/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" /****************************************************************************************\ Base Image Filter \****************************************************************************************/ static void default_x_filter_func( const uchar*, uchar*, void* ) { } static void default_y_filter_func( uchar**, uchar*, int, int, void* ) { } CvBaseImageFilter::CvBaseImageFilter() { min_depth = CV_8U; buffer = 0; rows = 0; max_width = 0; x_func = default_x_filter_func; y_func = default_y_filter_func; } CvBaseImageFilter::CvBaseImageFilter( int _max_width, int _src_type, int _dst_type, bool _is_separable, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { min_depth = CV_8U; buffer = 0; rows = 0; max_width = 0; x_func = default_x_filter_func; y_func = default_y_filter_func; init( _max_width, _src_type, _dst_type, _is_separable, _ksize, _anchor, _border_mode, _border_value ); } void CvBaseImageFilter::clear() { cvFree( &buffer ); rows = 0; } CvBaseImageFilter::~CvBaseImageFilter() { clear(); } void CvBaseImageFilter::get_work_params() { int min_rows = max_ky*2 + 3, rows = MAX(min_rows,10), row_sz; int width = max_width, trow_sz = 0; if( is_separable ) { int max_depth = MAX(CV_MAT_DEPTH(src_type), CV_MAT_DEPTH(dst_type)); int max_cn = MAX(CV_MAT_CN(src_type), CV_MAT_CN(dst_type)); max_depth = MAX( max_depth, min_depth ); work_type = CV_MAKETYPE( max_depth, max_cn ); trow_sz = cvAlign( (max_width + ksize.width - 1)*CV_ELEM_SIZE(src_type), ALIGN ); } else { work_type = src_type; width += ksize.width - 1; } row_sz = cvAlign( width*CV_ELEM_SIZE(work_type), ALIGN ); buf_size = rows*row_sz; buf_size = MIN( buf_size, 1 << 16 ); buf_size = MAX( buf_size, min_rows*row_sz ); max_rows = (buf_size/row_sz)*3 + max_ky*2 + 8; buf_size += trow_sz; } void CvBaseImageFilter::init( int _max_width, int _src_type, int _dst_type, bool _is_separable, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CV_FUNCNAME( "CvBaseImageFilter::init" ); __BEGIN__; int total_buf_sz, src_pix_sz, row_tab_sz, bsz; uchar* ptr; if( !(buffer && _max_width <= max_width && _src_type == src_type && _dst_type == dst_type && _is_separable == is_separable && _ksize.width == ksize.width && _ksize.height == ksize.height && _anchor.x == anchor.x && _anchor.y == anchor.y) ) clear(); is_separable = _is_separable != 0; max_width = _max_width; //MAX(_max_width,_ksize.width); src_type = CV_MAT_TYPE(_src_type); dst_type = CV_MAT_TYPE(_dst_type); ksize = _ksize; anchor = _anchor; if( anchor.x == -1 ) anchor.x = ksize.width / 2; if( anchor.y == -1 ) anchor.y = ksize.height / 2; max_ky = MAX( anchor.y, ksize.height - anchor.y - 1 ); border_mode = _border_mode; border_value = _border_value; if( ksize.width <= 0 || ksize.height <= 0 || (unsigned)anchor.x >= (unsigned)ksize.width || (unsigned)anchor.y >= (unsigned)ksize.height ) CV_ERROR( CV_StsOutOfRange, "invalid kernel size and/or anchor position" ); if( border_mode != IPL_BORDER_CONSTANT && border_mode != IPL_BORDER_REPLICATE && border_mode != IPL_BORDER_REFLECT && border_mode != IPL_BORDER_REFLECT_101 ) CV_ERROR( CV_StsBadArg, "Invalid/unsupported border mode" ); get_work_params(); prev_width = 0; prev_x_range = cvSlice(0,0); buf_size = cvAlign( buf_size, ALIGN ); src_pix_sz = CV_ELEM_SIZE(src_type); border_tab_sz1 = anchor.x*src_pix_sz; border_tab_sz = (ksize.width-1)*src_pix_sz; bsz = cvAlign( border_tab_sz*sizeof(int), ALIGN ); assert( max_rows > max_ky*2 ); row_tab_sz = cvAlign( max_rows*sizeof(uchar*), ALIGN ); total_buf_sz = buf_size + row_tab_sz + bsz; CV_CALL( ptr = buffer = (uchar*)cvAlloc( total_buf_sz )); rows = (uchar**)ptr; ptr += row_tab_sz; border_tab = (int*)ptr; ptr += bsz; buf_start = ptr; const_row = 0; if( border_mode == IPL_BORDER_CONSTANT ) cvScalarToRawData( &border_value, border_tab, src_type, 0 ); __END__; } void CvBaseImageFilter::start_process( CvSlice x_range, int width ) { int mode = border_mode; int pix_sz = CV_ELEM_SIZE(src_type), work_pix_sz = CV_ELEM_SIZE(work_type); int bsz = buf_size, bw = x_range.end_index - x_range.start_index, bw1 = bw + ksize.width - 1; int tr_step = cvAlign(bw1*pix_sz, ALIGN ); int i, j, k, ofs; if( x_range.start_index == prev_x_range.start_index && x_range.end_index == prev_x_range.end_index && width == prev_width ) return; prev_x_range = x_range; prev_width = width; if( !is_separable ) bw = bw1; else bsz -= tr_step; buf_step = cvAlign(bw*work_pix_sz, ALIGN); if( mode == IPL_BORDER_CONSTANT ) bsz -= buf_step; buf_max_count = bsz/buf_step; buf_max_count = MIN( buf_max_count, max_rows - max_ky*2 ); buf_end = buf_start + buf_max_count*buf_step; if( mode == IPL_BORDER_CONSTANT ) { int i, tab_len = ksize.width*pix_sz; uchar* bt = (uchar*)border_tab; uchar* trow = buf_end; const_row = buf_end + (is_separable ? 1 : 0)*tr_step; for( i = pix_sz; i < tab_len; i++ ) bt[i] = bt[i - pix_sz]; for( i = 0; i < pix_sz; i++ ) trow[i] = bt[i]; for( i = pix_sz; i < tr_step; i++ ) trow[i] = trow[i - pix_sz]; if( is_separable ) x_func( trow, const_row, this ); return; } if( x_range.end_index - x_range.start_index <= 1 ) mode = IPL_BORDER_REPLICATE; width = (width - 1)*pix_sz; ofs = (anchor.x-x_range.start_index)*pix_sz; for( k = 0; k < 2; k++ ) { int idx, delta; int i1, i2, di; if( k == 0 ) { idx = (x_range.start_index - 1)*pix_sz; delta = di = -pix_sz; i1 = border_tab_sz1 - pix_sz; i2 = -pix_sz; } else { idx = x_range.end_index*pix_sz; delta = di = pix_sz; i1 = border_tab_sz1; i2 = border_tab_sz; } if( (unsigned)idx > (unsigned)width ) { int shift = mode == IPL_BORDER_REFLECT_101 ? pix_sz : 0; idx = k == 0 ? shift : width - shift; delta = -delta; } for( i = i1; i != i2; i += di ) { for( j = 0; j < pix_sz; j++ ) border_tab[i + j] = idx + ofs + j; if( mode != IPL_BORDER_REPLICATE ) { if( (delta > 0 && idx == width) || (delta < 0 && idx == 0) ) { if( mode == IPL_BORDER_REFLECT_101 ) idx -= delta*2; delta = -delta; } else idx += delta; } } } } void CvBaseImageFilter::make_y_border( int row_count, int top_rows, int bottom_rows ) { int i; if( border_mode == IPL_BORDER_CONSTANT || border_mode == IPL_BORDER_REPLICATE ) { uchar* row1 = border_mode == IPL_BORDER_CONSTANT ? const_row : rows[max_ky]; for( i = 0; i < top_rows && rows[i] == 0; i++ ) rows[i] = row1; row1 = border_mode == IPL_BORDER_CONSTANT ? const_row : rows[row_count-1]; for( i = 0; i < bottom_rows; i++ ) rows[i + row_count] = row1; } else { int j, dj = 1, shift = border_mode == IPL_BORDER_REFLECT_101; for( i = top_rows-1, j = top_rows+shift; i >= 0; i-- ) { if( rows[i] == 0 ) rows[i] = rows[j]; j += dj; if( dj > 0 && j >= row_count ) { if( !bottom_rows ) break; j -= 1 + shift; dj = -dj; } } for( i = 0, j = row_count-1-shift; i < bottom_rows; i++, j-- ) rows[i + row_count] = rows[j]; } } int CvBaseImageFilter::fill_cyclic_buffer( const uchar* src, int src_step, int y0, int y1, int y2 ) { int i, y = y0, bsz1 = border_tab_sz1, bsz = border_tab_sz; int pix_size = CV_ELEM_SIZE(src_type); int width = prev_x_range.end_index - prev_x_range.start_index, width_n = width*pix_size; bool can_use_src_as_trow = false; //is_separable && width >= ksize.width; // fill the cyclic buffer for( ; buf_count < buf_max_count && y < y2; buf_count++, y++, src += src_step ) { uchar* trow = is_separable ? buf_end : buf_tail; uchar* bptr = can_use_src_as_trow && y1 < y && y+1 < y2 ? (uchar*)(src - bsz1) : trow; if( bptr != trow ) { for( i = 0; i < bsz1; i++ ) trow[i] = bptr[i]; for( ; i < bsz; i++ ) trow[i] = bptr[i + width_n]; } else if( !(((size_t)(bptr + bsz1)|(size_t)src|width_n) & (sizeof(int)-1)) ) for( i = 0; i < width_n; i += sizeof(int) ) *(int*)(bptr + i + bsz1) = *(int*)(src + i); else for( i = 0; i < width_n; i++ ) bptr[i + bsz1] = src[i]; if( border_mode != IPL_BORDER_CONSTANT ) { for( i = 0; i < bsz1; i++ ) { int j = border_tab[i]; bptr[i] = bptr[j]; } for( ; i < bsz; i++ ) { int j = border_tab[i]; bptr[i + width_n] = bptr[j]; } } else { const uchar *bt = (uchar*)border_tab; for( i = 0; i < bsz1; i++ ) bptr[i] = bt[i]; for( ; i < bsz; i++ ) bptr[i + width_n] = bt[i]; } if( is_separable ) { x_func( bptr, buf_tail, this ); if( bptr != trow ) { for( i = 0; i < bsz1; i++ ) bptr[i] = trow[i]; for( ; i < bsz; i++ ) bptr[i + width_n] = trow[i]; } } buf_tail += buf_step; if( buf_tail >= buf_end ) buf_tail = buf_start; } return y - y0; } int CvBaseImageFilter::process( const CvMat* src, CvMat* dst, CvRect src_roi, CvPoint dst_origin, int flags ) { int rows_processed = 0; /* check_parameters initialize_horizontal_border_reloc_tab_if_not_initialized_yet for_each_source_row: src starts from src_roi.y, buf starts with the first available row 1) if separable, 1a.1) copy source row to temporary buffer, form a border using border reloc tab. 1a.2) apply row-wise filter (symmetric, asymmetric or generic) else 1b.1) copy source row to the buffer, form a border 2) if the buffer is full, or it is the last source row: 2.1) if stage != middle, form the pointers to other "virtual" rows. if separable 2a.2) apply column-wise filter, store the results. else 2b.2) form a sparse (offset,weight) tab 2b.3) apply generic non-separable filter, store the results 3) update row pointers etc. */ CV_FUNCNAME( "CvBaseImageFilter::process" ); __BEGIN__; int i, width, _src_y1, _src_y2; int src_x, src_y, src_y1, src_y2, dst_y; int pix_size = CV_ELEM_SIZE(src_type); uchar *sptr = 0, *dptr; int phase = flags & (CV_START|CV_END|CV_MIDDLE); bool isolated_roi = (flags & CV_ISOLATED_ROI) != 0; if( !CV_IS_MAT(src) ) CV_ERROR( CV_StsBadArg, "" ); if( CV_MAT_TYPE(src->type) != src_type ) CV_ERROR( CV_StsUnmatchedFormats, "" ); width = src->cols; if( src_roi.width == -1 && src_roi.x == 0 ) src_roi.width = width; if( src_roi.height == -1 && src_roi.y == 0 ) { src_roi.y = 0; src_roi.height = src->rows; } if( src_roi.width > max_width || src_roi.x < 0 || src_roi.width < 0 || src_roi.y < 0 || src_roi.height < 0 || src_roi.x + src_roi.width > width || src_roi.y + src_roi.height > src->rows ) CV_ERROR( CV_StsOutOfRange, "Too large source image or its ROI" ); src_x = src_roi.x; _src_y1 = 0; _src_y2 = src->rows; if( isolated_roi ) { src_roi.x = 0; width = src_roi.width; _src_y1 = src_roi.y; _src_y2 = src_roi.y + src_roi.height; } if( !CV_IS_MAT(dst) ) CV_ERROR( CV_StsBadArg, "" ); if( CV_MAT_TYPE(dst->type) != dst_type ) CV_ERROR( CV_StsUnmatchedFormats, "" ); if( dst_origin.x < 0 || dst_origin.y < 0 ) CV_ERROR( CV_StsOutOfRange, "Incorrect destination ROI origin" ); if( phase == CV_WHOLE ) phase = CV_START | CV_END; phase &= CV_START | CV_END | CV_MIDDLE; // initialize horizontal border relocation tab if it is not initialized yet if( phase & CV_START ) start_process( cvSlice(src_roi.x, src_roi.x + src_roi.width), width ); else if( prev_width != width || prev_x_range.start_index != src_roi.x || prev_x_range.end_index != src_roi.x + src_roi.width ) CV_ERROR( CV_StsBadArg, "In a middle or at the end the horizontal placement of the stripe can not be changed" ); dst_y = dst_origin.y; src_y1 = src_roi.y; src_y2 = src_roi.y + src_roi.height; if( phase & CV_START ) { for( i = 0; i <= max_ky*2; i++ ) rows[i] = 0; src_y1 -= max_ky; top_rows = bottom_rows = 0; if( src_y1 < _src_y1 ) { top_rows = _src_y1 - src_y1; src_y1 = _src_y1; } buf_head = buf_tail = buf_start; buf_count = 0; } if( phase & CV_END ) { src_y2 += max_ky; if( src_y2 > _src_y2 ) { bottom_rows = src_y2 - _src_y2; src_y2 = _src_y2; } } dptr = dst->data.ptr + dst_origin.y*dst->step + dst_origin.x*CV_ELEM_SIZE(dst_type); sptr = src->data.ptr + src_y1*src->step + src_x*pix_size; for( src_y = src_y1; src_y < src_y2; ) { uchar* bptr; int row_count, delta; delta = fill_cyclic_buffer( sptr, src->step, src_y, src_y1, src_y2 ); src_y += delta; sptr += src->step*delta; // initialize the cyclic buffer row pointers bptr = buf_head; for( i = 0; i < buf_count; i++ ) { rows[i+top_rows] = bptr; bptr += buf_step; if( bptr >= buf_end ) bptr = buf_start; } row_count = top_rows + buf_count; if( !rows[0] || ((phase & CV_END) && src_y == src_y2) ) { int br = (phase & CV_END) && src_y == src_y2 ? bottom_rows : 0; make_y_border( row_count, top_rows, br ); row_count += br; } if( rows[0] && row_count > max_ky*2 ) { int count = row_count - max_ky*2; if( dst_y + count > dst->rows ) CV_ERROR( CV_StsOutOfRange, "The destination image can not fit the result" ); assert( count >= 0 ); y_func( rows + max_ky - anchor.y, dptr, dst->step, count, this ); row_count -= count; dst_y += count; dptr += dst->step*count; for( bptr = row_count > 0 ?rows[count] : 0; buf_head != bptr && buf_count > 0; buf_count-- ) { buf_head += buf_step; if( buf_head >= buf_end ) buf_head = buf_start; } rows_processed += count; top_rows = MAX(top_rows - count, 0); } } __END__; return rows_processed; } /****************************************************************************************\ Separable Linear Filter \****************************************************************************************/ static void icvFilterRowSymm_8u32s( const uchar* src, int* dst, void* params ); static void icvFilterColSymm_32s8u( const int** src, uchar* dst, int dst_step, int count, void* params ); static void icvFilterColSymm_32s16s( const int** src, short* dst, int dst_step, int count, void* params ); static void icvFilterRowSymm_8u32f( const uchar* src, float* dst, void* params ); static void icvFilterRow_8u32f( const uchar* src, float* dst, void* params ); static void icvFilterRowSymm_16s32f( const short* src, float* dst, void* params ); static void icvFilterRow_16s32f( const short* src, float* dst, void* params ); static void icvFilterRowSymm_16u32f( const ushort* src, float* dst, void* params ); static void icvFilterRow_16u32f( const ushort* src, float* dst, void* params ); static void icvFilterRowSymm_32f( const float* src, float* dst, void* params ); static void icvFilterRow_32f( const float* src, float* dst, void* params ); static void icvFilterColSymm_32f8u( const float** src, uchar* dst, int dst_step, int count, void* params ); static void icvFilterCol_32f8u( const float** src, uchar* dst, int dst_step, int count, void* params ); static void icvFilterColSymm_32f16s( const float** src, short* dst, int dst_step, int count, void* params ); static void icvFilterCol_32f16s( const float** src, short* dst, int dst_step, int count, void* params ); static void icvFilterColSymm_32f16u( const float** src, ushort* dst, int dst_step, int count, void* params ); static void icvFilterCol_32f16u( const float** src, ushort* dst, int dst_step, int count, void* params ); static void icvFilterColSymm_32f( const float** src, float* dst, int dst_step, int count, void* params ); static void icvFilterCol_32f( const float** src, float* dst, int dst_step, int count, void* params ); CvSepFilter::CvSepFilter() { min_depth = CV_32F; kx = ky = 0; kx_flags = ky_flags = 0; } CvSepFilter::CvSepFilter( int _max_width, int _src_type, int _dst_type, const CvMat* _kx, const CvMat* _ky, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { min_depth = CV_32F; kx = ky = 0; init( _max_width, _src_type, _dst_type, _kx, _ky, _anchor, _border_mode, _border_value ); } void CvSepFilter::clear() { cvReleaseMat( &kx ); cvReleaseMat( &ky ); CvBaseImageFilter::clear(); } CvSepFilter::~CvSepFilter() { clear(); } #undef FILTER_BITS #define FILTER_BITS 8 void CvSepFilter::init( int _max_width, int _src_type, int _dst_type, const CvMat* _kx, const CvMat* _ky, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CV_FUNCNAME( "CvSepFilter::init" ); __BEGIN__; CvSize _ksize; int filter_type; int i, xsz, ysz; int convert_filters = 0; double xsum = 0, ysum = 0; const float eps = FLT_EPSILON*100.f; if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) || (_kx->cols != 1 && _kx->rows != 1) || (_ky->cols != 1 && _ky->rows != 1) || CV_MAT_CN(_kx->type) != 1 || CV_MAT_CN(_ky->type) != 1 || !CV_ARE_TYPES_EQ(_kx,_ky) ) CV_ERROR( CV_StsBadArg, "Both kernels must be valid 1d single-channel vectors of the same types" ); if( CV_MAT_CN(_src_type) != CV_MAT_CN(_dst_type) ) CV_ERROR( CV_StsUnmatchedFormats, "Input and output must have the same number of channels" ); filter_type = MAX( CV_32F, CV_MAT_DEPTH(_kx->type) ); _ksize.width = _kx->rows + _kx->cols - 1; _ksize.height = _ky->rows + _ky->cols - 1; CV_CALL( CvBaseImageFilter::init( _max_width, _src_type, _dst_type, 1, _ksize, _anchor, _border_mode, _border_value )); if( !(kx && CV_ARE_SIZES_EQ(kx,_kx)) ) { cvReleaseMat( &kx ); CV_CALL( kx = cvCreateMat( _kx->rows, _kx->cols, filter_type )); } if( !(ky && CV_ARE_SIZES_EQ(ky,_ky)) ) { cvReleaseMat( &ky ); CV_CALL( ky = cvCreateMat( _ky->rows, _ky->cols, filter_type )); } CV_CALL( cvConvert( _kx, kx )); CV_CALL( cvConvert( _ky, ky )); xsz = kx->rows + kx->cols - 1; ysz = ky->rows + ky->cols - 1; kx_flags = ky_flags = ASYMMETRICAL + SYMMETRICAL + POSITIVE + SUM_TO_1 + INTEGER; if( !(xsz & 1) ) kx_flags &= ~(ASYMMETRICAL + SYMMETRICAL); if( !(ysz & 1) ) ky_flags &= ~(ASYMMETRICAL + SYMMETRICAL); for( i = 0; i < xsz; i++ ) { float v = kx->data.fl[i]; xsum += v; if( v < 0 ) kx_flags &= ~POSITIVE; if( fabs(v - cvRound(v)) > eps ) kx_flags &= ~INTEGER; if( fabs(v - kx->data.fl[xsz - i - 1]) > eps ) kx_flags &= ~SYMMETRICAL; if( fabs(v + kx->data.fl[xsz - i - 1]) > eps ) kx_flags &= ~ASYMMETRICAL; } if( fabs(xsum - 1.) > eps ) kx_flags &= ~SUM_TO_1; for( i = 0; i < ysz; i++ ) { float v = ky->data.fl[i]; ysum += v; if( v < 0 ) ky_flags &= ~POSITIVE; if( fabs(v - cvRound(v)) > eps ) ky_flags &= ~INTEGER; if( fabs(v - ky->data.fl[ysz - i - 1]) > eps ) ky_flags &= ~SYMMETRICAL; if( fabs(v + ky->data.fl[ysz - i - 1]) > eps ) ky_flags &= ~ASYMMETRICAL; } if( fabs(ysum - 1.) > eps ) ky_flags &= ~SUM_TO_1; x_func = 0; y_func = 0; if( CV_MAT_DEPTH(src_type) == CV_8U ) { if( CV_MAT_DEPTH(dst_type) == CV_8U && ((kx_flags&ky_flags) & (SYMMETRICAL + POSITIVE + SUM_TO_1)) == SYMMETRICAL + POSITIVE + SUM_TO_1 ) { x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32s; y_func = (CvColumnFilterFunc)icvFilterColSymm_32s8u; kx_flags &= ~INTEGER; ky_flags &= ~INTEGER; convert_filters = 1; } else if( CV_MAT_DEPTH(dst_type) == CV_16S && (kx_flags & (SYMMETRICAL + ASYMMETRICAL)) && (kx_flags & INTEGER) && (ky_flags & (SYMMETRICAL + ASYMMETRICAL)) && (ky_flags & INTEGER) ) { x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32s; y_func = (CvColumnFilterFunc)icvFilterColSymm_32s16s; convert_filters = 1; } else { if( CV_MAT_DEPTH(dst_type) > CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "8u->64f separable filtering is not supported" ); if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) ) x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32f; else x_func = (CvRowFilterFunc)icvFilterRow_8u32f; } } else if( CV_MAT_DEPTH(src_type) == CV_16U ) { if( CV_MAT_DEPTH(dst_type) > CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "16u->64f separable filtering is not supported" ); if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) ) x_func = (CvRowFilterFunc)icvFilterRowSymm_16u32f; else x_func = (CvRowFilterFunc)icvFilterRow_16u32f; } else if( CV_MAT_DEPTH(src_type) == CV_16S ) { if( CV_MAT_DEPTH(dst_type) > CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "16s->64f separable filtering is not supported" ); if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) ) x_func = (CvRowFilterFunc)icvFilterRowSymm_16s32f; else x_func = (CvRowFilterFunc)icvFilterRow_16s32f; } else if( CV_MAT_DEPTH(src_type) == CV_32F ) { if( CV_MAT_DEPTH(dst_type) != CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "When the input has 32f data type, the output must also have 32f type" ); if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) ) x_func = (CvRowFilterFunc)icvFilterRowSymm_32f; else x_func = (CvRowFilterFunc)icvFilterRow_32f; } else CV_ERROR( CV_StsUnsupportedFormat, "Unknown or unsupported input data type" ); if( !y_func ) { if( CV_MAT_DEPTH(dst_type) == CV_8U ) { if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) ) y_func = (CvColumnFilterFunc)icvFilterColSymm_32f8u; else y_func = (CvColumnFilterFunc)icvFilterCol_32f8u; } else if( CV_MAT_DEPTH(dst_type) == CV_16U ) { if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) ) y_func = (CvColumnFilterFunc)icvFilterColSymm_32f16u; else y_func = (CvColumnFilterFunc)icvFilterCol_32f16u; } else if( CV_MAT_DEPTH(dst_type) == CV_16S ) { if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) ) y_func = (CvColumnFilterFunc)icvFilterColSymm_32f16s; else y_func = (CvColumnFilterFunc)icvFilterCol_32f16s; } else if( CV_MAT_DEPTH(dst_type) == CV_32F ) { if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) ) y_func = (CvColumnFilterFunc)icvFilterColSymm_32f; else y_func = (CvColumnFilterFunc)icvFilterCol_32f; } else CV_ERROR( CV_StsUnsupportedFormat, "Unknown or unsupported input data type" ); } if( convert_filters ) { int scale = kx_flags & ky_flags & INTEGER ? 1 : (1 << FILTER_BITS); int sum; for( i = sum = 0; i < xsz; i++ ) { int t = cvRound(kx->data.fl[i]*scale); kx->data.i[i] = t; sum += t; } if( scale > 1 ) kx->data.i[xsz/2] += scale - sum; for( i = sum = 0; i < ysz; i++ ) { int t = cvRound(ky->data.fl[i]*scale); ky->data.i[i] = t; sum += t; } if( scale > 1 ) ky->data.i[ysz/2] += scale - sum; kx->type = (kx->type & ~CV_MAT_DEPTH_MASK) | CV_32S; ky->type = (ky->type & ~CV_MAT_DEPTH_MASK) | CV_32S; } __END__; } void CvSepFilter::init( int _max_width, int _src_type, int _dst_type, bool _is_separable, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CvBaseImageFilter::init( _max_width, _src_type, _dst_type, _is_separable, _ksize, _anchor, _border_mode, _border_value ); } static void icvFilterRowSymm_8u32s( const uchar* src, int* dst, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _kx = state->get_x_kernel(); const int* kx = _kx->data.i; int ksize = _kx->cols + _kx->rows - 1; int i = 0, j, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int ksize2 = ksize/2, ksize2n = ksize2*cn; int is_symm = state->get_x_kernel_flags() & CvSepFilter::SYMMETRICAL; const uchar* s = src + ksize2n; kx += ksize2; width *= cn; if( is_symm ) { if( ksize == 1 && kx[0] == 1 ) { for( i = 0; i <= width - 2; i += 2 ) { int s0 = s[i], s1 = s[i+1]; dst[i] = s0; dst[i+1] = s1; } s += i; } else if( ksize == 3 ) { if( kx[0] == 2 && kx[1] == 1 ) for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = s[-cn] + s[0]*2 + s[cn], s1 = s[1-cn] + s[1]*2 + s[1+cn]; dst[i] = s0; dst[i+1] = s1; } else if( kx[0] == 10 && kx[1] == 3 ) for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = s[0]*10 + (s[-cn] + s[cn])*3, s1 = s[1]*10 + (s[1-cn] + s[1+cn])*3; dst[i] = s0; dst[i+1] = s1; } else if( kx[0] == 2*64 && kx[1] == 1*64 ) for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = (s[0]*2 + s[-cn] + s[cn]) << 6; int s1 = (s[1]*2 + s[1-cn] + s[1+cn]) << 6; dst[i] = s0; dst[i+1] = s1; } else { int k0 = kx[0], k1 = kx[1]; for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = s[0]*k0 + (s[-cn] + s[cn])*k1, s1 = s[1]*k0 + (s[1-cn] + s[1+cn])*k1; dst[i] = s0; dst[i+1] = s1; } } } else if( ksize == 5 ) { int k0 = kx[0], k1 = kx[1], k2 = kx[2]; if( k0 == 6*16 && k1 == 4*16 && k2 == 1*16 ) for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = (s[0]*6 + (s[-cn] + s[cn])*4 + (s[-cn*2] + s[cn*2])*1) << 4; int s1 = (s[1]*6 + (s[1-cn] + s[1+cn])*4 + (s[1-cn*2] + s[1+cn*2])*1) << 4; dst[i] = s0; dst[i+1] = s1; } else for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = s[0]*k0 + (s[-cn] + s[cn])*k1 + (s[-cn*2] + s[cn*2])*k2; int s1 = s[1]*k0 + (s[1-cn] + s[1+cn])*k1 + (s[1-cn*2] + s[1+cn*2])*k2; dst[i] = s0; dst[i+1] = s1; } } else for( ; i <= width - 4; i += 4, s += 4 ) { int f = kx[0]; int s0 = f*s[0], s1 = f*s[1], s2 = f*s[2], s3 = f*s[3]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) { f = kx[k]; s0 += f*(s[j] + s[-j]); s1 += f*(s[j+1] + s[-j+1]); s2 += f*(s[j+2] + s[-j+2]); s3 += f*(s[j+3] + s[-j+3]); } dst[i] = s0; dst[i+1] = s1; dst[i+2] = s2; dst[i+3] = s3; } for( ; i < width; i++, s++ ) { int s0 = kx[0]*s[0]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) s0 += kx[k]*(s[j] + s[-j]); dst[i] = s0; } } else { if( ksize == 3 && kx[0] == 0 && kx[1] == 1 ) for( ; i <= width - 2; i += 2, s += 2 ) { int s0 = s[cn] - s[-cn], s1 = s[1+cn] - s[1-cn]; dst[i] = s0; dst[i+1] = s1; } else for( ; i <= width - 4; i += 4, s += 4 ) { int s0 = 0, s1 = 0, s2 = 0, s3 = 0; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) { int f = kx[k]; s0 += f*(s[j] - s[-j]); s1 += f*(s[j+1] - s[-j+1]); s2 += f*(s[j+2] - s[-j+2]); s3 += f*(s[j+3] - s[-j+3]); } dst[i] = s0; dst[i+1] = s1; dst[i+2] = s2; dst[i+3] = s3; } for( ; i < width; i++, s++ ) { int s0 = kx[0]*s[0]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) s0 += kx[k]*(s[j] - s[-j]); dst[i] = s0; } } } #define ICV_FILTER_ROW( flavor, srctype, dsttype, load_macro ) \ static void \ icvFilterRow_##flavor(const srctype* src, dsttype* dst, void*params)\ { \ const CvSepFilter* state = (const CvSepFilter*)params; \ const CvMat* _kx = state->get_x_kernel(); \ const dsttype* kx = (const dsttype*)(_kx->data.ptr); \ int ksize = _kx->cols + _kx->rows - 1; \ int i = 0, k, width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ const srctype* s; \ \ width *= cn; \ \ for( ; i <= width - 4; i += 4 ) \ { \ double f = kx[0]; \ double s0=f*load_macro(src[i]), s1=f*load_macro(src[i+1]), \ s2=f*load_macro(src[i+2]), s3=f*load_macro(src[i+3]);\ for( k = 1, s = src + i + cn; k < ksize; k++, s += cn ) \ { \ f = kx[k]; \ s0 += f*load_macro(s[0]); \ s1 += f*load_macro(s[1]); \ s2 += f*load_macro(s[2]); \ s3 += f*load_macro(s[3]); \ } \ dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1; \ dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3; \ } \ \ for( ; i < width; i++ ) \ { \ double s0 = (double)kx[0]*load_macro(src[i]); \ for( k = 1, s = src + i + cn; k < ksize; k++, s += cn ) \ s0 += (double)kx[k]*load_macro(s[0]); \ dst[i] = (dsttype)s0; \ } \ } ICV_FILTER_ROW( 8u32f, uchar, float, CV_8TO32F ) ICV_FILTER_ROW( 16s32f, short, float, CV_NOP ) ICV_FILTER_ROW( 16u32f, ushort, float, CV_NOP ) ICV_FILTER_ROW( 32f, float, float, CV_NOP ) #define ICV_FILTER_ROW_SYMM( flavor, srctype, dsttype, load_macro ) \ static void \ icvFilterRowSymm_##flavor( const srctype* src, \ dsttype* dst, void* params ) \ { \ const CvSepFilter* state = (const CvSepFilter*)params; \ const CvMat* _kx = state->get_x_kernel(); \ const dsttype* kx = (const dsttype*)(_kx->data.ptr); \ int ksize = _kx->cols + _kx->rows - 1; \ int i = 0, j, k, width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ int is_symm=state->get_x_kernel_flags()&CvSepFilter::SYMMETRICAL;\ int ksize2 = ksize/2, ksize2n = ksize2*cn; \ const srctype* s = src + ksize2n; \ \ kx += ksize2; \ width *= cn; \ \ if( is_symm ) \ { \ for( ; i <= width - 4; i += 4, s += 4 ) \ { \ double f = kx[0]; \ double s0=f*load_macro(s[0]), s1=f*load_macro(s[1]), \ s2=f*load_macro(s[2]), s3=f*load_macro(s[3]); \ for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \ { \ f = kx[k]; \ s0 += f*load_macro(s[j] + s[-j]); \ s1 += f*load_macro(s[j+1] + s[-j+1]); \ s2 += f*load_macro(s[j+2] + s[-j+2]); \ s3 += f*load_macro(s[j+3] + s[-j+3]); \ } \ \ dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1; \ dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3; \ } \ \ for( ; i < width; i++, s++ ) \ { \ double s0 = (double)kx[0]*load_macro(s[0]); \ for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \ s0 += (double)kx[k]*load_macro(s[j] + s[-j]); \ dst[i] = (dsttype)s0; \ } \ } \ else \ { \ for( ; i <= width - 4; i += 4, s += 4 ) \ { \ double s0 = 0, s1 = 0, s2 = 0, s3 = 0; \ for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \ { \ double f = kx[k]; \ s0 += f*load_macro(s[j] - s[-j]); \ s1 += f*load_macro(s[j+1] - s[-j+1]); \ s2 += f*load_macro(s[j+2] - s[-j+2]); \ s3 += f*load_macro(s[j+3] - s[-j+3]); \ } \ \ dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1; \ dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3; \ } \ \ for( ; i < width; i++, s++ ) \ { \ double s0 = 0; \ for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \ s0 += (double)kx[k]*load_macro(s[j] - s[-j]); \ dst[i] = (dsttype)s0; \ } \ } \ } ICV_FILTER_ROW_SYMM( 8u32f, uchar, float, CV_8TO32F ) ICV_FILTER_ROW_SYMM( 16s32f, short, float, CV_NOP ) ICV_FILTER_ROW_SYMM( 16u32f, ushort, float, CV_NOP ) static void icvFilterRowSymm_32f( const float* src, float* dst, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _kx = state->get_x_kernel(); const float* kx = _kx->data.fl; int ksize = _kx->cols + _kx->rows - 1; int i = 0, j, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int ksize2 = ksize/2, ksize2n = ksize2*cn; int is_symm = state->get_x_kernel_flags() & CvSepFilter::SYMMETRICAL; const float* s = src + ksize2n; kx += ksize2; width *= cn; if( is_symm ) { if( ksize == 3 && fabs(kx[0]-2.) <= FLT_EPSILON && fabs(kx[1]-1.) <= FLT_EPSILON ) for( ; i <= width - 2; i += 2, s += 2 ) { float s0 = s[-cn] + s[0]*2 + s[cn], s1 = s[1-cn] + s[1]*2 + s[1+cn]; dst[i] = s0; dst[i+1] = s1; } else if( ksize == 3 && fabs(kx[0]-10.) <= FLT_EPSILON && fabs(kx[1]-3.) <= FLT_EPSILON ) for( ; i <= width - 2; i += 2, s += 2 ) { float s0 = s[0]*10 + (s[-cn] + s[cn])*3, s1 = s[1]*10 + (s[1-cn] + s[1+cn])*3; dst[i] = s0; dst[i+1] = s1; } else for( ; i <= width - 4; i += 4, s += 4 ) { double f = kx[0]; double s0 = f*s[0], s1 = f*s[1], s2 = f*s[2], s3 = f*s[3]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) { f = kx[k]; s0 += f*(s[j] + s[-j]); s1 += f*(s[j+1] + s[-j+1]); s2 += f*(s[j+2] + s[-j+2]); s3 += f*(s[j+3] + s[-j+3]); } dst[i] = (float)s0; dst[i+1] = (float)s1; dst[i+2] = (float)s2; dst[i+3] = (float)s3; } for( ; i < width; i++, s++ ) { double s0 = (double)kx[0]*s[0]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) s0 += (double)kx[k]*(s[j] + s[-j]); dst[i] = (float)s0; } } else { if( ksize == 3 && fabs(kx[0]) <= FLT_EPSILON && fabs(kx[1]-1.) <= FLT_EPSILON ) for( ; i <= width - 2; i += 2, s += 2 ) { float s0 = s[cn] - s[-cn], s1 = s[1+cn] - s[1-cn]; dst[i] = s0; dst[i+1] = s1; } else for( ; i <= width - 4; i += 4, s += 4 ) { double s0 = 0, s1 = 0, s2 = 0, s3 = 0; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) { double f = kx[k]; s0 += f*(s[j] - s[-j]); s1 += f*(s[j+1] - s[-j+1]); s2 += f*(s[j+2] - s[-j+2]); s3 += f*(s[j+3] - s[-j+3]); } dst[i] = (float)s0; dst[i+1] = (float)s1; dst[i+2] = (float)s2; dst[i+3] = (float)s3; } for( ; i < width; i++, s++ ) { double s0 = (double)kx[0]*s[0]; for( k = 1, j = cn; k <= ksize2; k++, j += cn ) s0 += (double)kx[k]*(s[j] - s[-j]); dst[i] = (float)s0; } } } static void icvFilterColSymm_32s8u( const int** src, uchar* dst, int dst_step, int count, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _ky = state->get_y_kernel(); const int* ky = _ky->data.i; int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2; int i, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); width *= cn; src += ksize2; ky += ksize2; for( ; count--; dst += dst_step, src++ ) { if( ksize == 3 ) { const int* sptr0 = src[-1], *sptr1 = src[0], *sptr2 = src[1]; int k0 = ky[0], k1 = ky[1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sptr1[i]*k0 + (sptr0[i] + sptr2[i])*k1; int s1 = sptr1[i+1]*k0 + (sptr0[i+1] + sptr2[i+1])*k1; s0 = CV_DESCALE(s0, FILTER_BITS*2); s1 = CV_DESCALE(s1, FILTER_BITS*2); dst[i] = (uchar)s0; dst[i+1] = (uchar)s1; } } else if( ksize == 5 ) { const int* sptr0 = src[-2], *sptr1 = src[-1], *sptr2 = src[0], *sptr3 = src[1], *sptr4 = src[2]; int k0 = ky[0], k1 = ky[1], k2 = ky[2]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sptr2[i]*k0 + (sptr1[i] + sptr3[i])*k1 + (sptr0[i] + sptr4[i])*k2; int s1 = sptr2[i+1]*k0 + (sptr1[i+1] + sptr3[i+1])*k1 + (sptr0[i+1] + sptr4[i+1])*k2; s0 = CV_DESCALE(s0, FILTER_BITS*2); s1 = CV_DESCALE(s1, FILTER_BITS*2); dst[i] = (uchar)s0; dst[i+1] = (uchar)s1; } } else for( i = 0; i <= width - 4; i += 4 ) { int f = ky[0]; const int* sptr = src[0] + i, *sptr2; int s0 = f*sptr[0], s1 = f*sptr[1], s2 = f*sptr[2], s3 = f*sptr[3]; for( k = 1; k <= ksize2; k++ ) { sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k]; s0 += f*(sptr[0] + sptr2[0]); s1 += f*(sptr[1] + sptr2[1]); s2 += f*(sptr[2] + sptr2[2]); s3 += f*(sptr[3] + sptr2[3]); } s0 = CV_DESCALE(s0, FILTER_BITS*2); s1 = CV_DESCALE(s1, FILTER_BITS*2); dst[i] = (uchar)s0; dst[i+1] = (uchar)s1; s2 = CV_DESCALE(s2, FILTER_BITS*2); s3 = CV_DESCALE(s3, FILTER_BITS*2); dst[i+2] = (uchar)s2; dst[i+3] = (uchar)s3; } for( ; i < width; i++ ) { int s0 = ky[0]*src[0][i]; for( k = 1; k <= ksize2; k++ ) s0 += ky[k]*(src[k][i] + src[-k][i]); s0 = CV_DESCALE(s0, FILTER_BITS*2); dst[i] = (uchar)s0; } } } static void icvFilterColSymm_32s16s( const int** src, short* dst, int dst_step, int count, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _ky = state->get_y_kernel(); const int* ky = (const int*)_ky->data.ptr; int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2; int i = 0, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL; int is_1_2_1 = is_symm && ksize == 3 && ky[1] == 2 && ky[2] == 1; int is_3_10_3 = is_symm && ksize == 3 && ky[1] == 10 && ky[2] == 3; int is_m1_0_1 = !is_symm && ksize == 3 && ky[1] == 0 && ky[2]*ky[2] == 1 ? (ky[2] > 0 ? 1 : -1) : 0; width *= cn; src += ksize2; ky += ksize2; dst_step /= sizeof(dst[0]); if( is_symm ) { for( ; count--; dst += dst_step, src++ ) { if( is_1_2_1 ) { const int *src0 = src[-1], *src1 = src[0], *src2 = src[1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = src0[i] + src1[i]*2 + src2[i], s1 = src0[i+1] + src1[i+1]*2 + src2[i+1]; dst[i] = (short)s0; dst[i+1] = (short)s1; } } else if( is_3_10_3 ) { const int *src0 = src[-1], *src1 = src[0], *src2 = src[1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = src1[i]*10 + (src0[i] + src2[i])*3, s1 = src1[i+1]*10 + (src0[i+1] + src2[i+1])*3; dst[i] = (short)s0; dst[i+1] = (short)s1; } } else for( i = 0; i <= width - 4; i += 4 ) { int f = ky[0]; const int* sptr = src[0] + i, *sptr2; int s0 = f*sptr[0], s1 = f*sptr[1], s2 = f*sptr[2], s3 = f*sptr[3]; for( k = 1; k <= ksize2; k++ ) { sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k]; s0 += f*(sptr[0] + sptr2[0]); s1 += f*(sptr[1] + sptr2[1]); s2 += f*(sptr[2] + sptr2[2]); s3 += f*(sptr[3] + sptr2[3]); } dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1); dst[i+2] = CV_CAST_16S(s2); dst[i+3] = CV_CAST_16S(s3); } for( ; i < width; i++ ) { int s0 = ky[0]*src[0][i]; for( k = 1; k <= ksize2; k++ ) s0 += ky[k]*(src[k][i] + src[-k][i]); dst[i] = CV_CAST_16S(s0); } } } else { for( ; count--; dst += dst_step, src++ ) { if( is_m1_0_1 ) { const int *src0 = src[-is_m1_0_1], *src2 = src[is_m1_0_1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = src2[i] - src0[i], s1 = src2[i+1] - src0[i+1]; dst[i] = (short)s0; dst[i+1] = (short)s1; } } else for( i = 0; i <= width - 4; i += 4 ) { int f = ky[0]; const int* sptr = src[0] + i, *sptr2; int s0 = 0, s1 = 0, s2 = 0, s3 = 0; for( k = 1; k <= ksize2; k++ ) { sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k]; s0 += f*(sptr[0] - sptr2[0]); s1 += f*(sptr[1] - sptr2[1]); s2 += f*(sptr[2] - sptr2[2]); s3 += f*(sptr[3] - sptr2[3]); } dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1); dst[i+2] = CV_CAST_16S(s2); dst[i+3] = CV_CAST_16S(s3); } for( ; i < width; i++ ) { int s0 = ky[0]*src[0][i]; for( k = 1; k <= ksize2; k++ ) s0 += ky[k]*(src[k][i] - src[-k][i]); dst[i] = CV_CAST_16S(s0); } } } } #define ICV_FILTER_COL( flavor, srctype, dsttype, worktype, \ cast_macro1, cast_macro2 ) \ static void \ icvFilterCol_##flavor( const srctype** src, dsttype* dst, \ int dst_step, int count, void* params ) \ { \ const CvSepFilter* state = (const CvSepFilter*)params; \ const CvMat* _ky = state->get_y_kernel(); \ const srctype* ky = (const srctype*)_ky->data.ptr; \ int ksize = _ky->cols + _ky->rows - 1; \ int i, k, width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ \ width *= cn; \ dst_step /= sizeof(dst[0]); \ \ for( ; count--; dst += dst_step, src++ ) \ { \ for( i = 0; i <= width - 4; i += 4 ) \ { \ double f = ky[0]; \ const srctype* sptr = src[0] + i; \ double s0 = f*sptr[0], s1 = f*sptr[1], \ s2 = f*sptr[2], s3 = f*sptr[3]; \ worktype t0, t1; \ for( k = 1; k < ksize; k++ ) \ { \ sptr = src[k] + i; f = ky[k]; \ s0 += f*sptr[0]; s1 += f*sptr[1]; \ s2 += f*sptr[2]; s3 += f*sptr[3]; \ } \ \ t0 = cast_macro1(s0); t1 = cast_macro1(s1); \ dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1); \ t0 = cast_macro1(s2); t1 = cast_macro1(s3); \ dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \ } \ \ for( ; i < width; i++ ) \ { \ double s0 = (double)ky[0]*src[0][i]; \ worktype t0; \ for( k = 1; k < ksize; k++ ) \ s0 += (double)ky[k]*src[k][i]; \ t0 = cast_macro1(s0); \ dst[i] = cast_macro2(t0); \ } \ } \ } ICV_FILTER_COL( 32f8u, float, uchar, int, cvRound, CV_CAST_8U ) ICV_FILTER_COL( 32f16s, float, short, int, cvRound, CV_CAST_16S ) ICV_FILTER_COL( 32f16u, float, ushort, int, cvRound, CV_CAST_16U ) #define ICV_FILTER_COL_SYMM( flavor, srctype, dsttype, worktype, \ cast_macro1, cast_macro2 ) \ static void \ icvFilterColSymm_##flavor( const srctype** src, dsttype* dst, \ int dst_step, int count, void* params ) \ { \ const CvSepFilter* state = (const CvSepFilter*)params; \ const CvMat* _ky = state->get_y_kernel(); \ const srctype* ky = (const srctype*)_ky->data.ptr; \ int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2; \ int i, k, width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL;\ \ width *= cn; \ src += ksize2; \ ky += ksize2; \ dst_step /= sizeof(dst[0]); \ \ if( is_symm ) \ { \ for( ; count--; dst += dst_step, src++ ) \ { \ for( i = 0; i <= width - 4; i += 4 ) \ { \ double f = ky[0]; \ const srctype* sptr = src[0] + i, *sptr2; \ double s0 = f*sptr[0], s1 = f*sptr[1], \ s2 = f*sptr[2], s3 = f*sptr[3]; \ worktype t0, t1; \ for( k = 1; k <= ksize2; k++ ) \ { \ sptr = src[k] + i; \ sptr2 = src[-k] + i; \ f = ky[k]; \ s0 += f*(sptr[0] + sptr2[0]); \ s1 += f*(sptr[1] + sptr2[1]); \ s2 += f*(sptr[2] + sptr2[2]); \ s3 += f*(sptr[3] + sptr2[3]); \ } \ \ t0 = cast_macro1(s0); t1 = cast_macro1(s1); \ dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1); \ t0 = cast_macro1(s2); t1 = cast_macro1(s3); \ dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \ } \ \ for( ; i < width; i++ ) \ { \ double s0 = (double)ky[0]*src[0][i]; \ worktype t0; \ for( k = 1; k <= ksize2; k++ ) \ s0 += (double)ky[k]*(src[k][i] + src[-k][i]); \ t0 = cast_macro1(s0); \ dst[i] = cast_macro2(t0); \ } \ } \ } \ else \ { \ for( ; count--; dst += dst_step, src++ ) \ { \ for( i = 0; i <= width - 4; i += 4 ) \ { \ double f = ky[0]; \ const srctype* sptr = src[0] + i, *sptr2; \ double s0 = 0, s1 = 0, s2 = 0, s3 = 0; \ worktype t0, t1; \ for( k = 1; k <= ksize2; k++ ) \ { \ sptr = src[k] + i; \ sptr2 = src[-k] + i; \ f = ky[k]; \ s0 += f*(sptr[0] - sptr2[0]); \ s1 += f*(sptr[1] - sptr2[1]); \ s2 += f*(sptr[2] - sptr2[2]); \ s3 += f*(sptr[3] - sptr2[3]); \ } \ \ t0 = cast_macro1(s0); t1 = cast_macro1(s1); \ dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1); \ t0 = cast_macro1(s2); t1 = cast_macro1(s3); \ dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \ } \ \ for( ; i < width; i++ ) \ { \ double s0 = (double)ky[0]*src[0][i]; \ worktype t0; \ for( k = 1; k <= ksize2; k++ ) \ s0 += (double)ky[k]*(src[k][i] - src[-k][i]); \ t0 = cast_macro1(s0); \ dst[i] = cast_macro2(t0); \ } \ } \ } \ } ICV_FILTER_COL_SYMM( 32f8u, float, uchar, int, cvRound, CV_CAST_8U ) ICV_FILTER_COL_SYMM( 32f16s, float, short, int, cvRound, CV_CAST_16S ) ICV_FILTER_COL_SYMM( 32f16u, float, ushort, int, cvRound, CV_CAST_16U ) static void icvFilterCol_32f( const float** src, float* dst, int dst_step, int count, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _ky = state->get_y_kernel(); const float* ky = (const float*)_ky->data.ptr; int ksize = _ky->cols + _ky->rows - 1; int i, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); width *= cn; dst_step /= sizeof(dst[0]); for( ; count--; dst += dst_step, src++ ) { for( i = 0; i <= width - 4; i += 4 ) { double f = ky[0]; const float* sptr = src[0] + i; double s0 = f*sptr[0], s1 = f*sptr[1], s2 = f*sptr[2], s3 = f*sptr[3]; for( k = 1; k < ksize; k++ ) { sptr = src[k] + i; f = ky[k]; s0 += f*sptr[0]; s1 += f*sptr[1]; s2 += f*sptr[2]; s3 += f*sptr[3]; } dst[i] = (float)s0; dst[i+1] = (float)s1; dst[i+2] = (float)s2; dst[i+3] = (float)s3; } for( ; i < width; i++ ) { double s0 = (double)ky[0]*src[0][i]; for( k = 1; k < ksize; k++ ) s0 += (double)ky[k]*src[k][i]; dst[i] = (float)s0; } } } static void icvFilterColSymm_32f( const float** src, float* dst, int dst_step, int count, void* params ) { const CvSepFilter* state = (const CvSepFilter*)params; const CvMat* _ky = state->get_y_kernel(); const float* ky = (const float*)_ky->data.ptr; int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2; int i = 0, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL; int is_1_2_1 = is_symm && ksize == 3 && fabs(ky[1] - 2.) <= FLT_EPSILON && fabs(ky[2] - 1.) <= FLT_EPSILON; int is_3_10_3 = is_symm && ksize == 3 && fabs(ky[1] - 10.) <= FLT_EPSILON && fabs(ky[2] - 3.) <= FLT_EPSILON; int is_m1_0_1 = !is_symm && ksize == 3 && fabs(ky[1]) <= FLT_EPSILON && fabs(ky[2]*ky[2] - 1.) <= FLT_EPSILON ? (ky[2] > 0 ? 1 : -1) : 0; width *= cn; src += ksize2; ky += ksize2; dst_step /= sizeof(dst[0]); if( is_symm ) { for( ; count--; dst += dst_step, src++ ) { if( is_1_2_1 ) { const float *src0 = src[-1], *src1 = src[0], *src2 = src[1]; for( i = 0; i <= width - 4; i += 4 ) { float s0 = src0[i] + src1[i]*2 + src2[i], s1 = src0[i+1] + src1[i+1]*2 + src2[i+1], s2 = src0[i+2] + src1[i+2]*2 + src2[i+2], s3 = src0[i+3] + src1[i+3]*2 + src2[i+3]; dst[i] = s0; dst[i+1] = s1; dst[i+2] = s2; dst[i+3] = s3; } } else if( is_3_10_3 ) { const float *src0 = src[-1], *src1 = src[0], *src2 = src[1]; for( i = 0; i <= width - 4; i += 4 ) { float s0 = src1[i]*10 + (src0[i] + src2[i])*3, s1 = src1[i+1]*10 + (src0[i+1] + src2[i+1])*3, s2 = src1[i+2]*10 + (src0[i+2] + src2[i+2])*3, s3 = src1[i+3]*10 + (src0[i+3] + src2[i+3])*3; dst[i] = s0; dst[i+1] = s1; dst[i+2] = s2; dst[i+3] = s3; } } else for( i = 0; i <= width - 4; i += 4 ) { double f = ky[0]; const float* sptr = src[0] + i, *sptr2; double s0 = f*sptr[0], s1 = f*sptr[1], s2 = f*sptr[2], s3 = f*sptr[3]; for( k = 1; k <= ksize2; k++ ) { sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k]; s0 += f*(sptr[0] + sptr2[0]); s1 += f*(sptr[1] + sptr2[1]); s2 += f*(sptr[2] + sptr2[2]); s3 += f*(sptr[3] + sptr2[3]); } dst[i] = (float)s0; dst[i+1] = (float)s1; dst[i+2] = (float)s2; dst[i+3] = (float)s3; } for( ; i < width; i++ ) { double s0 = (double)ky[0]*src[0][i]; for( k = 1; k <= ksize2; k++ ) s0 += (double)ky[k]*(src[k][i] + src[-k][i]); dst[i] = (float)s0; } } } else { for( ; count--; dst += dst_step, src++ ) { if( is_m1_0_1 ) { const float *src0 = src[-is_m1_0_1], *src2 = src[is_m1_0_1]; for( i = 0; i <= width - 4; i += 4 ) { float s0 = src2[i] - src0[i], s1 = src2[i+1] - src0[i+1], s2 = src2[i+2] - src0[i+2], s3 = src2[i+3] - src0[i+3]; dst[i] = s0; dst[i+1] = s1; dst[i+2] = s2; dst[i+3] = s3; } } else for( i = 0; i <= width - 4; i += 4 ) { double f = ky[0]; const float* sptr = src[0] + i, *sptr2; double s0 = 0, s1 = 0, s2 = 0, s3 = 0; for( k = 1; k <= ksize2; k++ ) { sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k]; s0 += f*(sptr[0] - sptr2[0]); s1 += f*(sptr[1] - sptr2[1]); s2 += f*(sptr[2] - sptr2[2]); s3 += f*(sptr[3] - sptr2[3]); } dst[i] = (float)s0; dst[i+1] = (float)s1; dst[i+2] = (float)s2; dst[i+3] = (float)s3; } for( ; i < width; i++ ) { double s0 = (double)ky[0]*src[0][i]; for( k = 1; k <= ksize2; k++ ) s0 += (double)ky[k]*(src[k][i] - src[-k][i]); dst[i] = (float)s0; } } } } #define SMALL_GAUSSIAN_SIZE 7 void CvSepFilter::init_gaussian_kernel( CvMat* kernel, double sigma ) { static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE/2+1] = { {1.f}, {0.5f, 0.25f}, {0.375f, 0.25f, 0.0625f}, {0.28125f, 0.21875f, 0.109375f, 0.03125f} }; CV_FUNCNAME( "CvSepFilter::init_gaussian_kernel" ); __BEGIN__; int type, i, n, step; const float* fixed_kernel = 0; double sigmaX, scale2X, sum; float* cf; double* cd; if( !CV_IS_MAT(kernel) ) CV_ERROR( CV_StsBadArg, "kernel is not a valid matrix" ); type = CV_MAT_TYPE(kernel->type); if( (kernel->cols != 1 && kernel->rows != 1) || (kernel->cols + kernel->rows - 1) % 2 == 0 || (type != CV_32FC1 && type != CV_64FC1) ) CV_ERROR( CV_StsBadSize, "kernel should be 1D floating-point vector of odd (2*k+1) size" ); n = kernel->cols + kernel->rows - 1; if( n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ) fixed_kernel = small_gaussian_tab[n>>1]; sigmaX = sigma > 0 ? sigma : (n/2 - 1)*0.3 + 0.8; scale2X = -0.5/(sigmaX*sigmaX); step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type); cf = kernel->data.fl; cd = kernel->data.db; sum = fixed_kernel ? -fixed_kernel[0] : -1.; for( i = 0; i <= n/2; i++ ) { double t = fixed_kernel ? (double)fixed_kernel[i] : exp(scale2X*i*i); if( type == CV_32FC1 ) { cf[(n/2+i)*step] = (float)t; sum += cf[(n/2+i)*step]*2; } else { cd[(n/2+i)*step] = t; sum += cd[(n/2+i)*step]*2; } } sum = 1./sum; for( i = 0; i <= n/2; i++ ) { if( type == CV_32FC1 ) cf[(n/2+i)*step] = cf[(n/2-i)*step] = (float)(cf[(n/2+i)*step]*sum); else cd[(n/2+i)*step] = cd[(n/2-i)*step] = cd[(n/2+i)*step]*sum; } __END__; } void CvSepFilter::init_sobel_kernel( CvMat* _kx, CvMat* _ky, int dx, int dy, int flags ) { CV_FUNCNAME( "CvSepFilter::init_sobel_kernel" ); __BEGIN__; int i, j, k, msz; int* kerI; bool normalize = (flags & NORMALIZE_KERNEL) != 0; bool flip = (flags & FLIP_KERNEL) != 0; if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) ) CV_ERROR( CV_StsBadArg, "One of the kernel matrices is not valid" ); msz = MAX( _kx->cols + _kx->rows, _ky->cols + _ky->rows ); if( msz > 32 ) CV_ERROR( CV_StsOutOfRange, "Too large kernel size" ); kerI = (int*)cvStackAlloc( msz*sizeof(kerI[0]) ); if( dx < 0 || dy < 0 || dx+dy <= 0 ) CV_ERROR( CV_StsOutOfRange, "Both derivative orders (dx and dy) must be non-negative " "and at least one of them must be positive." ); for( k = 0; k < 2; k++ ) { CvMat* kernel = k == 0 ? _kx : _ky; int order = k == 0 ? dx : dy; int n = kernel->cols + kernel->rows - 1, step; int type = CV_MAT_TYPE(kernel->type); double scale = !normalize ? 1. : 1./(1 << (n-order-1)); int iscale = 1; if( (kernel->cols != 1 && kernel->rows != 1) || (kernel->cols + kernel->rows - 1) % 2 == 0 || (type != CV_32FC1 && type != CV_64FC1 && type != CV_32SC1) ) CV_ERROR( CV_StsOutOfRange, "Both kernels must be 1D floating-point or integer vectors of odd (2*k+1) size." ); if( normalize && n > 1 && type == CV_32SC1 ) CV_ERROR( CV_StsBadArg, "Integer kernel can not be normalized" ); if( n <= order ) CV_ERROR( CV_StsOutOfRange, "Derivative order must be smaller than the corresponding kernel size" ); if( n == 1 ) kerI[0] = 1; else if( n == 3 ) { if( order == 0 ) kerI[0] = 1, kerI[1] = 2, kerI[2] = 1; else if( order == 1 ) kerI[0] = -1, kerI[1] = 0, kerI[2] = 1; else kerI[0] = 1, kerI[1] = -2, kerI[2] = 1; } else { int oldval, newval; kerI[0] = 1; for( i = 0; i < n; i++ ) kerI[i+1] = 0; for( i = 0; i < n - order - 1; i++ ) { oldval = kerI[0]; for( j = 1; j <= n; j++ ) { newval = kerI[j]+kerI[j-1]; kerI[j-1] = oldval; oldval = newval; } } for( i = 0; i < order; i++ ) { oldval = -kerI[0]; for( j = 1; j <= n; j++ ) { newval = kerI[j-1] - kerI[j]; kerI[j-1] = oldval; oldval = newval; } } } step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type); if( flip && (order & 1) && k ) iscale = -iscale, scale = -scale; for( i = 0; i < n; i++ ) { if( type == CV_32SC1 ) kernel->data.i[i*step] = kerI[i]*iscale; else if( type == CV_32FC1 ) kernel->data.fl[i*step] = (float)(kerI[i]*scale); else kernel->data.db[i*step] = kerI[i]*scale; } } __END__; } void CvSepFilter::init_scharr_kernel( CvMat* _kx, CvMat* _ky, int dx, int dy, int flags ) { CV_FUNCNAME( "CvSepFilter::init_scharr_kernel" ); __BEGIN__; int i, k; int kerI[3]; bool normalize = (flags & NORMALIZE_KERNEL) != 0; bool flip = (flags & FLIP_KERNEL) != 0; if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) ) CV_ERROR( CV_StsBadArg, "One of the kernel matrices is not valid" ); if( ((dx|dy)&~1) || dx+dy != 1 ) CV_ERROR( CV_StsOutOfRange, "Scharr kernel can only be used for 1st order derivatives" ); for( k = 0; k < 2; k++ ) { CvMat* kernel = k == 0 ? _kx : _ky; int order = k == 0 ? dx : dy; int n = kernel->cols + kernel->rows - 1, step; int type = CV_MAT_TYPE(kernel->type); double scale = !normalize ? 1. : order == 0 ? 1./16 : 1./2; int iscale = 1; if( (kernel->cols != 1 && kernel->rows != 1) || kernel->cols + kernel->rows - 1 != 3 || (type != CV_32FC1 && type != CV_64FC1 && type != CV_32SC1) ) CV_ERROR( CV_StsOutOfRange, "Both kernels must be 1D floating-point or integer vectors containing 3 elements each." ); if( normalize && type == CV_32SC1 ) CV_ERROR( CV_StsBadArg, "Integer kernel can not be normalized" ); if( order == 0 ) kerI[0] = 3, kerI[1] = 10, kerI[2] = 3; else kerI[0] = -1, kerI[1] = 0, kerI[2] = 1; step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type); if( flip && (order & 1) && k ) iscale = -iscale, scale = -scale; for( i = 0; i < n; i++ ) { if( type == CV_32SC1 ) kernel->data.i[i*step] = kerI[i]*iscale; else if( type == CV_32FC1 ) kernel->data.fl[i*step] = (float)(kerI[i]*scale); else kernel->data.db[i*step] = kerI[i]*scale; } } __END__; } void CvSepFilter::init_deriv( int _max_width, int _src_type, int _dst_type, int dx, int dy, int aperture_size, int flags ) { CV_FUNCNAME( "CvSepFilter::init_deriv" ); __BEGIN__; int kx_size = aperture_size == CV_SCHARR ? 3 : aperture_size, ky_size = kx_size; float kx_data[CV_MAX_SOBEL_KSIZE], ky_data[CV_MAX_SOBEL_KSIZE]; CvMat _kx, _ky; if( kx_size <= 0 || ky_size > CV_MAX_SOBEL_KSIZE ) CV_ERROR( CV_StsOutOfRange, "Incorrect aperture_size" ); if( kx_size == 1 && dx ) kx_size = 3; if( ky_size == 1 && dy ) ky_size = 3; _kx = cvMat( 1, kx_size, CV_32FC1, kx_data ); _ky = cvMat( 1, ky_size, CV_32FC1, ky_data ); if( aperture_size == CV_SCHARR ) { CV_CALL( init_scharr_kernel( &_kx, &_ky, dx, dy, flags )); } else { CV_CALL( init_sobel_kernel( &_kx, &_ky, dx, dy, flags )); } CV_CALL( init( _max_width, _src_type, _dst_type, &_kx, &_ky )); __END__; } void CvSepFilter::init_gaussian( int _max_width, int _src_type, int _dst_type, int gaussian_size, double sigma ) { float* kdata = 0; CV_FUNCNAME( "CvSepFilter::init_gaussian" ); __BEGIN__; CvMat _kernel; if( gaussian_size <= 0 || gaussian_size > 1024 ) CV_ERROR( CV_StsBadSize, "Incorrect size of gaussian kernel" ); kdata = (float*)cvStackAlloc(gaussian_size*sizeof(kdata[0])); _kernel = cvMat( 1, gaussian_size, CV_32F, kdata ); CV_CALL( init_gaussian_kernel( &_kernel, sigma )); CV_CALL( init( _max_width, _src_type, _dst_type, &_kernel, &_kernel )); __END__; } /****************************************************************************************\ Non-separable Linear Filter \****************************************************************************************/ static void icvLinearFilter_8u( const uchar** src, uchar* dst, int dst_step, int count, void* params ); static void icvLinearFilter_16s( const short** src, short* dst, int dst_step, int count, void* params ); static void icvLinearFilter_16u( const ushort** src, ushort* dst, int dst_step, int count, void* params ); static void icvLinearFilter_32f( const float** src, float* dst, int dst_step, int count, void* params ); CvLinearFilter::CvLinearFilter() { kernel = 0; k_sparse = 0; } CvLinearFilter::CvLinearFilter( int _max_width, int _src_type, int _dst_type, const CvMat* _kernel, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { kernel = 0; k_sparse = 0; init( _max_width, _src_type, _dst_type, _kernel, _anchor, _border_mode, _border_value ); } void CvLinearFilter::clear() { cvReleaseMat( &kernel ); cvFree( &k_sparse ); CvBaseImageFilter::clear(); } CvLinearFilter::~CvLinearFilter() { clear(); } void CvLinearFilter::init( int _max_width, int _src_type, int _dst_type, const CvMat* _kernel, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CV_FUNCNAME( "CvLinearFilter::init" ); __BEGIN__; int depth = CV_MAT_DEPTH(_src_type); int cn = CV_MAT_CN(_src_type); CvPoint* nz_loc; float* coeffs; int i, j, k = 0; if( !CV_IS_MAT(_kernel) ) CV_ERROR( CV_StsBadArg, "kernel is not valid matrix" ); _src_type = CV_MAT_TYPE(_src_type); _dst_type = CV_MAT_TYPE(_dst_type); if( _src_type != _dst_type ) CV_ERROR( CV_StsUnmatchedFormats, "The source and destination image types must be the same" ); CV_CALL( CvBaseImageFilter::init( _max_width, _src_type, _dst_type, false, cvGetMatSize(_kernel), _anchor, _border_mode, _border_value )); if( !(kernel && k_sparse && ksize.width == kernel->cols && ksize.height == kernel->rows )) { cvReleaseMat( &kernel ); cvFree( &k_sparse ); CV_CALL( kernel = cvCreateMat( ksize.height, ksize.width, CV_32FC1 )); CV_CALL( k_sparse = (uchar*)cvAlloc( ksize.width*ksize.height*(2*sizeof(int) + sizeof(uchar*) + sizeof(float)))); } CV_CALL( cvConvert( _kernel, kernel )); nz_loc = (CvPoint*)k_sparse; for( i = 0; i < ksize.height; i++ ) { for( j = 0; j < ksize.width; j++ ) if( fabs(((float*)(kernel->data.ptr + i*kernel->step))[j])>FLT_EPSILON ) nz_loc[k++] = cvPoint(j,i); } if( k == 0 ) nz_loc[k++] = anchor; k_sparse_count = k; coeffs = (float*)((uchar**)(nz_loc + k_sparse_count) + k_sparse_count); for( k = 0; k < k_sparse_count; k++ ) { coeffs[k] = CV_MAT_ELEM( *kernel, float, nz_loc[k].y, nz_loc[k].x ); nz_loc[k].x *= cn; } x_func = 0; if( depth == CV_8U ) y_func = (CvColumnFilterFunc)icvLinearFilter_8u; else if( depth == CV_16S ) y_func = (CvColumnFilterFunc)icvLinearFilter_16s; else if( depth == CV_16U ) y_func = (CvColumnFilterFunc)icvLinearFilter_16u; else if( depth == CV_32F ) y_func = (CvColumnFilterFunc)icvLinearFilter_32f; else CV_ERROR( CV_StsUnsupportedFormat, "Unsupported image type" ); __END__; } void CvLinearFilter::init( int _max_width, int _src_type, int _dst_type, bool _is_separable, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CvBaseImageFilter::init( _max_width, _src_type, _dst_type, _is_separable, _ksize, _anchor, _border_mode, _border_value ); } #define ICV_FILTER( flavor, arrtype, worktype, load_macro, \ cast_macro1, cast_macro2 ) \ static void \ icvLinearFilter_##flavor( const arrtype** src, arrtype* dst, \ int dst_step, int count, void* params ) \ { \ CvLinearFilter* state = (CvLinearFilter*)params; \ int width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ int i, k; \ CvPoint* k_sparse = (CvPoint*)state->get_kernel_sparse_buf(); \ int k_count = state->get_kernel_sparse_count(); \ const arrtype** k_ptr = (const arrtype**)(k_sparse + k_count); \ const arrtype** k_end = k_ptr + k_count; \ const float* k_coeffs = (const float*)(k_ptr + k_count); \ \ width *= cn; \ dst_step /= sizeof(dst[0]); \ \ for( ; count > 0; count--, dst += dst_step, src++ ) \ { \ for( k = 0; k < k_count; k++ ) \ k_ptr[k] = src[k_sparse[k].y] + k_sparse[k].x; \ \ for( i = 0; i <= width - 4; i += 4 ) \ { \ const arrtype** kp = k_ptr; \ const float* kc = k_coeffs; \ double s0 = 0, s1 = 0, s2 = 0, s3 = 0; \ worktype t0, t1; \ \ while( kp != k_end ) \ { \ const arrtype* sptr = (*kp++) + i; \ float f = *kc++; \ s0 += f*load_macro(sptr[0]); \ s1 += f*load_macro(sptr[1]); \ s2 += f*load_macro(sptr[2]); \ s3 += f*load_macro(sptr[3]); \ } \ \ t0 = cast_macro1(s0); t1 = cast_macro1(s1); \ dst[i] = cast_macro2(t0); \ dst[i+1] = cast_macro2(t1); \ t0 = cast_macro1(s2); t1 = cast_macro1(s3); \ dst[i+2] = cast_macro2(t0); \ dst[i+3] = cast_macro2(t1); \ } \ \ for( ; i < width; i++ ) \ { \ const arrtype** kp = k_ptr; \ const float* kc = k_coeffs; \ double s0 = 0; \ worktype t0; \ \ while( kp != k_end ) \ { \ const arrtype* sptr = *kp++; \ float f = *kc++; \ s0 += f*load_macro(sptr[i]); \ } \ \ t0 = cast_macro1(s0); \ dst[i] = cast_macro2(t0); \ } \ } \ } ICV_FILTER( 8u, uchar, int, CV_8TO32F, cvRound, CV_CAST_8U ) ICV_FILTER( 16u, ushort, int, CV_NOP, cvRound, CV_CAST_16U ) ICV_FILTER( 16s, short, int, CV_NOP, cvRound, CV_CAST_16S ) ICV_FILTER( 32f, float, float, CV_NOP, CV_CAST_32F, CV_NOP ) /////////////////////// common functions for working with IPP filters //////////////////// CvMat* icvIPPFilterInit( const CvMat* src, int stripe_size, CvSize ksize ) { CvSize temp_size; int pix_size = CV_ELEM_SIZE(src->type); temp_size.width = cvAlign(src->cols + ksize.width - 1,8/CV_ELEM_SIZE(src->type & CV_MAT_DEPTH_MASK)); //temp_size.width = src->cols + ksize.width - 1; temp_size.height = (stripe_size*2 + temp_size.width*pix_size) / (temp_size.width*pix_size*2); temp_size.height = MAX( temp_size.height, ksize.height ); temp_size.height = MIN( temp_size.height, src->rows + ksize.height - 1 ); return cvCreateMat( temp_size.height, temp_size.width, src->type ); } int icvIPPFilterNextStripe( const CvMat* src, CvMat* temp, int y, CvSize ksize, CvPoint anchor ) { int pix_size = CV_ELEM_SIZE(src->type); int src_step = src->step ? src->step : CV_STUB_STEP; int temp_step = temp->step ? temp->step : CV_STUB_STEP; int i, dy, src_y1 = 0, src_y2; int temp_rows; uchar* temp_ptr = temp->data.ptr; CvSize stripe_size, temp_size; dy = MIN( temp->rows - ksize.height + 1, src->rows - y ); if( y > 0 ) { int temp_ready = ksize.height - 1; for( i = 0; i < temp_ready; i++ ) memcpy( temp_ptr + temp_step*i, temp_ptr + temp_step*(temp->rows - temp_ready + i), temp_step ); temp_ptr += temp_ready*temp_step; temp_rows = dy; src_y1 = y + temp_ready - anchor.y; src_y2 = src_y1 + dy; if( src_y1 >= src->rows ) { src_y1 = src->rows - 1; src_y2 = src->rows; } } else { temp_rows = dy + ksize.height - 1; src_y2 = temp_rows - anchor.y; } src_y2 = MIN( src_y2, src->rows ); stripe_size = cvSize(src->cols, src_y2 - src_y1); temp_size = cvSize(temp->cols, temp_rows); icvCopyReplicateBorder_8u( src->data.ptr + src_y1*src_step, src_step, stripe_size, temp_ptr, temp_step, temp_size, (y == 0 ? anchor.y : 0), anchor.x, pix_size ); return dy; } /////////////////////////////// IPP separable filter functions /////////////////////////// icvFilterRow_8u_C1R_t icvFilterRow_8u_C1R_p = 0; icvFilterRow_8u_C3R_t icvFilterRow_8u_C3R_p = 0; icvFilterRow_8u_C4R_t icvFilterRow_8u_C4R_p = 0; icvFilterRow_16s_C1R_t icvFilterRow_16s_C1R_p = 0; icvFilterRow_16s_C3R_t icvFilterRow_16s_C3R_p = 0; icvFilterRow_16s_C4R_t icvFilterRow_16s_C4R_p = 0; icvFilterRow_32f_C1R_t icvFilterRow_32f_C1R_p = 0; icvFilterRow_32f_C3R_t icvFilterRow_32f_C3R_p = 0; icvFilterRow_32f_C4R_t icvFilterRow_32f_C4R_p = 0; icvFilterColumn_8u_C1R_t icvFilterColumn_8u_C1R_p = 0; icvFilterColumn_8u_C3R_t icvFilterColumn_8u_C3R_p = 0; icvFilterColumn_8u_C4R_t icvFilterColumn_8u_C4R_p = 0; icvFilterColumn_16s_C1R_t icvFilterColumn_16s_C1R_p = 0; icvFilterColumn_16s_C3R_t icvFilterColumn_16s_C3R_p = 0; icvFilterColumn_16s_C4R_t icvFilterColumn_16s_C4R_p = 0; icvFilterColumn_32f_C1R_t icvFilterColumn_32f_C1R_p = 0; icvFilterColumn_32f_C3R_t icvFilterColumn_32f_C3R_p = 0; icvFilterColumn_32f_C4R_t icvFilterColumn_32f_C4R_p = 0; ////////////////////////////////////////////////////////////////////////////////////////// typedef CvStatus (CV_STDCALL * CvIPPSepFilterFunc) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, const float* kernel, int ksize, int anchor ); int icvIPPSepFilter( const CvMat* src, CvMat* dst, const CvMat* kernelX, const CvMat* kernelY, CvPoint anchor ) { int result = 0; CvMat* top_bottom = 0; CvMat* vout_hin = 0; CvMat* dst_buf = 0; CV_FUNCNAME( "icvIPPSepFilter" ); __BEGIN__; CvSize ksize; CvPoint el_anchor; CvSize size; int type, depth, pix_size; int i, x, y, dy = 0, prev_dy = 0, max_dy; CvMat vout; CvIPPSepFilterFunc x_func = 0, y_func = 0; int src_step, top_bottom_step; float *kx, *ky; int align, stripe_size; if( !icvFilterRow_8u_C1R_p ) EXIT; if( !CV_ARE_TYPES_EQ( src, dst ) || !CV_ARE_SIZES_EQ( src, dst ) || !CV_IS_MAT_CONT(kernelX->type & kernelY->type) || CV_MAT_TYPE(kernelX->type) != CV_32FC1 || CV_MAT_TYPE(kernelY->type) != CV_32FC1 || (kernelX->cols != 1 && kernelX->rows != 1) || (kernelY->cols != 1 && kernelY->rows != 1) || (unsigned)anchor.x >= (unsigned)(kernelX->cols + kernelX->rows - 1) || (unsigned)anchor.y >= (unsigned)(kernelY->cols + kernelY->rows - 1) ) CV_ERROR( CV_StsError, "Internal Error: incorrect parameters" ); ksize.width = kernelX->cols + kernelX->rows - 1; ksize.height = kernelY->cols + kernelY->rows - 1; /*if( ksize.width <= 5 && ksize.height <= 5 ) { float* ker = (float*)cvStackAlloc( ksize.width*ksize.height*sizeof(ker[0])); CvMat kernel = cvMat( ksize.height, ksize.width, CV_32F, ker ); for( y = 0, i = 0; y < ksize.height; y++ ) for( x = 0; x < ksize.width; x++, i++ ) ker[i] = kernelY->data.fl[y]*kernelX->data.fl[x]; CV_CALL( cvFilter2D( src, dst, &kernel, anchor )); EXIT; }*/ type = CV_MAT_TYPE(src->type); depth = CV_MAT_DEPTH(type); pix_size = CV_ELEM_SIZE(type); if( type == CV_8UC1 ) x_func = icvFilterRow_8u_C1R_p, y_func = icvFilterColumn_8u_C1R_p; else if( type == CV_8UC3 ) x_func = icvFilterRow_8u_C3R_p, y_func = icvFilterColumn_8u_C3R_p; else if( type == CV_8UC4 ) x_func = icvFilterRow_8u_C4R_p, y_func = icvFilterColumn_8u_C4R_p; else if( type == CV_16SC1 ) x_func = icvFilterRow_16s_C1R_p, y_func = icvFilterColumn_16s_C1R_p; else if( type == CV_16SC3 ) x_func = icvFilterRow_16s_C3R_p, y_func = icvFilterColumn_16s_C3R_p; else if( type == CV_16SC4 ) x_func = icvFilterRow_16s_C4R_p, y_func = icvFilterColumn_16s_C4R_p; else if( type == CV_32FC1 ) x_func = icvFilterRow_32f_C1R_p, y_func = icvFilterColumn_32f_C1R_p; else if( type == CV_32FC3 ) x_func = icvFilterRow_32f_C3R_p, y_func = icvFilterColumn_32f_C3R_p; else if( type == CV_32FC4 ) x_func = icvFilterRow_32f_C4R_p, y_func = icvFilterColumn_32f_C4R_p; else EXIT; size = cvGetMatSize(src); stripe_size = src->data.ptr == dst->data.ptr ? 1 << 15 : 1 << 16; max_dy = MAX( ksize.height - 1, stripe_size/(size.width + ksize.width - 1)); max_dy = MIN( max_dy, size.height + ksize.height - 1 ); align = 8/CV_ELEM_SIZE(depth); CV_CALL( top_bottom = cvCreateMat( ksize.height*2, cvAlign(size.width,align), type )); CV_CALL( vout_hin = cvCreateMat( max_dy + ksize.height, cvAlign(size.width + ksize.width - 1, align), type )); if( src->data.ptr == dst->data.ptr && size.height ) CV_CALL( dst_buf = cvCreateMat( max_dy + ksize.height, cvAlign(size.width, align), type )); kx = (float*)cvStackAlloc( ksize.width*sizeof(kx[0]) ); ky = (float*)cvStackAlloc( ksize.height*sizeof(ky[0]) ); // mirror the kernels for( i = 0; i < ksize.width; i++ ) kx[i] = kernelX->data.fl[ksize.width - i - 1]; for( i = 0; i < ksize.height; i++ ) ky[i] = kernelY->data.fl[ksize.height - i - 1]; el_anchor = cvPoint( ksize.width - anchor.x - 1, ksize.height - anchor.y - 1 ); cvGetCols( vout_hin, &vout, anchor.x, anchor.x + size.width ); src_step = src->step ? src->step : CV_STUB_STEP; top_bottom_step = top_bottom->step ? top_bottom->step : CV_STUB_STEP; vout.step = vout.step ? vout.step : CV_STUB_STEP; for( y = 0; y < size.height; y += dy ) { const CvMat *vin = src, *hout = dst; int src_y = y, dst_y = y; dy = MIN( max_dy, size.height - (ksize.height - anchor.y - 1) - y ); if( y < anchor.y || dy < anchor.y ) { int ay = anchor.y; CvSize src_stripe_size = size; if( y < anchor.y ) { src_y = 0; dy = MIN( anchor.y, size.height ); src_stripe_size.height = MIN( dy + ksize.height - anchor.y - 1, size.height ); } else { src_y = MAX( y - anchor.y, 0 ); dy = size.height - y; src_stripe_size.height = MIN( dy + anchor.y, size.height ); ay = MAX( anchor.y - y, 0 ); } icvCopyReplicateBorder_8u( src->data.ptr + src_y*src_step, src_step, src_stripe_size, top_bottom->data.ptr, top_bottom_step, cvSize(size.width, dy + ksize.height - 1), ay, 0, pix_size ); vin = top_bottom; src_y = anchor.y; } // do vertical convolution IPPI_CALL( y_func( vin->data.ptr + src_y*vin->step, vin->step ? vin->step : CV_STUB_STEP, vout.data.ptr, vout.step, cvSize(size.width, dy), ky, ksize.height, el_anchor.y )); // now it's time to copy the previously processed stripe to the input/output image if( src->data.ptr == dst->data.ptr ) { for( i = 0; i < prev_dy; i++ ) memcpy( dst->data.ptr + (y - prev_dy + i)*dst->step, dst_buf->data.ptr + i*dst_buf->step, size.width*pix_size ); if( y + dy < size.height ) { hout = dst_buf; dst_y = 0; } } // create a border for every line by replicating the left-most/right-most elements for( i = 0; i < dy; i++ ) { uchar* ptr = vout.data.ptr + i*vout.step; for( x = -1; x >= -anchor.x*pix_size; x-- ) ptr[x] = ptr[x + pix_size]; for( x = size.width*pix_size; x < (size.width+ksize.width-anchor.x-1)*pix_size; x++ ) ptr[x] = ptr[x - pix_size]; } // do horizontal convolution IPPI_CALL( x_func( vout.data.ptr, vout.step, hout->data.ptr + dst_y*hout->step, hout->step ? hout->step : CV_STUB_STEP, cvSize(size.width, dy), kx, ksize.width, el_anchor.x )); prev_dy = dy; } result = 1; __END__; cvReleaseMat( &vout_hin ); cvReleaseMat( &dst_buf ); cvReleaseMat( &top_bottom ); return result; } ////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////// IPP generic filter functions //////////////////////////// icvFilter_8u_C1R_t icvFilter_8u_C1R_p = 0; icvFilter_8u_C3R_t icvFilter_8u_C3R_p = 0; icvFilter_8u_C4R_t icvFilter_8u_C4R_p = 0; icvFilter_16s_C1R_t icvFilter_16s_C1R_p = 0; icvFilter_16s_C3R_t icvFilter_16s_C3R_p = 0; icvFilter_16s_C4R_t icvFilter_16s_C4R_p = 0; icvFilter_32f_C1R_t icvFilter_32f_C1R_p = 0; icvFilter_32f_C3R_t icvFilter_32f_C3R_p = 0; icvFilter_32f_C4R_t icvFilter_32f_C4R_p = 0; typedef CvStatus (CV_STDCALL * CvFilterIPPFunc) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, const float* kernel, CvSize ksize, CvPoint anchor ); CV_IMPL void cvFilter2D( const CvArr* _src, CvArr* _dst, const CvMat* kernel, CvPoint anchor ) { const int dft_filter_size = 100; CvLinearFilter filter; CvMat* ipp_kernel = 0; // below that approximate size OpenCV is faster const int ipp_lower_limit = 20; CvMat* temp = 0; CV_FUNCNAME( "cvFilter2D" ); __BEGIN__; int coi1 = 0, coi2 = 0; CvMat srcstub, *src = (CvMat*)_src; CvMat dststub, *dst = (CvMat*)_dst; int type; CV_CALL( src = cvGetMat( src, &srcstub, &coi1 )); CV_CALL( dst = cvGetMat( dst, &dststub, &coi2 )); if( coi1 != 0 || coi2 != 0 ) CV_ERROR( CV_BadCOI, "" ); type = CV_MAT_TYPE( src->type ); if( !CV_ARE_SIZES_EQ( src, dst )) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( !CV_ARE_TYPES_EQ( src, dst )) CV_ERROR( CV_StsUnmatchedFormats, "" ); if( anchor.x == -1 && anchor.y == -1 ) anchor = cvPoint(kernel->cols/2,kernel->rows/2); if( kernel->cols*kernel->rows >= dft_filter_size && kernel->cols <= src->cols && kernel->rows <= src->rows ) { if( src->data.ptr == dst->data.ptr ) { temp = cvCloneMat( src ); src = temp; } icvCrossCorr( src, kernel, dst, anchor ); EXIT; } if( icvFilter_8u_C1R_p && (src->rows >= ipp_lower_limit || src->cols >= ipp_lower_limit) ) { CvFilterIPPFunc ipp_func = type == CV_8UC1 ? (CvFilterIPPFunc)icvFilter_8u_C1R_p : type == CV_8UC3 ? (CvFilterIPPFunc)icvFilter_8u_C3R_p : type == CV_8UC4 ? (CvFilterIPPFunc)icvFilter_8u_C4R_p : type == CV_16SC1 ? (CvFilterIPPFunc)icvFilter_16s_C1R_p : type == CV_16SC3 ? (CvFilterIPPFunc)icvFilter_16s_C3R_p : type == CV_16SC4 ? (CvFilterIPPFunc)icvFilter_16s_C4R_p : type == CV_32FC1 ? (CvFilterIPPFunc)icvFilter_32f_C1R_p : type == CV_32FC3 ? (CvFilterIPPFunc)icvFilter_32f_C3R_p : type == CV_32FC4 ? (CvFilterIPPFunc)icvFilter_32f_C4R_p : 0; if( ipp_func ) { CvSize el_size = { kernel->cols, kernel->rows }; CvPoint el_anchor; int stripe_size = 1 << 16; // the optimal value may depend on CPU cache, // overhead of current IPP code etc. const uchar* shifted_ptr; int i, j, y, dy = 0; int temp_step, dst_step = dst->step ? dst->step : CV_STUB_STEP; if( (unsigned)anchor.x >= (unsigned)kernel->cols || (unsigned)anchor.y >= (unsigned)kernel->rows ) CV_ERROR( CV_StsOutOfRange, "anchor point is out of kernel" ); el_anchor = cvPoint( el_size.width - anchor.x - 1, el_size.height - anchor.y - 1 ); CV_CALL( ipp_kernel = cvCreateMat( kernel->rows, kernel->cols, CV_32FC1 )); CV_CALL( cvConvert( kernel, ipp_kernel )); // mirror the kernel around the center for( i = 0; i < (el_size.height+1)/2; i++ ) { float* top_row = ipp_kernel->data.fl + el_size.width*i; float* bottom_row = ipp_kernel->data.fl + el_size.width*(el_size.height - i - 1); for( j = 0; j < (el_size.width+1)/2; j++ ) { float a = top_row[j], b = top_row[el_size.width - j - 1]; float c = bottom_row[j], d = bottom_row[el_size.width - j - 1]; top_row[j] = d; top_row[el_size.width - j - 1] = c; bottom_row[j] = b; bottom_row[el_size.width - j - 1] = a; } } CV_CALL( temp = icvIPPFilterInit( src, stripe_size, el_size )); shifted_ptr = temp->data.ptr + anchor.y*temp->step + anchor.x*CV_ELEM_SIZE(type); temp_step = temp->step ? temp->step : CV_STUB_STEP; for( y = 0; y < src->rows; y += dy ) { dy = icvIPPFilterNextStripe( src, temp, y, el_size, anchor ); IPPI_CALL( ipp_func( shifted_ptr, temp_step, dst->data.ptr + y*dst_step, dst_step, cvSize(src->cols, dy), ipp_kernel->data.fl, el_size, el_anchor )); } EXIT; } } CV_CALL( filter.init( src->cols, type, type, kernel, anchor )); CV_CALL( filter.process( src, dst )); __END__; cvReleaseMat( &temp ); cvReleaseMat( &ipp_kernel ); } /* End of file. */