(ptr); return 0; } void* newptr = aligned_malloc(size); if (newptr == 0) { #ifdef EIGEN_HAS_ERRNO errno = ENOMEM; // according to the standard #endif return 0; } if (ptr != 0) { std::memcpy(newptr, ptr, (std::min)(size,old_size)); aligned_free(ptr); } return newptr; } /***************************************************************************** *** Implementation of portable aligned versions of malloc/free/realloc *** *****************************************************************************/ #ifdef EIGEN_NO_MALLOC inline void check_that_malloc_is_allowed() { eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); } #elif defined EIGEN_RUNTIME_NO_MALLOC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) { static bool value = true; if (update == 1) value = new_value; return value; } inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } inline void check_that_malloc_is_allowed() { eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); } #else inline void check_that_malloc_is_allowed() {} #endif /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment. * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. */ inline void* aligned_malloc(size_t size) { check_that_malloc_is_allowed(); void *result; #if !EIGEN_ALIGN result = std::malloc(size); #elif EIGEN_MALLOC_ALREADY_ALIGNED result = std::malloc(size); #elif EIGEN_HAS_POSIX_MEMALIGN if(posix_memalign(&result, 16, size)) result = 0; #elif EIGEN_HAS_MM_MALLOC result = _mm_malloc(size, 16); #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) result = _aligned_malloc(size, 16); #else result = handmade_aligned_malloc(size); #endif if(!result && size) throw_std_bad_alloc(); return result; } /** \internal Frees memory allocated with aligned_malloc. */ inline void aligned_free(void *ptr) { #if !EIGEN_ALIGN std::free(ptr); #elif EIGEN_MALLOC_ALREADY_ALIGNED std::free(ptr); #elif EIGEN_HAS_POSIX_MEMALIGN std::free(ptr); #elif EIGEN_HAS_MM_MALLOC _mm_free(ptr); #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) _aligned_free(ptr); #else handmade_aligned_free(ptr); #endif } /** * \internal * \brief Reallocates an aligned block of memory. * \throws std::bad_alloc on allocation failure **/ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size) { EIGEN_UNUSED_VARIABLE(old_size); void *result; #if !EIGEN_ALIGN result = std::realloc(ptr,new_size); #elif EIGEN_MALLOC_ALREADY_ALIGNED result = std::realloc(ptr,new_size); #elif EIGEN_HAS_POSIX_MEMALIGN result = generic_aligned_realloc(ptr,new_size,old_size); #elif EIGEN_HAS_MM_MALLOC // The defined(_mm_free) is just here to verify that this MSVC version // implements _mm_malloc/_mm_free based on the corresponding _aligned_ // functions. This may not always be the case and we just try to be safe. #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free) result = _aligned_realloc(ptr,new_size,16); #else result = generic_aligned_realloc(ptr,new_size,old_size); #endif #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) result = _aligned_realloc(ptr,new_size,16); #else result = handmade_aligned_realloc(ptr,new_size,old_size); #endif if (!result && new_size) throw_std_bad_alloc(); return result; } /***************************************************************************** *** Implementation of conditionally aligned functions *** *****************************************************************************/ /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. */ template inline void* conditional_aligned_malloc(size_t size) { return aligned_malloc(size); } template<> inline void* conditional_aligned_malloc(size_t size) { check_that_malloc_is_allowed(); void *result = std::malloc(size); if(!result && size) throw_std_bad_alloc(); return result; } /** \internal Frees memory allocated with conditional_aligned_malloc */ template inline void conditional_aligned_free(void *ptr) { aligned_free(ptr); } template<> inline void conditional_aligned_free(void *ptr) { std::free(ptr); } template inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size) { return aligned_realloc(ptr, new_size, old_size); } template<> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t) { return std::realloc(ptr, new_size); } /***************************************************************************** *** Construction/destruction of array elements *** *****************************************************************************/ /** \internal Constructs the elements of an array. * The \a size parameter tells on how many objects to call the constructor of T. */ template inline T* construct_elements_of_array(T *ptr, size_t size) { for (size_t i=0; i < size; ++i) ::new (ptr + i) T; return ptr; } /** \internal Destructs the elements of an array. * The \a size parameters tells on how many objects to call the destructor of T. */ template inline void destruct_elements_of_array(T *ptr, size_t size) { // always destruct an array starting from the end. if(ptr) while(size) ptr[--size].~T(); } /***************************************************************************** *** Implementation of aligned new/delete-like functions *** *****************************************************************************/ template EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size) { if(size > size_t(-1) / sizeof(T)) throw_std_bad_alloc(); } /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. * The default constructor of T is called. */ template inline T* aligned_new(size_t size) { check_size_for_overflow(size); T *result = reinterpret_cast(aligned_malloc(sizeof(T)*size)); return construct_elements_of_array(result, size); } template inline T* conditional_aligned_new(size_t size) { check_size_for_overflow(size); T *result = reinterpret_cast(conditional_aligned_malloc(sizeof(T)*size)); return construct_elements_of_array(result, size); } /** \internal Deletes objects constructed with aligned_new * The \a size parameters tells on how many objects to call the destructor of T. */ template inline void aligned_delete(T *ptr, size_t size) { destruct_elements_of_array(ptr, size); aligned_free(ptr); } /** \internal Deletes objects constructed with conditional_aligned_new * The \a size parameters tells on how many objects to call the destructor of T. */ template inline void conditional_aligned_delete(T *ptr, size_t size) { destruct_elements_of_array(ptr, size); conditional_aligned_free(ptr); } template inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size) { check_size_for_overflow(new_size); check_size_for_overflow(old_size); if(new_size < old_size) destruct_elements_of_array(pts+new_size, old_size-new_size); T *result = reinterpret_cast(conditional_aligned_realloc(reinterpret_cast(pts), sizeof(T)*new_size, sizeof(T)*old_size)); if(new_size > old_size) construct_elements_of_array(result+old_size, new_size-old_size); return result; } template inline T* conditional_aligned_new_auto(size_t size) { if(size==0) return 0; // short-cut. Also fixes Bug 884 check_size_for_overflow(size); T *result = reinterpret_cast(conditional_aligned_malloc(sizeof(T)*size)); if(NumTraits::RequireInitialization) construct_elements_of_array(result, size); return result; } template inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size) { check_size_for_overflow(new_size); check_size_for_overflow(old_size); if(NumTraits::RequireInitialization && (new_size < old_size)) destruct_elements_of_array(pts+new_size, old_size-new_size); T *result = reinterpret_cast(conditional_aligned_realloc(reinterpret_cast(pts), sizeof(T)*new_size, sizeof(T)*old_size)); if(NumTraits::RequireInitialization && (new_size > old_size)) construct_elements_of_array(result+old_size, new_size-old_size); return result; } template inline void conditional_aligned_delete_auto(T *ptr, size_t size) { if(NumTraits::RequireInitialization) destruct_elements_of_array(ptr, size); conditional_aligned_free(ptr); } /****************************************************************************/ /** \internal Returns the index of the first element of the array that is well aligned for vectorization. * * \param array the address of the start of the array * \param size the size of the array * * \note If no element of the array is well aligned, the size of the array is returned. Typically, * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the * packet size for the given scalar type is 1, then everything is considered well-aligned. * * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for * example with Scalar=double on certain 32-bit platforms, see bug #79. * * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. */ template static inline Index first_aligned(const Scalar* array, Index size) { static const Index PacketSize = packet_traits::size; static const Index PacketAlignedMask = PacketSize-1; if(PacketSize==1) { // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements // of the array have the same alignment. return 0; } else if(size_t(array) & (sizeof(Scalar)-1)) { // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar. // Consequently, no element of the array is well aligned. return size; } else { return std::min( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask)) & PacketAlignedMask, size); } } /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size */ template inline static Index first_multiple(Index size, Index base) { return ((size+base-1)/base)*base; } // std::copy is much slower than memcpy, so let's introduce a smart_copy which // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. template struct smart_copy_helper; template void smart_copy(const T* start, const T* end, T* target) { smart_copy_helper::RequireInitialization>::run(start, end, target); } template struct smart_copy_helper { static inline void run(const T* start, const T* end, T* target) { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); } }; template struct smart_copy_helper { static inline void run(const T* start, const T* end, T* target) { std::copy(start, end, target); } }; /***************************************************************************** *** Implementation of runtime stack allocation (falling back to malloc) *** *****************************************************************************/ // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA // to the appropriate stack allocation function #ifndef EIGEN_ALLOCA #if (defined __linux__) #define EIGEN_ALLOCA alloca #elif defined(_MSC_VER) #define EIGEN_ALLOCA _alloca #endif #endif // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. template class aligned_stack_memory_handler { public: /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. * Note that \a ptr can be 0 regardless of the other parameters. * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits::RequireInitialization). * In this case, the buffer elements will also be destructed when this handler will be destructed. * Finally, if \a dealloc is true, then the pointer \a ptr is freed. **/ aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc) : m_ptr(ptr), m_size(size), m_deallocate(dealloc) { if(NumTraits::RequireInitialization && m_ptr) Eigen::internal::construct_elements_of_array(m_ptr, size); } ~aligned_stack_memory_handler() { if(NumTraits::RequireInitialization && m_ptr) Eigen::internal::destruct_elements_of_array(m_ptr, m_size); if(m_deallocate) Eigen::internal::aligned_free(m_ptr); } protected: T* m_ptr; size_t m_size; bool m_deallocate; }; } // end namespace internal /** \internal * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. * The allocated buffer is automatically deleted when exiting the scope of this declaration. * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. * Here is an example: * \code * { * ei_declare_aligned_stack_constructed_variable(float,data,size,0); * // use data[0] to data[size-1] * } * \endcode * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. */ #ifdef EIGEN_ALLOCA #if defined(__arm__) || defined(_WIN32) #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast((reinterpret_cast(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16) #else #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA #endif #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ Eigen::internal::check_size_for_overflow(SIZE); \ TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ : reinterpret_cast( \ (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) #else #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ Eigen::internal::check_size_for_overflow(SIZE); \ TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) #endif /***************************************************************************** *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** *****************************************************************************/ #if EIGEN_ALIGN #ifdef EIGEN_EXCEPTIONS #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ void* operator new(size_t size, const std::nothrow_t&) throw() { \ try { return Eigen::internal::conditional_aligned_malloc(size); } \ catch (...) { return 0; } \ } #else #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ void* operator new(size_t size, const std::nothrow_t&) throw() { \ return Eigen::internal::conditional_aligned_malloc(size); \ } #endif #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ void *operator new(size_t size) { \ return Eigen::internal::conditional_aligned_malloc(size); \ } \ void *operator new[](size_t size) { \ return Eigen::internal::conditional_aligned_malloc(size); \ } \ void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free(ptr); } \ void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free(ptr); } \ /* in-place new and delete. since (at least afaik) there is no actual */ \ /* memory allocated we can safely let the default implementation handle */ \ /* this particular case. */ \ static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \ static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \ void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \ void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \ /* nothrow-new (returns zero instead of std::bad_alloc) */ \ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ void operator delete(void *ptr, const std::nothrow_t&) throw() { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ typedef void eigen_aligned_operator_new_marker_type; #else #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) #endif #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))) /****************************************************************************/ /** \class aligned_allocator * \ingroup Core_Module * * \brief STL compatible allocator to use with with 16 byte aligned types * * Example: * \code * // Matrix4f requires 16 bytes alignment: * std::map< int, Matrix4f, std::less, * aligned_allocator > > my_map_mat4; * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: * std::map< int, Vector3f > my_map_vec3; * \endcode * * \sa \ref TopicStlContainers. */ template class aligned_allocator { public: typedef size_t size_type; typedef std::ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template struct rebind { typedef aligned_allocator other; }; pointer address( reference value ) const { return &value; } const_pointer address( const_reference value ) const { return &value; } aligned_allocator() { } aligned_allocator( const aligned_allocator& ) { } template aligned_allocator( const aligned_allocator& ) { } ~aligned_allocator() { } size_type max_size() const { return (std::numeric_limits::max)(); } pointer allocate( size_type num, const void* hint = 0 ) { EIGEN_UNUSED_VARIABLE(hint); internal::check_size_for_overflow(num); return static_cast( internal::aligned_malloc( num * sizeof(T) ) ); } void construct( pointer p, const T& value ) { ::new( p ) T( value ); } void destroy( pointer p ) { p->~T(); } void deallocate( pointer p, size_type /*num*/ ) { internal::aligned_free( p ); } bool operator!=(const aligned_allocator& ) const { return false; } bool operator==(const aligned_allocator& ) const { return true; } }; //---------- Cache sizes ---------- #if !defined(EIGEN_NO_CPUID) # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) ) # if defined(__PIC__) && defined(__i386__) // Case for x86 with PIC # define EIGEN_CPUID(abcd,func,id) \ __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); # elif defined(__PIC__) && defined(__x86_64__) // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. # define EIGEN_CPUID(abcd,func,id) \ __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); # else // Case for x86_64 or x86 w/o PIC # define EIGEN_CPUID(abcd,func,id) \ __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); # endif # elif defined(_MSC_VER) # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) ) # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) # endif # endif #endif namespace internal { #ifdef EIGEN_CPUID inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) { return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; } inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) { int abcd[4]; l1 = l2 = l3 = 0; int cache_id = 0; int cache_type = 0; do { abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; EIGEN_CPUID(abcd,0x4,cache_id); cache_type = (abcd[0] & 0x0F) >> 0; if(cache_type==1||cache_type==3) // data or unified cache { int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] int sets = (abcd[2]); // C[31:0] int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); switch(cache_level) { case 1: l1 = cache_size; break; case 2: l2 = cache_size; break; case 3: l3 = cache_size; break; default: break; } } cache_id++; } while(cache_type>0 && cache_id<16); } inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) { int abcd[4]; abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; l1 = l2 = l3 = 0; EIGEN_CPUID(abcd,0x00000002,0); unsigned char * bytes = reinterpret_cast(abcd)+2; bool check_for_p2_core2 = false; for(int i=0; i<14; ++i) { switch(bytes[i]) { case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) default: break; } } if(check_for_p2_core2 && l2 == l3) l3 = 0; l1 *= 1024; l2 *= 1024; l3 *= 1024; } inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) { if(max_std_funcs>=4) queryCacheSizes_intel_direct(l1,l2,l3); else queryCacheSizes_intel_codes(l1,l2,l3); } inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) { int abcd[4]; abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; EIGEN_CPUID(abcd,0x80000005,0); l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; EIGEN_CPUID(abcd,0x80000006,0); l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB } #endif /** \internal * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ inline void queryCacheSizes(int& l1, int& l2, int& l3) { #ifdef EIGEN_CPUID int abcd[4]; const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" // identify the CPU vendor EIGEN_CPUID(abcd,0x0,0); int max_std_funcs = abcd[1]; if(cpuid_is_vendor(abcd,GenuineIntel)) queryCacheSizes_intel(l1,l2,l3,max_std_funcs); else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) queryCacheSizes_amd(l1,l2,l3); else // by default let's use Intel's API queryCacheSizes_intel(l1,l2,l3,max_std_funcs); // here is the list of other vendors: // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") // ||cpuid_is_vendor(abcd,"CyrixInstead") // ||cpuid_is_vendor(abcd,"CentaurHauls") // ||cpuid_is_vendor(abcd,"GenuineTMx86") // ||cpuid_is_vendor(abcd,"TransmetaCPU") // ||cpuid_is_vendor(abcd,"RiseRiseRise") // ||cpuid_is_vendor(abcd,"Geode by NSC") // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") // ||cpuid_is_vendor(abcd,"NexGenDriven") #else l1 = l2 = l3 = -1; #endif } /** \internal * \returns the size in Bytes of the L1 data cache */ inline int queryL1CacheSize() { int l1(-1), l2, l3; queryCacheSizes(l1,l2,l3); return l1; } /** \internal * \returns the size in Bytes of the L2 or L3 cache if this later is present */ inline int queryTopLevelCacheSize() { int l1, l2(-1), l3(-1); queryCacheSizes(l1,l2,l3); return (std::max)(l2,l3); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_MEMORY_H