/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" #include #include static void intersect( CvPoint2D32f pt, CvSize win_size, CvSize imgSize, CvPoint* min_pt, CvPoint* max_pt ) { CvPoint ipt; ipt.x = cvFloor( pt.x ); ipt.y = cvFloor( pt.y ); ipt.x -= win_size.width; ipt.y -= win_size.height; win_size.width = win_size.width * 2 + 1; win_size.height = win_size.height * 2 + 1; min_pt->x = MAX( 0, -ipt.x ); min_pt->y = MAX( 0, -ipt.y ); max_pt->x = MIN( win_size.width, imgSize.width - ipt.x ); max_pt->y = MIN( win_size.height, imgSize.height - ipt.y ); } static int icvMinimalPyramidSize( CvSize imgSize ) { return cvAlign(imgSize.width,8) * imgSize.height / 3; } static void icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB, CvMat* pyrA, CvMat* pyrB, int level, CvTermCriteria * criteria, int max_iters, int flags, uchar *** imgI, uchar *** imgJ, int **step, CvSize** size, double **scale, uchar ** buffer ) { CV_FUNCNAME( "icvInitPyramidalAlgorithm" ); __BEGIN__; const int ALIGN = 8; int pyrBytes, bufferBytes = 0, elem_size; int level1 = level + 1; int i; CvSize imgSize, levelSize; *buffer = 0; *imgI = *imgJ = 0; *step = 0; *scale = 0; *size = 0; /* check input arguments */ if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) || ((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) ) CV_ERROR( CV_StsNullPtr, "Some of the precomputed pyramids are missing" ); if( level < 0 ) CV_ERROR( CV_StsOutOfRange, "The number of pyramid layers is negative" ); switch( criteria->type ) { case CV_TERMCRIT_ITER: criteria->epsilon = 0.f; break; case CV_TERMCRIT_EPS: criteria->max_iter = max_iters; break; case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS: break; default: assert( 0 ); CV_ERROR( CV_StsBadArg, "Invalid termination criteria" ); } /* compare squared values */ criteria->epsilon *= criteria->epsilon; /* set pointers and step for every level */ pyrBytes = 0; imgSize = cvGetSize(imgA); elem_size = CV_ELEM_SIZE(imgA->type); levelSize = imgSize; for( i = 1; i < level1; i++ ) { levelSize.width = (levelSize.width + 1) >> 1; levelSize.height = (levelSize.height + 1) >> 1; int tstep = cvAlign(levelSize.width,ALIGN) * elem_size; pyrBytes += tstep * levelSize.height; } assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 ); /* buffer_size = + */ bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) + (pyrB->data.ptr == 0)) * pyrBytes + (sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) + sizeof(size[0][0]) + sizeof(scale[0][0])) * level1); CV_CALL( *buffer = (uchar *)cvAlloc( bufferBytes )); *imgI = (uchar **) buffer[0]; *imgJ = *imgI + level1; *step = (int *) (*imgJ + level1); *scale = (double *) (*step + level1); *size = (CvSize *)(*scale + level1); imgI[0][0] = imgA->data.ptr; imgJ[0][0] = imgB->data.ptr; step[0][0] = imgA->step; scale[0][0] = 1; size[0][0] = imgSize; if( level > 0 ) { uchar *bufPtr = (uchar *) (*size + level1); uchar *ptrA = pyrA->data.ptr; uchar *ptrB = pyrB->data.ptr; if( !ptrA ) { ptrA = bufPtr; bufPtr += pyrBytes; } if( !ptrB ) ptrB = bufPtr; levelSize = imgSize; /* build pyramids for both frames */ for( i = 1; i <= level; i++ ) { int levelBytes; CvMat prev_level, next_level; levelSize.width = (levelSize.width + 1) >> 1; levelSize.height = (levelSize.height + 1) >> 1; size[0][i] = levelSize; step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size; scale[0][i] = scale[0][i - 1] * 0.5; levelBytes = step[0][i] * levelSize.height; imgI[0][i] = (uchar *) ptrA; ptrA += levelBytes; if( !(flags & CV_LKFLOW_PYR_A_READY) ) { prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] ); cvSetData( &next_level, imgI[0][i], step[0][i] ); cvPyrDown( &prev_level, &next_level ); } imgJ[0][i] = (uchar *) ptrB; ptrB += levelBytes; if( !(flags & CV_LKFLOW_PYR_B_READY) ) { prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] ); cvSetData( &next_level, imgJ[0][i], step[0][i] ); cvPyrDown( &prev_level, &next_level ); } } } __END__; } /* compute dI/dx and dI/dy */ static void icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step, CvSize src_size, const float* smooth_k, float* buffer0 ) { int src_width = src_size.width, dst_width = src_size.width-2; int x, height = src_size.height - 2; float* buffer1 = buffer0 + src_width; src_step /= sizeof(src[0]); dst_step /= sizeof(dstX[0]); for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step ) { const float* src2 = src + src_step; const float* src3 = src + src_step*2; for( x = 0; x < src_width; x++ ) { float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1]; float t1 = src3[x] - src[x]; buffer0[x] = t0; buffer1[x] = t1; } for( x = 0; x < dst_width; x++ ) { float t0 = buffer0[x+2] - buffer0[x]; float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1]; dstX[x] = t0; dstY[x] = t1; } } } icvOpticalFlowPyrLKInitAlloc_8u_C1R_t icvOpticalFlowPyrLKInitAlloc_8u_C1R_p = 0; icvOpticalFlowPyrLKFree_8u_C1R_t icvOpticalFlowPyrLKFree_8u_C1R_p = 0; icvOpticalFlowPyrLK_8u_C1R_t icvOpticalFlowPyrLK_8u_C1R_p = 0; CV_IMPL void cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB, void* pyrarrA, void* pyrarrB, const CvPoint2D32f * featuresA, CvPoint2D32f * featuresB, int count, CvSize winSize, int level, char *status, float *error, CvTermCriteria criteria, int flags ) { uchar *pyrBuffer = 0; uchar *buffer = 0; float* _error = 0; char* _status = 0; void* ipp_optflow_state = 0; CV_FUNCNAME( "cvCalcOpticalFlowPyrLK" ); __BEGIN__; const int MAX_ITERS = 100; CvMat stubA, *imgA = (CvMat*)arrA; CvMat stubB, *imgB = (CvMat*)arrB; CvMat pstubA, *pyrA = (CvMat*)pyrarrA; CvMat pstubB, *pyrB = (CvMat*)pyrarrB; CvSize imgSize; static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */ int bufferBytes = 0; uchar **imgI = 0; uchar **imgJ = 0; int *step = 0; double *scale = 0; CvSize* size = 0; int threadCount = cvGetNumThreads(); float* _patchI[CV_MAX_THREADS]; float* _patchJ[CV_MAX_THREADS]; float* _Ix[CV_MAX_THREADS]; float* _Iy[CV_MAX_THREADS]; int i, l; CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 ); int patchLen = patchSize.width * patchSize.height; int srcPatchLen = (patchSize.width + 2)*(patchSize.height + 2); CV_CALL( imgA = cvGetMat( imgA, &stubA )); CV_CALL( imgB = cvGetMat( imgB, &stubB )); if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 ) CV_ERROR( CV_StsUnsupportedFormat, "" ); if( !CV_ARE_TYPES_EQ( imgA, imgB )) CV_ERROR( CV_StsUnmatchedFormats, "" ); if( !CV_ARE_SIZES_EQ( imgA, imgB )) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( imgA->step != imgB->step ) CV_ERROR( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" ); imgSize = cvGetMatSize( imgA ); if( pyrA ) { CV_CALL( pyrA = cvGetMat( pyrA, &pstubA )); if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) ) CV_ERROR( CV_StsBadArg, "pyramid A has insufficient size" ); } else { pyrA = &pstubA; pyrA->data.ptr = 0; } if( pyrB ) { CV_CALL( pyrB = cvGetMat( pyrB, &pstubB )); if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) ) CV_ERROR( CV_StsBadArg, "pyramid B has insufficient size" ); } else { pyrB = &pstubB; pyrB->data.ptr = 0; } if( count == 0 ) EXIT; if( !featuresA || !featuresB ) CV_ERROR( CV_StsNullPtr, "Some of arrays of point coordinates are missing" ); if( count < 0 ) CV_ERROR( CV_StsOutOfRange, "The number of tracked points is negative or zero" ); if( winSize.width <= 1 || winSize.height <= 1 ) CV_ERROR( CV_StsBadSize, "Invalid search window size" ); for( i = 0; i < threadCount; i++ ) _patchI[i] = _patchJ[i] = _Ix[i] = _Iy[i] = 0; CV_CALL( icvInitPyramidalAlgorithm( imgA, imgB, pyrA, pyrB, level, &criteria, MAX_ITERS, flags, &imgI, &imgJ, &step, &size, &scale, &pyrBuffer )); if( !status ) CV_CALL( status = _status = (char*)cvAlloc( count*sizeof(_status[0]) )); #if 0 if( icvOpticalFlowPyrLKInitAlloc_8u_C1R_p && icvOpticalFlowPyrLKFree_8u_C1R_p && icvOpticalFlowPyrLK_8u_C1R_p && winSize.width == winSize.height && icvOpticalFlowPyrLKInitAlloc_8u_C1R_p( &ipp_optflow_state, imgSize, winSize.width*2+1, cvAlgHintAccurate ) >= 0 ) { CvPyramid ipp_pyrA, ipp_pyrB; static const double rate[] = { 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125 }; // initialize pyramid structures assert( level < 14 ); ipp_pyrA.ptr = imgI; ipp_pyrB.ptr = imgJ; ipp_pyrA.sz = ipp_pyrB.sz = size; ipp_pyrA.rate = ipp_pyrB.rate = (double*)rate; ipp_pyrA.step = ipp_pyrB.step = step; ipp_pyrA.state = ipp_pyrB.state = 0; ipp_pyrA.level = ipp_pyrB.level = level; if( !error ) CV_CALL( error = _error = (float*)cvAlloc( count*sizeof(_error[0]) )); for( i = 0; i < count; i++ ) featuresB[i] = featuresA[i]; if( icvOpticalFlowPyrLK_8u_C1R_p( &ipp_pyrA, &ipp_pyrB, (const float*)featuresA, (float*)featuresB, status, error, count, winSize.width*2 + 1, level, criteria.max_iter, (float)criteria.epsilon, ipp_optflow_state ) >= 0 ) { for( i = 0; i < count; i++ ) status[i] = status[i] == 0; EXIT; } } #endif /* buffer_size = + */ bufferBytes = (srcPatchLen + patchLen * 3) * sizeof( _patchI[0][0] ) * threadCount; CV_CALL( buffer = (uchar*)cvAlloc( bufferBytes )); for( i = 0; i < threadCount; i++ ) { _patchI[i] = i == 0 ? (float*)buffer : _Iy[i-1] + patchLen; _patchJ[i] = _patchI[i] + srcPatchLen; _Ix[i] = _patchJ[i] + patchLen; _Iy[i] = _Ix[i] + patchLen; } memset( status, 1, count ); if( error ) memset( error, 0, count*sizeof(error[0]) ); if( !(flags & CV_LKFLOW_INITIAL_GUESSES) ) memcpy( featuresB, featuresA, count*sizeof(featuresA[0])); /* do processing from top pyramid level (smallest image) to the bottom (original image) */ for( l = level; l >= 0; l-- ) { CvSize levelSize = size[l]; int levelStep = step[l]; { #ifdef _OPENMP #pragma omp parallel for num_threads(threadCount) schedule(dynamic) #endif // _OPENMP /* find flow for each given point */ for( i = 0; i < count; i++ ) { CvPoint2D32f v; CvPoint minI, maxI, minJ, maxJ; CvSize isz, jsz; int pt_status; CvPoint2D32f u; CvPoint prev_minJ = { -1, -1 }, prev_maxJ = { -1, -1 }; double Gxx = 0, Gxy = 0, Gyy = 0, D = 0, minEig = 0; float prev_mx = 0, prev_my = 0; int j, x, y; int threadIdx = cvGetThreadNum(); float* patchI = _patchI[threadIdx]; float* patchJ = _patchJ[threadIdx]; float* Ix = _Ix[threadIdx]; float* Iy = _Iy[threadIdx]; v.x = featuresB[i].x; v.y = featuresB[i].y; if( l < level ) { v.x += v.x; v.y += v.y; } else { v.x = (float)(v.x * scale[l]); v.y = (float)(v.y * scale[l]); } pt_status = status[i]; if( !pt_status ) continue; minI = maxI = minJ = maxJ = cvPoint( 0, 0 ); u.x = (float) (featuresA[i].x * scale[l]); u.y = (float) (featuresA[i].y * scale[l]); intersect( u, winSize, levelSize, &minI, &maxI ); isz = jsz = cvSize(maxI.x - minI.x + 2, maxI.y - minI.y + 2); u.x += (minI.x - (patchSize.width - maxI.x + 1))*0.5f; u.y += (minI.y - (patchSize.height - maxI.y + 1))*0.5f; if( isz.width < 3 || isz.height < 3 || icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep, levelSize, patchI, isz.width*sizeof(patchI[0]), isz, u ) < 0 ) { /* point is outside the image. take the next */ status[i] = 0; continue; } icvCalcIxIy_32f( patchI, isz.width*sizeof(patchI[0]), Ix, Iy, (isz.width-2)*sizeof(patchI[0]), isz, smoothKernel, patchJ ); for( j = 0; j < criteria.max_iter; j++ ) { double bx = 0, by = 0; float mx, my; CvPoint2D32f _v; intersect( v, winSize, levelSize, &minJ, &maxJ ); minJ.x = MAX( minJ.x, minI.x ); minJ.y = MAX( minJ.y, minI.y ); maxJ.x = MIN( maxJ.x, maxI.x ); maxJ.y = MIN( maxJ.y, maxI.y ); jsz = cvSize(maxJ.x - minJ.x, maxJ.y - minJ.y); _v.x = v.x + (minJ.x - (patchSize.width - maxJ.x + 1))*0.5f; _v.y = v.y + (minJ.y - (patchSize.height - maxJ.y + 1))*0.5f; if( jsz.width < 1 || jsz.height < 1 || icvGetRectSubPix_8u32f_C1R( imgJ[l], levelStep, levelSize, patchJ, jsz.width*sizeof(patchJ[0]), jsz, _v ) < 0 ) { /* point is outside image. take the next */ pt_status = 0; break; } if( maxJ.x == prev_maxJ.x && maxJ.y == prev_maxJ.y && minJ.x == prev_minJ.x && minJ.y == prev_minJ.y ) { for( y = 0; y < jsz.height; y++ ) { const float* pi = patchI + (y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1; const float* pj = patchJ + y*jsz.width; const float* ix = Ix + (y + minJ.y - minI.y)*(isz.width-2) + minJ.x - minI.x; const float* iy = Iy + (ix - Ix); for( x = 0; x < jsz.width; x++ ) { double t0 = pi[x] - pj[x]; bx += t0 * ix[x]; by += t0 * iy[x]; } } } else { Gxx = Gyy = Gxy = 0; for( y = 0; y < jsz.height; y++ ) { const float* pi = patchI + (y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1; const float* pj = patchJ + y*jsz.width; const float* ix = Ix + (y + minJ.y - minI.y)*(isz.width-2) + minJ.x - minI.x; const float* iy = Iy + (ix - Ix); for( x = 0; x < jsz.width; x++ ) { double t = pi[x] - pj[x]; bx += (double) (t * ix[x]); by += (double) (t * iy[x]); Gxx += ix[x] * ix[x]; Gxy += ix[x] * iy[x]; Gyy += iy[x] * iy[x]; } } D = Gxx * Gyy - Gxy * Gxy; if( D < DBL_EPSILON ) { pt_status = 0; break; } // Adi Shavit - 2008.05 if( flags & CV_LKFLOW_GET_MIN_EIGENVALS ) minEig = (Gyy + Gxx - sqrt((Gxx-Gyy)*(Gxx-Gyy) + 4.*Gxy*Gxy))/(2*jsz.height*jsz.width); D = 1. / D; prev_minJ = minJ; prev_maxJ = maxJ; } mx = (float) ((Gyy * bx - Gxy * by) * D); my = (float) ((Gxx * by - Gxy * bx) * D); v.x += mx; v.y += my; if( mx * mx + my * my < criteria.epsilon ) break; if( j > 0 && fabs(mx + prev_mx) < 0.01 && fabs(my + prev_my) < 0.01 ) { v.x -= mx*0.5f; v.y -= my*0.5f; break; } prev_mx = mx; prev_my = my; } featuresB[i] = v; status[i] = (char)pt_status; if( l == 0 && error && pt_status ) { /* calc error */ double err = 0; if( flags & CV_LKFLOW_GET_MIN_EIGENVALS ) err = minEig; else { for( y = 0; y < jsz.height; y++ ) { const float* pi = patchI + (y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1; const float* pj = patchJ + y*jsz.width; for( x = 0; x < jsz.width; x++ ) { double t = pi[x] - pj[x]; err += t * t; } } err = sqrt(err); } error[i] = (float)err; } } // end of point processing loop (i) } } // end of pyramid levels loop (l) __END__; if( ipp_optflow_state ) icvOpticalFlowPyrLKFree_8u_C1R_p( ipp_optflow_state ); cvFree( &pyrBuffer ); cvFree( &buffer ); cvFree( &_error ); cvFree( &_status ); } /* Affine tracking algorithm */ CV_IMPL void cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB, void* pyrarrA, void* pyrarrB, const CvPoint2D32f * featuresA, CvPoint2D32f * featuresB, float *matrices, int count, CvSize winSize, int level, char *status, float *error, CvTermCriteria criteria, int flags ) { const int MAX_ITERS = 100; char* _status = 0; uchar *buffer = 0; uchar *pyr_buffer = 0; CV_FUNCNAME( "cvCalcAffineFlowPyrLK" ); __BEGIN__; CvMat stubA, *imgA = (CvMat*)arrA; CvMat stubB, *imgB = (CvMat*)arrB; CvMat pstubA, *pyrA = (CvMat*)pyrarrA; CvMat pstubB, *pyrB = (CvMat*)pyrarrB; static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */ int bufferBytes = 0; uchar **imgI = 0; uchar **imgJ = 0; int *step = 0; double *scale = 0; CvSize* size = 0; float *patchI; float *patchJ; float *Ix; float *Iy; int i, j, k, l; CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 ); int patchLen = patchSize.width * patchSize.height; int patchStep = patchSize.width * sizeof( patchI[0] ); CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 ); int srcPatchLen = srcPatchSize.width * srcPatchSize.height; int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] ); CvSize imgSize; float eps = (float)MIN(winSize.width, winSize.height); CV_CALL( imgA = cvGetMat( imgA, &stubA )); CV_CALL( imgB = cvGetMat( imgB, &stubB )); if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 ) CV_ERROR( CV_StsUnsupportedFormat, "" ); if( !CV_ARE_TYPES_EQ( imgA, imgB )) CV_ERROR( CV_StsUnmatchedFormats, "" ); if( !CV_ARE_SIZES_EQ( imgA, imgB )) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( imgA->step != imgB->step ) CV_ERROR( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" ); if( !matrices ) CV_ERROR( CV_StsNullPtr, "" ); imgSize = cvGetMatSize( imgA ); if( pyrA ) { CV_CALL( pyrA = cvGetMat( pyrA, &pstubA )); if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) ) CV_ERROR( CV_StsBadArg, "pyramid A has insufficient size" ); } else { pyrA = &pstubA; pyrA->data.ptr = 0; } if( pyrB ) { CV_CALL( pyrB = cvGetMat( pyrB, &pstubB )); if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) ) CV_ERROR( CV_StsBadArg, "pyramid B has insufficient size" ); } else { pyrB = &pstubB; pyrB->data.ptr = 0; } if( count == 0 ) EXIT; /* check input arguments */ if( !featuresA || !featuresB || !matrices ) CV_ERROR( CV_StsNullPtr, "" ); if( winSize.width <= 1 || winSize.height <= 1 ) CV_ERROR( CV_StsOutOfRange, "the search window is too small" ); if( count < 0 ) CV_ERROR( CV_StsOutOfRange, "" ); CV_CALL( icvInitPyramidalAlgorithm( imgA, imgB, pyrA, pyrB, level, &criteria, MAX_ITERS, flags, &imgI, &imgJ, &step, &size, &scale, &pyr_buffer )); /* buffer_size = + */ bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double); CV_CALL( buffer = (uchar*)cvAlloc(bufferBytes)); if( !status ) CV_CALL( status = _status = (char*)cvAlloc(count) ); patchI = (float *) buffer; patchJ = patchI + srcPatchLen; Ix = patchJ + patchLen; Iy = Ix + patchLen; if( status ) memset( status, 1, count ); if( !(flags & CV_LKFLOW_INITIAL_GUESSES) ) { memcpy( featuresB, featuresA, count * sizeof( featuresA[0] )); for( i = 0; i < count * 4; i += 4 ) { matrices[i] = matrices[i + 3] = 1.f; matrices[i + 1] = matrices[i + 2] = 0.f; } } for( i = 0; i < count; i++ ) { featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5); featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5); } /* do processing from top pyramid level (smallest image) to the bottom (original image) */ for( l = level; l >= 0; l-- ) { CvSize levelSize = size[l]; int levelStep = step[l]; /* find flow for each given point at the particular level */ for( i = 0; i < count; i++ ) { CvPoint2D32f u; float Av[6]; double G[36]; double meanI = 0, meanJ = 0; int x, y; int pt_status = status[i]; CvMat mat; if( !pt_status ) continue; Av[0] = matrices[i*4]; Av[1] = matrices[i*4+1]; Av[3] = matrices[i*4+2]; Av[4] = matrices[i*4+3]; Av[2] = featuresB[i].x += featuresB[i].x; Av[5] = featuresB[i].y += featuresB[i].y; u.x = (float) (featuresA[i].x * scale[l]); u.y = (float) (featuresA[i].y * scale[l]); if( u.x < -eps || u.x >= levelSize.width+eps || u.y < -eps || u.y >= levelSize.height+eps || icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep, levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 ) { /* point is outside the image. take the next */ if( l == 0 ) status[i] = 0; continue; } icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy, (srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize, smoothKernel, patchJ ); /* repack patchI (remove borders) */ for( k = 0; k < patchSize.height; k++ ) memcpy( patchI + k * patchSize.width, patchI + (k + 1) * srcPatchSize.width + 1, patchStep ); memset( G, 0, sizeof( G )); /* calculate G matrix */ for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) { for( x = -winSize.width; x <= winSize.width; x++, k++ ) { double ixix = ((double) Ix[k]) * Ix[k]; double ixiy = ((double) Ix[k]) * Iy[k]; double iyiy = ((double) Iy[k]) * Iy[k]; double xx, xy, yy; G[0] += ixix; G[1] += ixiy; G[2] += x * ixix; G[3] += y * ixix; G[4] += x * ixiy; G[5] += y * ixiy; // G[6] == G[1] G[7] += iyiy; // G[8] == G[4] // G[9] == G[5] G[10] += x * iyiy; G[11] += y * iyiy; xx = x * x; xy = x * y; yy = y * y; // G[12] == G[2] // G[13] == G[8] == G[4] G[14] += xx * ixix; G[15] += xy * ixix; G[16] += xx * ixiy; G[17] += xy * ixiy; // G[18] == G[3] // G[19] == G[9] // G[20] == G[15] G[21] += yy * ixix; // G[22] == G[17] G[23] += yy * ixiy; // G[24] == G[4] // G[25] == G[10] // G[26] == G[16] // G[27] == G[22] G[28] += xx * iyiy; G[29] += xy * iyiy; // G[30] == G[5] // G[31] == G[11] // G[32] == G[17] // G[33] == G[23] // G[34] == G[29] G[35] += yy * iyiy; meanI += patchI[k]; } } meanI /= patchSize.width*patchSize.height; G[8] = G[4]; G[9] = G[5]; G[22] = G[17]; // fill part of G below its diagonal for( y = 1; y < 6; y++ ) for( x = 0; x < y; x++ ) G[y * 6 + x] = G[x * 6 + y]; cvInitMatHeader( &mat, 6, 6, CV_64FC1, G ); if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 ) { /* bad matrix. take the next point */ if( l == 0 ) status[i] = 0; continue; } for( j = 0; j < criteria.max_iter; j++ ) { double b[6] = {0,0,0,0,0,0}, eta[6]; double t0, t1, s = 0; if( Av[2] < -eps || Av[2] >= levelSize.width+eps || Av[5] < -eps || Av[5] >= levelSize.height+eps || icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep, levelSize, patchJ, patchStep, patchSize, Av ) < 0 ) { pt_status = 0; break; } for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ ) for( x = -winSize.width; x <= winSize.width; x++, k++ ) meanJ += patchJ[k]; meanJ = meanJ / (patchSize.width * patchSize.height) - meanI; for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) { for( x = -winSize.width; x <= winSize.width; x++, k++ ) { double t = patchI[k] - patchJ[k] + meanJ; double ixt = Ix[k] * t; double iyt = Iy[k] * t; s += t; b[0] += ixt; b[1] += iyt; b[2] += x * ixt; b[3] += y * ixt; b[4] += x * iyt; b[5] += y * iyt; } } icvTransformVector_64d( G, b, eta, 6, 6 ); Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]); Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]); t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4]; t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]); Av[0] = (float)t0; Av[1] = (float)t1; t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4]; t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]); Av[3] = (float)t0; Av[4] = (float)t1; if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon ) break; } if( pt_status != 0 || l == 0 ) { status[i] = (char)pt_status; featuresB[i].x = Av[2]; featuresB[i].y = Av[5]; matrices[i*4] = Av[0]; matrices[i*4+1] = Av[1]; matrices[i*4+2] = Av[3]; matrices[i*4+3] = Av[4]; } if( pt_status && l == 0 && error ) { /* calc error */ double err = 0; for( y = 0, k = 0; y < patchSize.height; y++ ) { for( x = 0; x < patchSize.width; x++, k++ ) { double t = patchI[k] - patchJ[k] + meanJ; err += t * t; } } error[i] = (float)sqrt(err); } } } __END__; cvFree( &pyr_buffer ); cvFree( &buffer ); cvFree( &_status ); } static void icvGetRTMatrix( const CvPoint2D32f* a, const CvPoint2D32f* b, int count, CvMat* M, int full_affine ) { if( full_affine ) { double sa[36], sb[6]; CvMat A = cvMat( 6, 6, CV_64F, sa ), B = cvMat( 6, 1, CV_64F, sb ); CvMat MM = cvMat( 6, 1, CV_64F, M->data.db ); int i; memset( sa, 0, sizeof(sa) ); memset( sb, 0, sizeof(sb) ); for( i = 0; i < count; i++ ) { sa[0] += a[i].x*a[i].x; sa[1] += a[i].y*a[i].x; sa[2] += a[i].x; sa[6] += a[i].x*a[i].y; sa[7] += a[i].y*a[i].y; sa[8] += a[i].y; sa[12] += a[i].x; sa[13] += a[i].y; sa[14] += 1; sb[0] += a[i].x*b[i].x; sb[1] += a[i].y*b[i].x; sb[2] += b[i].x; sb[3] += a[i].x*b[i].y; sb[4] += a[i].y*b[i].y; sb[5] += b[i].y; } sa[21] = sa[0]; sa[22] = sa[1]; sa[23] = sa[2]; sa[27] = sa[6]; sa[28] = sa[7]; sa[29] = sa[8]; sa[33] = sa[12]; sa[34] = sa[13]; sa[35] = sa[14]; cvSolve( &A, &B, &MM, CV_SVD ); } else { double sa[16], sb[4], m[4], *om = M->data.db; CvMat A = cvMat( 4, 4, CV_64F, sa ), B = cvMat( 4, 1, CV_64F, sb ); CvMat MM = cvMat( 4, 1, CV_64F, m ); int i; memset( sa, 0, sizeof(sa) ); memset( sb, 0, sizeof(sb) ); for( i = 0; i < count; i++ ) { sa[0] += a[i].x*a[i].x + a[i].y*a[i].y; sa[1] += 0; sa[2] += a[i].x; sa[3] += a[i].y; sa[4] += 0; sa[5] += a[i].x*a[i].x + a[i].y*a[i].y; sa[6] += -a[i].y; sa[7] += a[i].x; sa[8] += a[i].x; sa[9] += -a[i].y; sa[10] += 1; sa[11] += 0; sa[12] += a[i].y; sa[13] += a[i].x; sa[14] += 0; sa[15] += 1; sb[0] += a[i].x*b[i].x + a[i].y*b[i].y; sb[1] += a[i].x*b[i].y - a[i].y*b[i].x; sb[2] += b[i].x; sb[3] += b[i].y; } cvSolve( &A, &B, &MM, CV_SVD ); om[0] = om[4] = m[0]; om[1] = -m[1]; om[3] = m[1]; om[2] = m[2]; om[5] = m[3]; } } CV_IMPL int cvEstimateRigidTransform( const CvArr* _A, const CvArr* _B, CvMat* _M, int full_affine ) { int result = 0; const int COUNT = 15; const int WIDTH = 160, HEIGHT = 120; const int RANSAC_MAX_ITERS = 100; const int RANSAC_SIZE0 = 3; const double MIN_TRIANGLE_SIDE = 20; const double RANSAC_GOOD_RATIO = 0.5; int allocated = 1; CvMat *sA = 0, *sB = 0; CvPoint2D32f *pA = 0, *pB = 0; int* good_idx = 0; char *status = 0; CvMat* gray = 0; CV_FUNCNAME( "cvEstimateRigidTransform" ); __BEGIN__; CvMat stubA, *A; CvMat stubB, *B; CvSize sz0, sz1; int cn, equal_sizes; int i, j, k, k1; int count_x, count_y, count; double scale = 1; CvRNG rng = cvRNG(-1); double m[6]={0}; CvMat M = cvMat( 2, 3, CV_64F, m ); int good_count = 0; CV_CALL( A = cvGetMat( _A, &stubA )); CV_CALL( B = cvGetMat( _B, &stubB )); if( !CV_IS_MAT(_M) ) CV_ERROR( _M ? CV_StsBadArg : CV_StsNullPtr, "Output parameter M is not a valid matrix" ); if( !CV_ARE_SIZES_EQ( A, B ) ) CV_ERROR( CV_StsUnmatchedSizes, "Both input images must have the same size" ); if( !CV_ARE_TYPES_EQ( A, B ) ) CV_ERROR( CV_StsUnmatchedFormats, "Both input images must have the same data type" ); if( CV_MAT_TYPE(A->type) == CV_8UC1 || CV_MAT_TYPE(A->type) == CV_8UC3 ) { cn = CV_MAT_CN(A->type); sz0 = cvGetSize(A); sz1 = cvSize(WIDTH, HEIGHT); scale = MAX( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ); scale = MIN( scale, 1. ); sz1.width = cvRound( sz0.width * scale ); sz1.height = cvRound( sz0.height * scale ); equal_sizes = sz1.width == sz0.width && sz1.height == sz0.height; if( !equal_sizes || cn != 1 ) { CV_CALL( sA = cvCreateMat( sz1.height, sz1.width, CV_8UC1 )); CV_CALL( sB = cvCreateMat( sz1.height, sz1.width, CV_8UC1 )); if( !equal_sizes && cn != 1 ) CV_CALL( gray = cvCreateMat( sz0.height, sz0.width, CV_8UC1 )); if( gray ) { cvCvtColor( A, gray, CV_BGR2GRAY ); cvResize( gray, sA, CV_INTER_AREA ); cvCvtColor( B, gray, CV_BGR2GRAY ); cvResize( gray, sB, CV_INTER_AREA ); } else if( cn == 1 ) { cvResize( gray, sA, CV_INTER_AREA ); cvResize( gray, sB, CV_INTER_AREA ); } else { cvCvtColor( A, gray, CV_BGR2GRAY ); cvResize( gray, sA, CV_INTER_AREA ); cvCvtColor( B, gray, CV_BGR2GRAY ); } cvReleaseMat( &gray ); A = sA; B = sB; } count_y = COUNT; count_x = cvRound((double)COUNT*sz1.width/sz1.height); count = count_x * count_y; CV_CALL( pA = (CvPoint2D32f*)cvAlloc( count*sizeof(pA[0]) )); CV_CALL( pB = (CvPoint2D32f*)cvAlloc( count*sizeof(pB[0]) )); CV_CALL( status = (char*)cvAlloc( count*sizeof(status[0]) )); for( i = 0, k = 0; i < count_y; i++ ) for( j = 0; j < count_x; j++, k++ ) { pA[k].x = (j+0.5f)*sz1.width/count_x; pA[k].y = (i+0.5f)*sz1.height/count_y; } // find the corresponding points in B cvCalcOpticalFlowPyrLK( A, B, 0, 0, pA, pB, count, cvSize(10,10), 3, status, 0, cvTermCriteria(CV_TERMCRIT_ITER,40,0.1), 0 ); // repack the remained points for( i = 0, k = 0; i < count; i++ ) if( status[i] ) { if( i > k ) { pA[k] = pA[i]; pB[k] = pB[i]; } k++; } count = k; } else if( CV_MAT_TYPE(A->type) == CV_32FC2 || CV_MAT_TYPE(A->type) == CV_32SC2 ) { count = A->cols*A->rows; if( CV_IS_MAT_CONT(A->type & B->type) && CV_MAT_TYPE(A->type) == CV_32FC2 ) { pA = (CvPoint2D32f*)A->data.ptr; pB = (CvPoint2D32f*)B->data.ptr; allocated = 0; } else { CvMat _pA, _pB; CV_CALL( pA = (CvPoint2D32f*)cvAlloc( count*sizeof(pA[0]) )); CV_CALL( pB = (CvPoint2D32f*)cvAlloc( count*sizeof(pB[0]) )); _pA = cvMat( A->rows, A->cols, CV_32FC2, pA ); _pB = cvMat( B->rows, B->cols, CV_32FC2, pB ); cvConvert( A, &_pA ); cvConvert( B, &_pB ); } } else CV_ERROR( CV_StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" ); CV_CALL( good_idx = (int*)cvAlloc( count*sizeof(good_idx[0]) )); if( count < RANSAC_SIZE0 ) EXIT; // RANSAC stuff: // 1. find the consensus for( k = 0; k < RANSAC_MAX_ITERS; k++ ) { int idx[RANSAC_SIZE0]; CvPoint2D32f a[3]; CvPoint2D32f b[3]; memset( a, 0, sizeof(a) ); memset( b, 0, sizeof(b) ); // choose random 3 non-complanar points from A & B for( i = 0; i < RANSAC_SIZE0; i++ ) { for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ ) { idx[i] = cvRandInt(&rng) % count; for( j = 0; j < i; j++ ) { if( idx[j] == idx[i] ) break; // check that the points are not very close one each other if( fabs(pA[idx[i]].x - pA[idx[j]].x) + fabs(pA[idx[i]].y - pA[idx[j]].y) < MIN_TRIANGLE_SIDE ) break; if( fabs(pB[idx[i]].x - pB[idx[j]].x) + fabs(pB[idx[i]].y - pB[idx[j]].y) < MIN_TRIANGLE_SIDE ) break; } if( j < i ) continue; if( i+1 == RANSAC_SIZE0 ) { // additional check for non-complanar vectors a[0] = pA[idx[0]]; a[1] = pA[idx[1]]; a[2] = pA[idx[2]]; b[0] = pB[idx[0]]; b[1] = pB[idx[1]]; b[2] = pB[idx[2]]; if( fabs((a[1].x - a[0].x)*(a[2].y - a[0].y) - (a[1].y - a[0].y)*(a[2].x - a[0].x)) < 1 || fabs((b[1].x - b[0].x)*(b[2].y - b[0].y) - (b[1].y - b[0].y)*(b[2].x - b[0].x)) < 1 ) continue; } break; } if( k1 >= RANSAC_MAX_ITERS ) break; } if( i < RANSAC_SIZE0 ) continue; // estimate the transformation using 3 points icvGetRTMatrix( a, b, 3, &M, full_affine ); for( i = 0, good_count = 0; i < count; i++ ) { if( fabs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) + fabs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < 8 ) good_idx[good_count++] = i; } if( good_count >= count*RANSAC_GOOD_RATIO ) break; } if( k >= RANSAC_MAX_ITERS ) EXIT; if( good_count < count ) { for( i = 0; i < good_count; i++ ) { j = good_idx[i]; pA[i] = pA[j]; pB[i] = pB[j]; } } icvGetRTMatrix( pA, pB, good_count, &M, full_affine ); m[2] /= scale; m[5] /= scale; CV_CALL( cvConvert( &M, _M )); result = 1; __END__; cvReleaseMat( &sA ); cvReleaseMat( &sB ); cvFree( &pA ); cvFree( &pB ); cvFree( &status ); cvFree( &good_idx ); cvReleaseMat( &gray ); return result; } /* End of file. */