/* Reconstruct an ELF file by reading the segments out of remote memory.
Copyright (C) 2005-2011, 2014 Red Hat, Inc.
This file is part of elfutils.
This file is free software; you can redistribute it and/or modify
it under the terms of either
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at
your option) any later version
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option) any later version
or both in parallel, as here.
elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see . */
#include
#include "../libelf/libelfP.h"
#undef _
#include "libdwflP.h"
#include
#include
#include
#include
#include
/* Reconstruct an ELF file by reading the segments out of remote memory
based on the ELF file header at EHDR_VMA and the ELF program headers it
points to. If not null, *LOADBASEP is filled in with the difference
between the addresses from which the segments were read, and the
addresses the file headers put them at.
The function READ_MEMORY is called to copy at least MINREAD and at most
MAXREAD bytes from the remote memory at target address ADDRESS into the
local buffer at DATA; it should return -1 for errors (with code in
`errno'), 0 if it failed to read at least MINREAD bytes due to EOF, or
the number of bytes read if >= MINREAD. ARG is passed through.
PAGESIZE is the minimum page size and alignment used for the PT_LOAD
segments. */
Elf *
elf_from_remote_memory (GElf_Addr ehdr_vma,
GElf_Xword pagesize,
GElf_Addr *loadbasep,
ssize_t (*read_memory) (void *arg, void *data,
GElf_Addr address,
size_t minread,
size_t maxread),
void *arg)
{
/* First read in the file header and check its sanity. */
const size_t initial_bufsize = 256;
unsigned char *buffer = malloc (initial_bufsize);
if (buffer == NULL)
{
no_memory:
__libdwfl_seterrno (DWFL_E_NOMEM);
return NULL;
}
ssize_t nread = (*read_memory) (arg, buffer, ehdr_vma,
sizeof (Elf32_Ehdr), initial_bufsize);
if (nread <= 0)
{
read_error:
free (buffer);
__libdwfl_seterrno (nread < 0 ? DWFL_E_ERRNO : DWFL_E_TRUNCATED);
return NULL;
}
if (memcmp (buffer, ELFMAG, SELFMAG) != 0)
{
bad_elf:
free (buffer);
__libdwfl_seterrno (DWFL_E_BADELF);
return NULL;
}
/* Extract the information we need from the file header. */
union
{
Elf32_Ehdr e32;
Elf64_Ehdr e64;
} ehdr;
Elf_Data xlatefrom =
{
.d_type = ELF_T_EHDR,
.d_buf = buffer,
.d_version = EV_CURRENT,
};
Elf_Data xlateto =
{
.d_type = ELF_T_EHDR,
.d_buf = &ehdr,
.d_size = sizeof ehdr,
.d_version = EV_CURRENT,
};
GElf_Off phoff;
uint_fast16_t phnum;
uint_fast16_t phentsize;
GElf_Off shdrs_end;
switch (buffer[EI_CLASS])
{
case ELFCLASS32:
xlatefrom.d_size = sizeof (Elf32_Ehdr);
if (elf32_xlatetom (&xlateto, &xlatefrom, buffer[EI_DATA]) == NULL)
{
libelf_error:
__libdwfl_seterrno (DWFL_E_LIBELF);
return NULL;
}
phoff = ehdr.e32.e_phoff;
phnum = ehdr.e32.e_phnum;
phentsize = ehdr.e32.e_phentsize;
if (phentsize != sizeof (Elf32_Phdr) || phnum == 0)
goto bad_elf;
shdrs_end = ehdr.e32.e_shoff + ehdr.e32.e_shnum * ehdr.e32.e_shentsize;
break;
case ELFCLASS64:
xlatefrom.d_size = sizeof (Elf64_Ehdr);
if (elf64_xlatetom (&xlateto, &xlatefrom, buffer[EI_DATA]) == NULL)
goto libelf_error;
phoff = ehdr.e64.e_phoff;
phnum = ehdr.e64.e_phnum;
phentsize = ehdr.e64.e_phentsize;
if (phentsize != sizeof (Elf64_Phdr) || phnum == 0)
goto bad_elf;
shdrs_end = ehdr.e64.e_shoff + ehdr.e64.e_shnum * ehdr.e64.e_shentsize;
break;
default:
goto bad_elf;
}
/* The file header tells where to find the program headers.
These are what we use to actually choose what to read. */
xlatefrom.d_type = xlateto.d_type = ELF_T_PHDR;
xlatefrom.d_size = phnum * phentsize;
if ((size_t) nread >= phoff + phnum * phentsize)
/* We already have all the phdrs from the initial read. */
xlatefrom.d_buf = buffer + phoff;
else
{
/* Read in the program headers. */
if (initial_bufsize < phnum * phentsize)
{
unsigned char *newbuf = realloc (buffer, phnum * phentsize);
if (newbuf == NULL)
{
free (buffer);
goto no_memory;
}
buffer = newbuf;
}
nread = (*read_memory) (arg, buffer, ehdr_vma + phoff,
phnum * phentsize, phnum * phentsize);
if (nread <= 0)
goto read_error;
xlatefrom.d_buf = buffer;
}
union
{
Elf32_Phdr p32[phnum];
Elf64_Phdr p64[phnum];
} phdrs;
xlateto.d_buf = &phdrs;
xlateto.d_size = sizeof phdrs;
/* Scan for PT_LOAD segments to find the total size of the file image. */
size_t contents_size = 0;
GElf_Off segments_end = 0;
GElf_Off segments_end_mem = 0;
GElf_Addr loadbase = ehdr_vma;
bool found_base = false;
switch (ehdr.e32.e_ident[EI_CLASS])
{
/* Sanity checks segments and calculates segment_end,
segments_end, segments_end_mem and loadbase (if not
found_base yet). Returns true if sanity checking failed,
false otherwise. */
inline bool handle_segment (GElf_Addr vaddr, GElf_Off offset,
GElf_Xword filesz, GElf_Xword memsz)
{
/* Sanity check the segment load aligns with the pagesize. */
if (((vaddr - offset) & (pagesize - 1)) != 0)
return true;
GElf_Off segment_end = ((offset + filesz + pagesize - 1)
& -pagesize);
if (segment_end > (GElf_Off) contents_size)
contents_size = segment_end;
if (!found_base && (offset & -pagesize) == 0)
{
loadbase = ehdr_vma - (vaddr & -pagesize);
found_base = true;
}
segments_end = offset + filesz;
segments_end_mem = offset + memsz;
return false;
}
case ELFCLASS32:
if (elf32_xlatetom (&xlateto, &xlatefrom,
ehdr.e32.e_ident[EI_DATA]) == NULL)
goto libelf_error;
for (uint_fast16_t i = 0; i < phnum; ++i)
if (phdrs.p32[i].p_type == PT_LOAD)
if (handle_segment (phdrs.p32[i].p_vaddr, phdrs.p32[i].p_offset,
phdrs.p32[i].p_filesz, phdrs.p32[i].p_memsz))
goto bad_elf;
break;
case ELFCLASS64:
if (elf64_xlatetom (&xlateto, &xlatefrom,
ehdr.e64.e_ident[EI_DATA]) == NULL)
goto libelf_error;
for (uint_fast16_t i = 0; i < phnum; ++i)
if (phdrs.p64[i].p_type == PT_LOAD)
if (handle_segment (phdrs.p64[i].p_vaddr, phdrs.p64[i].p_offset,
phdrs.p64[i].p_filesz, phdrs.p64[i].p_memsz))
goto bad_elf;
break;
default:
abort ();
break;
}
/* Trim the last segment so we don't bother with zeros in the last page
that are off the end of the file. However, if the extra bit in that
page includes the section headers and the memory isn't extended (which
might indicate it will have been reused otherwise), keep them. */
if ((GElf_Off) contents_size > segments_end
&& (GElf_Off) contents_size >= shdrs_end
&& segments_end == segments_end_mem)
{
contents_size = segments_end;
if ((GElf_Off) contents_size < shdrs_end)
contents_size = shdrs_end;
}
else
contents_size = segments_end;
free (buffer);
/* Now we know the size of the whole image we want read in. */
buffer = calloc (1, contents_size);
if (buffer == NULL)
goto no_memory;
switch (ehdr.e32.e_ident[EI_CLASS])
{
/* Reads the given segment. Returns true if reading fails,
false otherwise. */
inline bool handle_segment (GElf_Addr vaddr, GElf_Off offset,
GElf_Xword filesz)
{
GElf_Off start = offset & -pagesize;
GElf_Off end = (offset + filesz + pagesize - 1) & -pagesize;
if (end > (GElf_Off) contents_size)
end = contents_size;
nread = (*read_memory) (arg, buffer + start,
(loadbase + vaddr) & -pagesize,
end - start, end - start);
return nread <= 0;
}
case ELFCLASS32:
for (uint_fast16_t i = 0; i < phnum; ++i)
if (phdrs.p32[i].p_type == PT_LOAD)
if (handle_segment (phdrs.p32[i].p_vaddr, phdrs.p32[i].p_offset,
phdrs.p32[i].p_filesz))
goto read_error;
/* If the segments visible in memory didn't include the section
headers, then clear them from the file header. */
if (contents_size < shdrs_end)
{
ehdr.e32.e_shoff = 0;
ehdr.e32.e_shnum = 0;
ehdr.e32.e_shstrndx = 0;
}
/* This will normally have been in the first PT_LOAD segment. But it
conceivably could be missing, and we might have just changed it. */
xlatefrom.d_type = xlateto.d_type = ELF_T_EHDR;
xlatefrom.d_size = xlateto.d_size = sizeof ehdr.e32;
xlatefrom.d_buf = &ehdr.e32;
xlateto.d_buf = buffer;
if (elf32_xlatetof (&xlateto, &xlatefrom,
ehdr.e32.e_ident[EI_DATA]) == NULL)
goto libelf_error;
break;
case ELFCLASS64:
for (uint_fast16_t i = 0; i < phnum; ++i)
if (phdrs.p64[i].p_type == PT_LOAD)
if (handle_segment (phdrs.p64[i].p_vaddr, phdrs.p64[i].p_offset,
phdrs.p64[i].p_filesz))
goto read_error;
/* If the segments visible in memory didn't include the section
headers, then clear them from the file header. */
if (contents_size < shdrs_end)
{
ehdr.e64.e_shoff = 0;
ehdr.e64.e_shnum = 0;
ehdr.e64.e_shstrndx = 0;
}
/* This will normally have been in the first PT_LOAD segment. But it
conceivably could be missing, and we might have just changed it. */
xlatefrom.d_type = xlateto.d_type = ELF_T_EHDR;
xlatefrom.d_size = xlateto.d_size = sizeof ehdr.e64;
xlatefrom.d_buf = &ehdr.e64;
xlateto.d_buf = buffer;
if (elf64_xlatetof (&xlateto, &xlatefrom,
ehdr.e64.e_ident[EI_DATA]) == NULL)
goto libelf_error;
break;
default:
abort ();
break;
}
/* Now we have the image. Open libelf on it. */
Elf *elf = elf_memory ((char *) buffer, contents_size);
if (elf == NULL)
{
free (buffer);
goto libelf_error;
}
elf->flags |= ELF_F_MALLOCED;
if (loadbasep != NULL)
*loadbasep = loadbase;
return elf;
}