/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_ml.h" CvStatModel::CvStatModel() { default_model_name = "my_stat_model"; } CvStatModel::~CvStatModel() { clear(); } void CvStatModel::clear() { } void CvStatModel::save( const char* filename, const char* name ) { CvFileStorage* fs = 0; CV_FUNCNAME( "CvStatModel::save" ); __BEGIN__; CV_CALL( fs = cvOpenFileStorage( filename, 0, CV_STORAGE_WRITE )); if( !fs ) CV_ERROR( CV_StsError, "Could not open the file storage. Check the path and permissions" ); write( fs, name ? name : default_model_name ); __END__; cvReleaseFileStorage( &fs ); } void CvStatModel::load( const char* filename, const char* name ) { CvFileStorage* fs = 0; CV_FUNCNAME( "CvStatModel::load" ); __BEGIN__; CvFileNode* model_node = 0; CV_CALL( fs = cvOpenFileStorage( filename, 0, CV_STORAGE_READ )); if( !fs ) EXIT; if( name ) model_node = cvGetFileNodeByName( fs, 0, name ); else { CvFileNode* root = cvGetRootFileNode( fs ); if( root->data.seq->total > 0 ) model_node = (CvFileNode*)cvGetSeqElem( root->data.seq, 0 ); } read( fs, model_node ); __END__; cvReleaseFileStorage( &fs ); } void CvStatModel::write( CvFileStorage*, const char* ) { OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::write", "" ); } void CvStatModel::read( CvFileStorage*, CvFileNode* ) { OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::read", "" ); } /* Calculates upper triangular matrix S, where A is a symmetrical matrix A=S'*S */ CV_IMPL void cvChol( CvMat* A, CvMat* S ) { int dim = A->rows; int i, j, k; float sum; for( i = 0; i < dim; i++ ) { for( j = 0; j < i; j++ ) CV_MAT_ELEM(*S, float, i, j) = 0; sum = 0; for( k = 0; k < i; k++ ) sum += CV_MAT_ELEM(*S, float, k, i) * CV_MAT_ELEM(*S, float, k, i); CV_MAT_ELEM(*S, float, i, i) = (float)sqrt(CV_MAT_ELEM(*A, float, i, i) - sum); for( j = i + 1; j < dim; j++ ) { sum = 0; for( k = 0; k < i; k++ ) sum += CV_MAT_ELEM(*S, float, k, i) * CV_MAT_ELEM(*S, float, k, j); CV_MAT_ELEM(*S, float, i, j) = (CV_MAT_ELEM(*A, float, i, j) - sum) / CV_MAT_ELEM(*S, float, i, i); } } } /* Generates from multivariate normal distribution, where - is an average row vector, - symmetric covariation matrix */ CV_IMPL void cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample, CvRNG* rng ) { int dim = sample->cols; int amount = sample->rows; CvRNG state = rng ? *rng : cvRNG(time(0)); cvRandArr(&state, sample, CV_RAND_NORMAL, cvScalarAll(0), cvScalarAll(1) ); CvMat* utmat = cvCreateMat(dim, dim, sample->type); CvMat* vect = cvCreateMatHeader(1, dim, sample->type); cvChol(cov, utmat); int i; for( i = 0; i < amount; i++ ) { cvGetRow(sample, vect, i); cvMatMulAdd(vect, utmat, mean, vect); } cvReleaseMat(&vect); cvReleaseMat(&utmat); } /* Generates of points from a discrete variate xi, where Pr{xi = k} == probs[k], 0 < k < len - 1. */ CV_IMPL void cvRandSeries( float probs[], int len, int sample[], int amount ) { CvMat* univals = cvCreateMat(1, amount, CV_32FC1); float* knots = (float*)cvAlloc( len * sizeof(float) ); int i, j; CvRNG state = cvRNG(-1); cvRandArr(&state, univals, CV_RAND_UNI, cvScalarAll(0), cvScalarAll(1) ); knots[0] = probs[0]; for( i = 1; i < len; i++ ) knots[i] = knots[i - 1] + probs[i]; for( i = 0; i < amount; i++ ) for( j = 0; j < len; j++ ) { if ( CV_MAT_ELEM(*univals, float, 0, i) <= knots[j] ) { sample[i] = j; break; } } cvFree(&knots); } /* Generates from gaussian mixture distribution */ CV_IMPL void cvRandGaussMixture( CvMat* means[], CvMat* covs[], float weights[], int clsnum, CvMat* sample, CvMat* sampClasses ) { int dim = sample->cols; int amount = sample->rows; int i, clss; int* sample_clsnum = (int*)cvAlloc( amount * sizeof(int) ); CvMat** utmats = (CvMat**)cvAlloc( clsnum * sizeof(CvMat*) ); CvMat* vect = cvCreateMatHeader(1, dim, CV_32FC1); CvMat* classes; if( sampClasses ) classes = sampClasses; else classes = cvCreateMat(1, amount, CV_32FC1); CvRNG state = cvRNG(-1); cvRandArr(&state, sample, CV_RAND_NORMAL, cvScalarAll(0), cvScalarAll(1)); cvRandSeries(weights, clsnum, sample_clsnum, amount); for( i = 0; i < clsnum; i++ ) { utmats[i] = cvCreateMat(dim, dim, CV_32FC1); cvChol(covs[i], utmats[i]); } for( i = 0; i < amount; i++ ) { CV_MAT_ELEM(*classes, float, 0, i) = (float)sample_clsnum[i]; cvGetRow(sample, vect, i); clss = sample_clsnum[i]; cvMatMulAdd(vect, utmats[clss], means[clss], vect); } if( !sampClasses ) cvReleaseMat(&classes); for( i = 0; i < clsnum; i++ ) cvReleaseMat(&utmats[i]); cvFree(&utmats); cvFree(&sample_clsnum); cvReleaseMat(&vect); } CvMat* icvGenerateRandomClusterCenters ( int seed, const CvMat* data, int num_of_clusters, CvMat* _centers ) { CvMat* centers = _centers; CV_FUNCNAME("icvGenerateRandomClusterCenters"); __BEGIN__; CvRNG rng; CvMat data_comp, centers_comp; CvPoint minLoc, maxLoc; // Not used, just for function "cvMinMaxLoc" double minVal, maxVal; int i; int dim = data ? data->cols : 0; if( ICV_IS_MAT_OF_TYPE(data, CV_32FC1) ) { if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_32FC1) ) { CV_ERROR(CV_StsBadArg,""); } else if( !_centers ) CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_32FC1)); } else if( ICV_IS_MAT_OF_TYPE(data, CV_64FC1) ) { if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_64FC1) ) { CV_ERROR(CV_StsBadArg,""); } else if( !_centers ) CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_64FC1)); } else CV_ERROR (CV_StsBadArg,""); if( num_of_clusters < 1 ) CV_ERROR (CV_StsBadArg,""); rng = cvRNG(seed); for (i = 0; i < dim; i++) { CV_CALL(cvGetCol (data, &data_comp, i)); CV_CALL(cvMinMaxLoc (&data_comp, &minVal, &maxVal, &minLoc, &maxLoc)); CV_CALL(cvGetCol (centers, ¢ers_comp, i)); CV_CALL(cvRandArr (&rng, ¢ers_comp, CV_RAND_UNI, cvScalarAll(minVal), cvScalarAll(maxVal))); } __END__; if( (cvGetErrStatus () < 0) || (centers != _centers) ) cvReleaseMat (¢ers); return _centers ? _centers : centers; } // end of icvGenerateRandomClusterCenters // By S. Dilman - begin - #define ICV_RAND_MAX 4294967296 // == 2^32 CV_IMPL void cvRandRoundUni (CvMat* center, float radius_small, float radius_large, CvMat* desired_matrix, CvRNG* rng_state_ptr) { float rad, norm, coefficient; int dim, size, i, j; CvMat *cov, sample; CvRNG rng_local; CV_FUNCNAME("cvRandRoundUni"); __BEGIN__ rng_local = *rng_state_ptr; CV_ASSERT ((radius_small >= 0) && (radius_large > 0) && (radius_small <= radius_large)); CV_ASSERT (center && desired_matrix && rng_state_ptr); CV_ASSERT (center->rows == 1); CV_ASSERT (center->cols == desired_matrix->cols); dim = desired_matrix->cols; size = desired_matrix->rows; cov = cvCreateMat (dim, dim, CV_32FC1); cvSetIdentity (cov); cvRandMVNormal (center, cov, desired_matrix, &rng_local); for (i = 0; i < size; i++) { rad = (float)(cvRandReal(&rng_local)*(radius_large - radius_small) + radius_small); cvGetRow (desired_matrix, &sample, i); norm = (float) cvNorm (&sample, 0, CV_L2); coefficient = rad / norm; for (j = 0; j < dim; j++) CV_MAT_ELEM (sample, float, 0, j) *= coefficient; } __END__ } // By S. Dilman - end - /* Aij <- Aji for i > j if lower_to_upper != 0 for i < j if lower_to_upper = 0 */ void cvCompleteSymm( CvMat* matrix, int lower_to_upper ) { CV_FUNCNAME("cvCompleteSymm"); __BEGIN__; int rows, cols; int i, j; int step; if( !CV_IS_MAT(matrix)) CV_ERROR(CV_StsBadArg, "Invalid matrix argument"); rows = matrix->rows; cols = matrix->cols; step = matrix->step / CV_ELEM_SIZE(matrix->type); switch(CV_MAT_TYPE(matrix->type)) { case CV_32FC1: { float* dst = matrix->data.fl; if( !lower_to_upper ) for( i = 1; i < rows; i++ ) { const float* src = (const float*)(matrix->data.fl + i); dst += step; for( j = 0; j < i; j++, src += step ) dst[j] = src[0]; } else for( i = 0; i < rows-1; i++, dst += step ) { const float* src = (const float*)(matrix->data.fl + (i+1)*step + i); for( j = i+1; j < cols; j++, src += step ) dst[j] = src[0]; } } break; case CV_64FC1: { double* dst = matrix->data.db; if( !lower_to_upper ) for( i = 1; i < rows; i++ ) { const double* src = (const double*)(matrix->data.db + i); dst += step; for( j = 0; j < i; j++, src += step ) dst[j] = src[0]; } else for( i = 0; i < rows-1; i++, dst += step ) { const double* src = (const double*)(matrix->data.db + (i+1)*step + i); for( j = i+1; j < cols; j++, src += step ) dst[j] = src[0]; } } break; } __END__; } static int CV_CDECL icvCmpIntegers( const void* a, const void* b ) { return *(const int*)a - *(const int*)b; } static int CV_CDECL icvCmpIntegersPtr( const void* _a, const void* _b ) { int a = **(const int**)_a; int b = **(const int**)_b; return (a < b ? -1 : 0)|(a > b); } static int icvCmpSparseVecElems( const void* a, const void* b ) { return ((CvSparseVecElem32f*)a)->idx - ((CvSparseVecElem32f*)b)->idx; } CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates ) { CvMat* idx = 0; CV_FUNCNAME( "cvPreprocessIndexArray" ); __BEGIN__; int i, idx_total, idx_selected = 0, step, type, prev = INT_MIN, is_sorted = 1; uchar* srcb = 0; int* srci = 0; int* dsti; if( !CV_IS_MAT(idx_arr) ) CV_ERROR( CV_StsBadArg, "Invalid index array" ); if( idx_arr->rows != 1 && idx_arr->cols != 1 ) CV_ERROR( CV_StsBadSize, "the index array must be 1-dimensional" ); idx_total = idx_arr->rows + idx_arr->cols - 1; srcb = idx_arr->data.ptr; srci = idx_arr->data.i; type = CV_MAT_TYPE(idx_arr->type); step = CV_IS_MAT_CONT(idx_arr->type) ? 1 : idx_arr->step/CV_ELEM_SIZE(type); switch( type ) { case CV_8UC1: case CV_8SC1: // idx_arr is array of 1's and 0's - // i.e. it is a mask of the selected components if( idx_total != data_arr_size ) CV_ERROR( CV_StsUnmatchedSizes, "Component mask should contain as many elements as the total number of input variables" ); for( i = 0; i < idx_total; i++ ) idx_selected += srcb[i*step] != 0; if( idx_selected == 0 ) CV_ERROR( CV_StsOutOfRange, "No components/input_variables is selected!" ); if( idx_selected == idx_total ) EXIT; break; case CV_32SC1: // idx_arr is array of integer indices of selected components if( idx_total > data_arr_size ) CV_ERROR( CV_StsOutOfRange, "index array may not contain more elements than the total number of input variables" ); idx_selected = idx_total; // check if sorted already for( i = 0; i < idx_total; i++ ) { int val = srci[i*step]; if( val >= prev ) { is_sorted = 0; break; } prev = val; } break; default: CV_ERROR( CV_StsUnsupportedFormat, "Unsupported index array data type " "(it should be 8uC1, 8sC1 or 32sC1)" ); } CV_CALL( idx = cvCreateMat( 1, idx_selected, CV_32SC1 )); dsti = idx->data.i; if( type < CV_32SC1 ) { for( i = 0; i < idx_total; i++ ) if( srcb[i*step] ) *dsti++ = i; } else { for( i = 0; i < idx_total; i++ ) dsti[i] = srci[i*step]; if( !is_sorted ) qsort( dsti, idx_total, sizeof(dsti[0]), icvCmpIntegers ); if( dsti[0] < 0 || dsti[idx_total-1] >= data_arr_size ) CV_ERROR( CV_StsOutOfRange, "the index array elements are out of range" ); if( check_for_duplicates ) { for( i = 1; i < idx_total; i++ ) if( dsti[i] <= dsti[i-1] ) CV_ERROR( CV_StsBadArg, "There are duplicated index array elements" ); } } __END__; if( cvGetErrStatus() < 0 ) cvReleaseMat( &idx ); return idx; } CvMat* cvPreprocessVarType( const CvMat* var_type, const CvMat* var_idx, int var_all, int* response_type ) { CvMat* out_var_type = 0; CV_FUNCNAME( "cvPreprocessVarType" ); if( response_type ) *response_type = -1; __BEGIN__; int i, tm_size, tm_step; int* map = 0; const uchar* src; uchar* dst; int var_count = var_all; if( !CV_IS_MAT(var_type) ) CV_ERROR( var_type ? CV_StsBadArg : CV_StsNullPtr, "Invalid or absent var_type array" ); if( var_type->rows != 1 && var_type->cols != 1 ) CV_ERROR( CV_StsBadSize, "var_type array must be 1-dimensional" ); if( !CV_IS_MASK_ARR(var_type)) CV_ERROR( CV_StsUnsupportedFormat, "type mask must be 8uC1 or 8sC1 array" ); tm_size = var_type->rows + var_type->cols - 1; tm_step = var_type->step ? var_type->step/CV_ELEM_SIZE(var_type->type) : 1; if( /*tm_size != var_count &&*/ tm_size != var_count + 1 ) CV_ERROR( CV_StsBadArg, "type mask must be of + 1 size" ); if( response_type && tm_size > var_count ) *response_type = var_type->data.ptr[var_count*tm_step] != 0; if( var_idx ) { if( !CV_IS_MAT(var_idx) || CV_MAT_TYPE(var_idx->type) != CV_32SC1 || var_idx->rows != 1 && var_idx->cols != 1 || !CV_IS_MAT_CONT(var_idx->type) ) CV_ERROR( CV_StsBadArg, "var index array should be continuous 1-dimensional integer vector" ); if( var_idx->rows + var_idx->cols - 1 > var_count ) CV_ERROR( CV_StsBadSize, "var index array is too large" ); map = var_idx->data.i; var_count = var_idx->rows + var_idx->cols - 1; } CV_CALL( out_var_type = cvCreateMat( 1, var_count, CV_8UC1 )); src = var_type->data.ptr; dst = out_var_type->data.ptr; for( i = 0; i < var_count; i++ ) { int idx = map ? map[i] : i; assert( (unsigned)idx < (unsigned)tm_size ); dst[i] = (uchar)(src[idx*tm_step] != 0); } __END__; return out_var_type; } CvMat* cvPreprocessOrderedResponses( const CvMat* responses, const CvMat* sample_idx, int sample_all ) { CvMat* out_responses = 0; CV_FUNCNAME( "cvPreprocessOrderedResponses" ); __BEGIN__; int i, r_type, r_step; const int* map = 0; float* dst; int sample_count = sample_all; if( !CV_IS_MAT(responses) ) CV_ERROR( CV_StsBadArg, "Invalid response array" ); if( responses->rows != 1 && responses->cols != 1 ) CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" ); if( responses->rows + responses->cols - 1 != sample_count ) CV_ERROR( CV_StsUnmatchedSizes, "Response array must contain as many elements as the total number of samples" ); r_type = CV_MAT_TYPE(responses->type); if( r_type != CV_32FC1 && r_type != CV_32SC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" ); r_step = responses->step ? responses->step / CV_ELEM_SIZE(responses->type) : 1; if( r_type == CV_32FC1 && CV_IS_MAT_CONT(responses->type) && !sample_idx ) { out_responses = (CvMat*)responses; EXIT; } if( sample_idx ) { if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 || sample_idx->rows != 1 && sample_idx->cols != 1 || !CV_IS_MAT_CONT(sample_idx->type) ) CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" ); if( sample_idx->rows + sample_idx->cols - 1 > sample_count ) CV_ERROR( CV_StsBadSize, "sample index array is too large" ); map = sample_idx->data.i; sample_count = sample_idx->rows + sample_idx->cols - 1; } CV_CALL( out_responses = cvCreateMat( 1, sample_count, CV_32FC1 )); dst = out_responses->data.fl; if( r_type == CV_32FC1 ) { const float* src = responses->data.fl; for( i = 0; i < sample_count; i++ ) { int idx = map ? map[i] : i; assert( (unsigned)idx < (unsigned)sample_all ); dst[i] = src[idx*r_step]; } } else { const int* src = responses->data.i; for( i = 0; i < sample_count; i++ ) { int idx = map ? map[i] : i; assert( (unsigned)idx < (unsigned)sample_all ); dst[i] = (float)src[idx*r_step]; } } __END__; return out_responses; } CvMat* cvPreprocessCategoricalResponses( const CvMat* responses, const CvMat* sample_idx, int sample_all, CvMat** out_response_map, CvMat** class_counts ) { CvMat* out_responses = 0; int** response_ptr = 0; CV_FUNCNAME( "cvPreprocessCategoricalResponses" ); if( out_response_map ) *out_response_map = 0; if( class_counts ) *class_counts = 0; __BEGIN__; int i, r_type, r_step; int cls_count = 1, prev_cls, prev_i; const int* map = 0; const int* srci; const float* srcfl; int* dst; int* cls_map; int* cls_counts = 0; int sample_count = sample_all; if( !CV_IS_MAT(responses) ) CV_ERROR( CV_StsBadArg, "Invalid response array" ); if( responses->rows != 1 && responses->cols != 1 ) CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" ); if( responses->rows + responses->cols - 1 != sample_count ) CV_ERROR( CV_StsUnmatchedSizes, "Response array must contain as many elements as the total number of samples" ); r_type = CV_MAT_TYPE(responses->type); if( r_type != CV_32FC1 && r_type != CV_32SC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" ); r_step = responses->step ? responses->step / CV_ELEM_SIZE(responses->type) : 1; if( sample_idx ) { if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 || sample_idx->rows != 1 && sample_idx->cols != 1 || !CV_IS_MAT_CONT(sample_idx->type) ) CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" ); if( sample_idx->rows + sample_idx->cols - 1 > sample_count ) CV_ERROR( CV_StsBadSize, "sample index array is too large" ); map = sample_idx->data.i; sample_count = sample_idx->rows + sample_idx->cols - 1; } CV_CALL( out_responses = cvCreateMat( 1, sample_count, CV_32SC1 )); if( !out_response_map ) CV_ERROR( CV_StsNullPtr, "out_response_map pointer is NULL" ); CV_CALL( response_ptr = (int**)cvAlloc( sample_count*sizeof(response_ptr[0]))); srci = responses->data.i; srcfl = responses->data.fl; dst = out_responses->data.i; for( i = 0; i < sample_count; i++ ) { int idx = map ? map[i] : i; assert( (unsigned)idx < (unsigned)sample_all ); if( r_type == CV_32SC1 ) dst[i] = srci[idx*r_step]; else { float rf = srcfl[idx*r_step]; int ri = cvRound(rf); if( ri != rf ) { char buf[100]; sprintf( buf, "response #%d is not integral", idx ); CV_ERROR( CV_StsBadArg, buf ); } dst[i] = ri; } response_ptr[i] = dst + i; } qsort( response_ptr, sample_count, sizeof(int*), icvCmpIntegersPtr ); // count the classes for( i = 1; i < sample_count; i++ ) cls_count += *response_ptr[i] != *response_ptr[i-1]; if( cls_count < 2 ) CV_ERROR( CV_StsBadArg, "There is only a single class" ); CV_CALL( *out_response_map = cvCreateMat( 1, cls_count, CV_32SC1 )); if( class_counts ) { CV_CALL( *class_counts = cvCreateMat( 1, cls_count, CV_32SC1 )); cls_counts = (*class_counts)->data.i; } // compact the class indices and build the map prev_cls = ~*response_ptr[0]; cls_count = -1; cls_map = (*out_response_map)->data.i; for( i = 0, prev_i = -1; i < sample_count; i++ ) { int cur_cls = *response_ptr[i]; if( cur_cls != prev_cls ) { if( cls_counts && cls_count >= 0 ) cls_counts[cls_count] = i - prev_i; cls_map[++cls_count] = prev_cls = cur_cls; prev_i = i; } *response_ptr[i] = cls_count; } if( cls_counts ) cls_counts[cls_count] = i - prev_i; __END__; cvFree( &response_ptr ); return out_responses; } const float** cvGetTrainSamples( const CvMat* train_data, int tflag, const CvMat* var_idx, const CvMat* sample_idx, int* _var_count, int* _sample_count, bool always_copy_data ) { float** samples = 0; CV_FUNCNAME( "cvGetTrainSamples" ); __BEGIN__; int i, j, var_count, sample_count, s_step, v_step; bool copy_data; const float* data; const int *s_idx, *v_idx; if( !CV_IS_MAT(train_data) ) CV_ERROR( CV_StsBadArg, "Invalid or NULL training data matrix" ); var_count = var_idx ? var_idx->cols + var_idx->rows - 1 : tflag == CV_ROW_SAMPLE ? train_data->cols : train_data->rows; sample_count = sample_idx ? sample_idx->cols + sample_idx->rows - 1 : tflag == CV_ROW_SAMPLE ? train_data->rows : train_data->cols; if( _var_count ) *_var_count = var_count; if( _sample_count ) *_sample_count = sample_count; copy_data = tflag != CV_ROW_SAMPLE || var_idx || always_copy_data; CV_CALL( samples = (float**)cvAlloc(sample_count*sizeof(samples[0]) + (copy_data ? 1 : 0)*var_count*sample_count*sizeof(samples[0][0])) ); data = train_data->data.fl; s_step = train_data->step / sizeof(samples[0][0]); v_step = 1; s_idx = sample_idx ? sample_idx->data.i : 0; v_idx = var_idx ? var_idx->data.i : 0; if( !copy_data ) { for( i = 0; i < sample_count; i++ ) samples[i] = (float*)(data + (s_idx ? s_idx[i] : i)*s_step); } else { samples[0] = (float*)(samples + sample_count); if( tflag != CV_ROW_SAMPLE ) CV_SWAP( s_step, v_step, i ); for( i = 0; i < sample_count; i++ ) { float* dst = samples[i] = samples[0] + i*var_count; const float* src = data + (s_idx ? s_idx[i] : i)*s_step; if( !v_idx ) for( j = 0; j < var_count; j++ ) dst[j] = src[j*v_step]; else for( j = 0; j < var_count; j++ ) dst[j] = src[v_idx[j]*v_step]; } } __END__; return (const float**)samples; } void cvCheckTrainData( const CvMat* train_data, int tflag, const CvMat* missing_mask, int* var_all, int* sample_all ) { CV_FUNCNAME( "cvCheckTrainData" ); if( var_all ) *var_all = 0; if( sample_all ) *sample_all = 0; __BEGIN__; // check parameter types and sizes if( !CV_IS_MAT(train_data) || CV_MAT_TYPE(train_data->type) != CV_32FC1 ) CV_ERROR( CV_StsBadArg, "train data must be floating-point matrix" ); if( missing_mask ) { if( !CV_IS_MAT(missing_mask) || !CV_IS_MASK_ARR(missing_mask) || !CV_ARE_SIZES_EQ(train_data, missing_mask) ) CV_ERROR( CV_StsBadArg, "missing value mask must be 8-bit matrix of the same size as training data" ); } if( tflag != CV_ROW_SAMPLE && tflag != CV_COL_SAMPLE ) CV_ERROR( CV_StsBadArg, "Unknown training data layout (must be CV_ROW_SAMPLE or CV_COL_SAMPLE)" ); if( var_all ) *var_all = tflag == CV_ROW_SAMPLE ? train_data->cols : train_data->rows; if( sample_all ) *sample_all = tflag == CV_ROW_SAMPLE ? train_data->rows : train_data->cols; __END__; } int cvPrepareTrainData( const char* /*funcname*/, const CvMat* train_data, int tflag, const CvMat* responses, int response_type, const CvMat* var_idx, const CvMat* sample_idx, bool always_copy_data, const float*** out_train_samples, int* _sample_count, int* _var_count, int* _var_all, CvMat** out_responses, CvMat** out_response_map, CvMat** out_var_idx, CvMat** out_sample_idx ) { int ok = 0; CvMat* _var_idx = 0; CvMat* _sample_idx = 0; CvMat* _responses = 0; int sample_all = 0, sample_count = 0, var_all = 0, var_count = 0; CV_FUNCNAME( "cvPrepareTrainData" ); // step 0. clear all the output pointers to ensure we do not try // to call free() with uninitialized pointers if( out_responses ) *out_responses = 0; if( out_response_map ) *out_response_map = 0; if( out_var_idx ) *out_var_idx = 0; if( out_sample_idx ) *out_sample_idx = 0; if( out_train_samples ) *out_train_samples = 0; if( _sample_count ) *_sample_count = 0; if( _var_count ) *_var_count = 0; if( _var_all ) *_var_all = 0; __BEGIN__; if( !out_train_samples ) CV_ERROR( CV_StsBadArg, "output pointer to train samples is NULL" ); CV_CALL( cvCheckTrainData( train_data, tflag, 0, &var_all, &sample_all )); if( sample_idx ) CV_CALL( _sample_idx = cvPreprocessIndexArray( sample_idx, sample_all )); if( var_idx ) CV_CALL( _var_idx = cvPreprocessIndexArray( var_idx, var_all )); if( responses ) { if( !out_responses ) CV_ERROR( CV_StsNullPtr, "output response pointer is NULL" ); if( response_type == CV_VAR_NUMERICAL ) { CV_CALL( _responses = cvPreprocessOrderedResponses( responses, _sample_idx, sample_all )); } else { CV_CALL( _responses = cvPreprocessCategoricalResponses( responses, _sample_idx, sample_all, out_response_map, 0 )); } } CV_CALL( *out_train_samples = cvGetTrainSamples( train_data, tflag, _var_idx, _sample_idx, &var_count, &sample_count, always_copy_data )); ok = 1; __END__; if( ok ) { if( out_responses ) *out_responses = _responses, _responses = 0; if( out_var_idx ) *out_var_idx = _var_idx, _var_idx = 0; if( out_sample_idx ) *out_sample_idx = _sample_idx, _sample_idx = 0; if( _sample_count ) *_sample_count = sample_count; if( _var_count ) *_var_count = var_count; if( _var_all ) *_var_all = var_all; } else { if( out_response_map ) cvReleaseMat( out_response_map ); cvFree( out_train_samples ); } if( _responses != responses ) cvReleaseMat( &_responses ); cvReleaseMat( &_var_idx ); cvReleaseMat( &_sample_idx ); return ok; } typedef struct CvSampleResponsePair { const float* sample; const uchar* mask; int response; int index; } CvSampleResponsePair; static int CV_CDECL icvCmpSampleResponsePairs( const void* a, const void* b ) { int ra = ((const CvSampleResponsePair*)a)->response; int rb = ((const CvSampleResponsePair*)b)->response; int ia = ((const CvSampleResponsePair*)a)->index; int ib = ((const CvSampleResponsePair*)b)->index; return ra < rb ? -1 : ra > rb ? 1 : ia - ib; //return (ra > rb ? -1 : 0)|(ra < rb); } void cvSortSamplesByClasses( const float** samples, const CvMat* classes, int* class_ranges, const uchar** mask ) { CvSampleResponsePair* pairs = 0; CV_FUNCNAME( "cvSortSamplesByClasses" ); __BEGIN__; int i, k = 0, sample_count; if( !samples || !classes || !class_ranges ) CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: some of the args are NULL pointers" ); if( classes->rows != 1 || CV_MAT_TYPE(classes->type) != CV_32SC1 ) CV_ERROR( CV_StsBadArg, "classes array must be a single row of integers" ); sample_count = classes->cols; CV_CALL( pairs = (CvSampleResponsePair*)cvAlloc( (sample_count+1)*sizeof(pairs[0]))); for( i = 0; i < sample_count; i++ ) { pairs[i].sample = samples[i]; pairs[i].mask = (mask) ? (mask[i]) : 0; pairs[i].response = classes->data.i[i]; pairs[i].index = i; assert( classes->data.i[i] >= 0 ); } qsort( pairs, sample_count, sizeof(pairs[0]), icvCmpSampleResponsePairs ); pairs[sample_count].response = -1; class_ranges[0] = 0; for( i = 0; i < sample_count; i++ ) { samples[i] = pairs[i].sample; if (mask) mask[i] = pairs[i].mask; classes->data.i[i] = pairs[i].response; if( pairs[i].response != pairs[i+1].response ) class_ranges[++k] = i+1; } __END__; cvFree( &pairs ); } void cvPreparePredictData( const CvArr* _sample, int dims_all, const CvMat* comp_idx, int class_count, const CvMat* prob, float** _row_sample, int as_sparse ) { float* row_sample = 0; int* inverse_comp_idx = 0; CV_FUNCNAME( "cvPreparePredictData" ); __BEGIN__; const CvMat* sample = (const CvMat*)_sample; float* sample_data; int sample_step; int is_sparse = CV_IS_SPARSE_MAT(sample); int d, sizes[CV_MAX_DIM]; int i, dims_selected; int vec_size; if( !is_sparse && !CV_IS_MAT(sample) ) CV_ERROR( !sample ? CV_StsNullPtr : CV_StsBadArg, "The sample is not a valid vector" ); if( cvGetElemType( sample ) != CV_32FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Input sample must have 32fC1 type" ); CV_CALL( d = cvGetDims( sample, sizes )); if( !(is_sparse && d == 1 || !is_sparse && d == 2 && (sample->rows == 1 || sample->cols == 1)) ) CV_ERROR( CV_StsBadSize, "Input sample must be 1-dimensional vector" ); if( d == 1 ) sizes[1] = 1; if( sizes[0] + sizes[1] - 1 != dims_all ) CV_ERROR( CV_StsUnmatchedSizes, "The sample size is different from what has been used for training" ); if( !_row_sample ) CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: The row_sample pointer is NULL" ); if( comp_idx && (!CV_IS_MAT(comp_idx) || comp_idx->rows != 1 || CV_MAT_TYPE(comp_idx->type) != CV_32SC1) ) CV_ERROR( CV_StsBadArg, "INTERNAL ERROR: invalid comp_idx" ); dims_selected = comp_idx ? comp_idx->cols : dims_all; if( prob ) { if( !CV_IS_MAT(prob) ) CV_ERROR( CV_StsBadArg, "The output matrix of probabilities is invalid" ); if( (prob->rows != 1 && prob->cols != 1) || CV_MAT_TYPE(prob->type) != CV_32FC1 && CV_MAT_TYPE(prob->type) != CV_64FC1 ) CV_ERROR( CV_StsBadSize, "The matrix of probabilities must be 1-dimensional vector of 32fC1 type" ); if( prob->rows + prob->cols - 1 != class_count ) CV_ERROR( CV_StsUnmatchedSizes, "The vector of probabilities must contain as many elements as " "the number of classes in the training set" ); } vec_size = !as_sparse ? dims_selected*sizeof(row_sample[0]) : (dims_selected + 1)*sizeof(CvSparseVecElem32f); if( CV_IS_MAT(sample) ) { sample_data = sample->data.fl; sample_step = sample->step / sizeof(row_sample[0]); if( !comp_idx && sample_step <= 1 && !as_sparse ) *_row_sample = sample_data; else { CV_CALL( row_sample = (float*)cvAlloc( vec_size )); if( !comp_idx ) for( i = 0; i < dims_selected; i++ ) row_sample[i] = sample_data[sample_step*i]; else { int* comp = comp_idx->data.i; if( !sample_step ) for( i = 0; i < dims_selected; i++ ) row_sample[i] = sample_data[comp[i]]; else for( i = 0; i < dims_selected; i++ ) row_sample[i] = sample_data[sample_step*comp[i]]; } *_row_sample = row_sample; } if( as_sparse ) { const float* src = (const float*)row_sample; CvSparseVecElem32f* dst = (CvSparseVecElem32f*)row_sample; dst[dims_selected].idx = -1; for( i = dims_selected - 1; i >= 0; i-- ) { dst[i].idx = i; dst[i].val = src[i]; } } } else { CvSparseNode* node; CvSparseMatIterator mat_iterator; const CvSparseMat* sparse = (const CvSparseMat*)sample; assert( is_sparse ); node = cvInitSparseMatIterator( sparse, &mat_iterator ); CV_CALL( row_sample = (float*)cvAlloc( vec_size )); if( comp_idx ) { CV_CALL( inverse_comp_idx = (int*)cvAlloc( dims_all*sizeof(int) )); memset( inverse_comp_idx, -1, dims_all*sizeof(int) ); for( i = 0; i < dims_selected; i++ ) inverse_comp_idx[comp_idx->data.i[i]] = i; } if( !as_sparse ) { memset( row_sample, 0, vec_size ); for( ; node != 0; node = cvGetNextSparseNode(&mat_iterator) ) { int idx = *CV_NODE_IDX( sparse, node ); if( inverse_comp_idx ) { idx = inverse_comp_idx[idx]; if( idx < 0 ) continue; } row_sample[idx] = *(float*)CV_NODE_VAL( sparse, node ); } } else { CvSparseVecElem32f* ptr = (CvSparseVecElem32f*)row_sample; for( ; node != 0; node = cvGetNextSparseNode(&mat_iterator) ) { int idx = *CV_NODE_IDX( sparse, node ); if( inverse_comp_idx ) { idx = inverse_comp_idx[idx]; if( idx < 0 ) continue; } ptr->idx = idx; ptr->val = *(float*)CV_NODE_VAL( sparse, node ); ptr++; } qsort( row_sample, ptr - (CvSparseVecElem32f*)row_sample, sizeof(ptr[0]), icvCmpSparseVecElems ); ptr->idx = -1; } *_row_sample = row_sample; } __END__; if( inverse_comp_idx ) cvFree( &inverse_comp_idx ); if( cvGetErrStatus() < 0 && _row_sample ) { cvFree( &row_sample ); *_row_sample = 0; } } static void icvConvertDataToSparse( const uchar* src, int src_step, int src_type, uchar* dst, int dst_step, int dst_type, CvSize size, int* idx ) { CV_FUNCNAME( "icvConvertDataToSparse" ); __BEGIN__; int i, j; src_type = CV_MAT_TYPE(src_type); dst_type = CV_MAT_TYPE(dst_type); if( CV_MAT_CN(src_type) != 1 || CV_MAT_CN(dst_type) != 1 ) CV_ERROR( CV_StsUnsupportedFormat, "The function supports only single-channel arrays" ); if( src_step == 0 ) src_step = CV_ELEM_SIZE(src_type); if( dst_step == 0 ) dst_step = CV_ELEM_SIZE(dst_type); // if there is no "idx" and if both arrays are continuous, // do the whole processing (copying or conversion) in a single loop if( !idx && CV_ELEM_SIZE(src_type)*size.width == src_step && CV_ELEM_SIZE(dst_type)*size.width == dst_step ) { size.width *= size.height; size.height = 1; } if( src_type == dst_type ) { int full_width = CV_ELEM_SIZE(dst_type)*size.width; if( full_width == sizeof(int) ) // another common case: copy int's or float's for( i = 0; i < size.height; i++, src += src_step ) *(int*)(dst + dst_step*(idx ? idx[i] : i)) = *(int*)src; else for( i = 0; i < size.height; i++, src += src_step ) memcpy( dst + dst_step*(idx ? idx[i] : i), src, full_width ); } else if( src_type == CV_32SC1 && (dst_type == CV_32FC1 || dst_type == CV_64FC1) ) for( i = 0; i < size.height; i++, src += src_step ) { uchar* _dst = dst + dst_step*(idx ? idx[i] : i); if( dst_type == CV_32FC1 ) for( j = 0; j < size.width; j++ ) ((float*)_dst)[j] = (float)((int*)src)[j]; else for( j = 0; j < size.width; j++ ) ((double*)_dst)[j] = ((int*)src)[j]; } else if( (src_type == CV_32FC1 || src_type == CV_64FC1) && dst_type == CV_32SC1 ) for( i = 0; i < size.height; i++, src += src_step ) { uchar* _dst = dst + dst_step*(idx ? idx[i] : i); if( src_type == CV_32FC1 ) for( j = 0; j < size.width; j++ ) ((int*)_dst)[j] = cvRound(((float*)src)[j]); else for( j = 0; j < size.width; j++ ) ((int*)_dst)[j] = cvRound(((double*)src)[j]); } else if( src_type == CV_32FC1 && dst_type == CV_64FC1 || src_type == CV_64FC1 && dst_type == CV_32FC1 ) for( i = 0; i < size.height; i++, src += src_step ) { uchar* _dst = dst + dst_step*(idx ? idx[i] : i); if( src_type == CV_32FC1 ) for( j = 0; j < size.width; j++ ) ((double*)_dst)[j] = ((float*)src)[j]; else for( j = 0; j < size.width; j++ ) ((float*)_dst)[j] = (float)((double*)src)[j]; } else CV_ERROR( CV_StsUnsupportedFormat, "Unsupported combination of input and output vectors" ); __END__; } void cvWritebackLabels( const CvMat* labels, CvMat* dst_labels, const CvMat* centers, CvMat* dst_centers, const CvMat* probs, CvMat* dst_probs, const CvMat* sample_idx, int samples_all, const CvMat* comp_idx, int dims_all ) { CV_FUNCNAME( "cvWritebackLabels" ); __BEGIN__; int samples_selected = samples_all, dims_selected = dims_all; if( dst_labels && !CV_IS_MAT(dst_labels) ) CV_ERROR( CV_StsBadArg, "Array of output labels is not a valid matrix" ); if( dst_centers ) if( !ICV_IS_MAT_OF_TYPE(dst_centers, CV_32FC1) && !ICV_IS_MAT_OF_TYPE(dst_centers, CV_64FC1) ) CV_ERROR( CV_StsBadArg, "Array of cluster centers is not a valid matrix" ); if( dst_probs && !CV_IS_MAT(dst_probs) ) CV_ERROR( CV_StsBadArg, "Probability matrix is not valid" ); if( sample_idx ) { CV_ASSERT( sample_idx->rows == 1 && CV_MAT_TYPE(sample_idx->type) == CV_32SC1 ); samples_selected = sample_idx->cols; } if( comp_idx ) { CV_ASSERT( comp_idx->rows == 1 && CV_MAT_TYPE(comp_idx->type) == CV_32SC1 ); dims_selected = comp_idx->cols; } if( dst_labels && (!labels || labels->data.ptr != dst_labels->data.ptr) ) { if( !labels ) CV_ERROR( CV_StsNullPtr, "NULL labels" ); CV_ASSERT( labels->rows == 1 ); if( dst_labels->rows != 1 && dst_labels->cols != 1 ) CV_ERROR( CV_StsBadSize, "Array of output labels should be 1d vector" ); if( dst_labels->rows + dst_labels->cols - 1 != samples_all ) CV_ERROR( CV_StsUnmatchedSizes, "Size of vector of output labels is not equal to the total number of input samples" ); CV_ASSERT( labels->cols == samples_selected ); CV_CALL( icvConvertDataToSparse( labels->data.ptr, labels->step, labels->type, dst_labels->data.ptr, dst_labels->step, dst_labels->type, cvSize( 1, samples_selected ), sample_idx ? sample_idx->data.i : 0 )); } if( dst_centers && (!centers || centers->data.ptr != dst_centers->data.ptr) ) { int i; if( !centers ) CV_ERROR( CV_StsNullPtr, "NULL centers" ); if( centers->rows != dst_centers->rows ) CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of rows in matrix of output centers" ); if( dst_centers->cols != dims_all ) CV_ERROR( CV_StsUnmatchedSizes, "Number of columns in matrix of output centers is " "not equal to the total number of components in the input samples" ); CV_ASSERT( centers->cols == dims_selected ); for( i = 0; i < centers->rows; i++ ) CV_CALL( icvConvertDataToSparse( centers->data.ptr + i*centers->step, 0, centers->type, dst_centers->data.ptr + i*dst_centers->step, 0, dst_centers->type, cvSize( 1, dims_selected ), comp_idx ? comp_idx->data.i : 0 )); } if( dst_probs && (!probs || probs->data.ptr != dst_probs->data.ptr) ) { if( !probs ) CV_ERROR( CV_StsNullPtr, "NULL probs" ); if( probs->cols != dst_probs->cols ) CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of columns in output probability matrix" ); if( dst_probs->rows != samples_all ) CV_ERROR( CV_StsUnmatchedSizes, "Number of rows in output probability matrix is " "not equal to the total number of input samples" ); CV_ASSERT( probs->rows == samples_selected ); CV_CALL( icvConvertDataToSparse( probs->data.ptr, probs->step, probs->type, dst_probs->data.ptr, dst_probs->step, dst_probs->type, cvSize( probs->cols, samples_selected ), sample_idx ? sample_idx->data.i : 0 )); } __END__; } #if 0 CV_IMPL void cvStatModelMultiPredict( const CvStatModel* stat_model, const CvArr* predict_input, int flags, CvMat* predict_output, CvMat* probs, const CvMat* sample_idx ) { CvMemStorage* storage = 0; CvMat* sample_idx_buffer = 0; CvSparseMat** sparse_rows = 0; int samples_selected = 0; CV_FUNCNAME( "cvStatModelMultiPredict" ); __BEGIN__; int i; int predict_output_step = 1, sample_idx_step = 1; int type; int d, sizes[CV_MAX_DIM]; int tflag = flags == CV_COL_SAMPLE; int samples_all, dims_all; int is_sparse = CV_IS_SPARSE_MAT(predict_input); CvMat predict_input_part; CvArr* sample = &predict_input_part; CvMat probs_part; CvMat* probs1 = probs ? &probs_part : 0; if( !CV_IS_STAT_MODEL(stat_model) ) CV_ERROR( !stat_model ? CV_StsNullPtr : CV_StsBadArg, "Invalid statistical model" ); if( !stat_model->predict ) CV_ERROR( CV_StsNotImplemented, "There is no \"predict\" method" ); if( !predict_input || !predict_output ) CV_ERROR( CV_StsNullPtr, "NULL input or output matrices" ); if( !is_sparse && !CV_IS_MAT(predict_input) ) CV_ERROR( CV_StsBadArg, "predict_input should be a matrix or a sparse matrix" ); if( !CV_IS_MAT(predict_output) ) CV_ERROR( CV_StsBadArg, "predict_output should be a matrix" ); type = cvGetElemType( predict_input ); if( type != CV_32FC1 || (CV_MAT_TYPE(predict_output->type) != CV_32FC1 && CV_MAT_TYPE(predict_output->type) != CV_32SC1 )) CV_ERROR( CV_StsUnsupportedFormat, "The input or output matrix has unsupported format" ); CV_CALL( d = cvGetDims( predict_input, sizes )); if( d > 2 ) CV_ERROR( CV_StsBadSize, "The input matrix should be 1- or 2-dimensional" ); if( !tflag ) { samples_all = samples_selected = sizes[0]; dims_all = sizes[1]; } else { samples_all = samples_selected = sizes[1]; dims_all = sizes[0]; } if( sample_idx ) { if( !CV_IS_MAT(sample_idx) ) CV_ERROR( CV_StsBadArg, "Invalid sample_idx matrix" ); if( sample_idx->cols != 1 && sample_idx->rows != 1 ) CV_ERROR( CV_StsBadSize, "sample_idx must be 1-dimensional matrix" ); samples_selected = sample_idx->rows + sample_idx->cols - 1; if( CV_MAT_TYPE(sample_idx->type) == CV_32SC1 ) { if( samples_selected > samples_all ) CV_ERROR( CV_StsBadSize, "sample_idx is too large vector" ); } else if( samples_selected != samples_all ) CV_ERROR( CV_StsUnmatchedSizes, "sample_idx has incorrect size" ); sample_idx_step = sample_idx->step ? sample_idx->step / CV_ELEM_SIZE(sample_idx->type) : 1; } if( predict_output->rows != 1 && predict_output->cols != 1 ) CV_ERROR( CV_StsBadSize, "predict_output should be a 1-dimensional matrix" ); if( predict_output->rows + predict_output->cols - 1 != samples_all ) CV_ERROR( CV_StsUnmatchedSizes, "predict_output and predict_input have uncoordinated sizes" ); predict_output_step = predict_output->step ? predict_output->step / CV_ELEM_SIZE(predict_output->type) : 1; if( probs ) { if( !CV_IS_MAT(probs) ) CV_ERROR( CV_StsBadArg, "Invalid matrix of probabilities" ); if( probs->rows != samples_all ) CV_ERROR( CV_StsUnmatchedSizes, "matrix of probabilities must have as many rows as the total number of samples" ); if( CV_MAT_TYPE(probs->type) != CV_32FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "matrix of probabilities must have 32fC1 type" ); } if( is_sparse ) { CvSparseNode* node; CvSparseMatIterator mat_iterator; CvSparseMat* sparse = (CvSparseMat*)predict_input; if( sample_idx && CV_MAT_TYPE(sample_idx->type) == CV_32SC1 ) { CV_CALL( sample_idx_buffer = cvCreateMat( 1, samples_all, CV_8UC1 )); cvZero( sample_idx_buffer ); for( i = 0; i < samples_selected; i++ ) sample_idx_buffer->data.ptr[sample_idx->data.i[i*sample_idx_step]] = 1; samples_selected = samples_all; sample_idx = sample_idx_buffer; sample_idx_step = 1; } CV_CALL( sparse_rows = (CvSparseMat**)cvAlloc( samples_selected*sizeof(sparse_rows[0]))); for( i = 0; i < samples_selected; i++ ) { if( sample_idx && sample_idx->data.ptr[i*sample_idx_step] == 0 ) continue; CV_CALL( sparse_rows[i] = cvCreateSparseMat( 1, &dims_all, type )); if( !storage ) storage = sparse_rows[i]->heap->storage; else { // hack: to decrease memory footprint, make all the sparse matrices // reside in the same storage int elem_size = sparse_rows[i]->heap->elem_size; cvReleaseMemStorage( &sparse_rows[i]->heap->storage ); sparse_rows[i]->heap = cvCreateSet( 0, sizeof(CvSet), elem_size, storage ); } } // put each row (or column) of predict_input into separate sparse matrix. node = cvInitSparseMatIterator( sparse, &mat_iterator ); for( ; node != 0; node = cvGetNextSparseNode( &mat_iterator )) { int* idx = CV_NODE_IDX( sparse, node ); int idx0 = idx[tflag ^ 1]; int idx1 = idx[tflag]; if( sample_idx && sample_idx->data.ptr[idx0*sample_idx_step] == 0 ) continue; assert( sparse_rows[idx0] != 0 ); *(float*)cvPtrND( sparse, &idx1, 0, 1, 0 ) = *(float*)CV_NODE_VAL( sparse, node ); } } for( i = 0; i < samples_selected; i++ ) { int idx = i; float response; if( sample_idx ) { if( CV_MAT_TYPE(sample_idx->type) == CV_32SC1 ) { idx = sample_idx->data.i[i*sample_idx_step]; if( (unsigned)idx >= (unsigned)samples_all ) CV_ERROR( CV_StsOutOfRange, "Some of sample_idx elements are out of range" ); } else if( CV_MAT_TYPE(sample_idx->type) == CV_8UC1 && sample_idx->data.ptr[i*sample_idx_step] == 0 ) continue; } if( !is_sparse ) { if( !tflag ) cvGetRow( predict_input, &predict_input_part, idx ); else { cvGetCol( predict_input, &predict_input_part, idx ); } } else sample = sparse_rows[idx]; if( probs ) cvGetRow( probs, probs1, idx ); CV_CALL( response = stat_model->predict( stat_model, (CvMat*)sample, probs1 )); if( CV_MAT_TYPE(predict_output->type) == CV_32FC1 ) predict_output->data.fl[idx*predict_output_step] = response; else { CV_ASSERT( cvRound(response) == response ); predict_output->data.i[idx*predict_output_step] = cvRound(response); } } __END__; if( sparse_rows ) { int i; for( i = 0; i < samples_selected; i++ ) if( sparse_rows[i] ) { sparse_rows[i]->heap->storage = 0; cvReleaseSparseMat( &sparse_rows[i] ); } cvFree( &sparse_rows ); } cvReleaseMat( &sample_idx_buffer ); cvReleaseMemStorage( &storage ); } #endif // By P. Yarykin - begin - void cvCombineResponseMaps (CvMat* _responses, const CvMat* old_response_map, CvMat* new_response_map, CvMat** out_response_map) { int** old_data = NULL; int** new_data = NULL; CV_FUNCNAME ("cvCombineResponseMaps"); __BEGIN__ int i,j; int old_n, new_n, out_n; int samples, free_response; int* first; int* responses; int* out_data; if( out_response_map ) *out_response_map = 0; // Check input data. if ((!ICV_IS_MAT_OF_TYPE (_responses, CV_32SC1)) || (!ICV_IS_MAT_OF_TYPE (old_response_map, CV_32SC1)) || (!ICV_IS_MAT_OF_TYPE (new_response_map, CV_32SC1))) { CV_ERROR (CV_StsBadArg, "Some of input arguments is not the CvMat") } // Prepare sorted responses. first = new_response_map->data.i; new_n = new_response_map->cols; CV_CALL (new_data = (int**)cvAlloc (new_n * sizeof (new_data[0]))); for (i = 0; i < new_n; i++) new_data[i] = first + i; qsort (new_data, new_n, sizeof(int*), icvCmpIntegersPtr); first = old_response_map->data.i; old_n = old_response_map->cols; CV_CALL (old_data = (int**)cvAlloc (old_n * sizeof (old_data[0]))); for (i = 0; i < old_n; i++) old_data[i] = first + i; qsort (old_data, old_n, sizeof(int*), icvCmpIntegersPtr); // Count the number of different responses. for (i = 0, j = 0, out_n = 0; i < old_n && j < new_n; out_n++) { if (*old_data[i] == *new_data[j]) { i++; j++; } else if (*old_data[i] < *new_data[j]) i++; else j++; } out_n += old_n - i + new_n - j; // Create and fill the result response maps. CV_CALL (*out_response_map = cvCreateMat (1, out_n, CV_32SC1)); out_data = (*out_response_map)->data.i; memcpy (out_data, first, old_n * sizeof (int)); free_response = old_n; for (i = 0, j = 0; i < old_n && j < new_n; ) { if (*old_data[i] == *new_data[j]) { *new_data[j] = (int)(old_data[i] - first); i++; j++; } else if (*old_data[i] < *new_data[j]) i++; else { out_data[free_response] = *new_data[j]; *new_data[j] = free_response++; j++; } } for (; j < new_n; j++) { out_data[free_response] = *new_data[j]; *new_data[j] = free_response++; } CV_ASSERT (free_response == out_n); // Change according to out response map. samples = _responses->cols + _responses->rows - 1; responses = _responses->data.i; first = new_response_map->data.i; for (i = 0; i < samples; i++) { responses[i] = first[responses[i]]; } __END__ cvFree(&old_data); cvFree(&new_data); } int icvGetNumberOfCluster( double* prob_vector, int num_of_clusters, float r, float outlier_thresh, int normalize_probs ) { int max_prob_loc = 0; CV_FUNCNAME("icvGetNumberOfCluster"); __BEGIN__; double prob, maxprob, sum; int i; CV_ASSERT(prob_vector); CV_ASSERT(num_of_clusters >= 0); maxprob = prob_vector[0]; max_prob_loc = 0; sum = maxprob; for( i = 1; i < num_of_clusters; i++ ) { prob = prob_vector[i]; sum += prob; if( prob > maxprob ) { max_prob_loc = i; maxprob = prob; } } if( normalize_probs && fabs(sum - 1.) > FLT_EPSILON ) { for( i = 0; i < num_of_clusters; i++ ) prob_vector[i] /= sum; } if( fabs(r - 1.) > FLT_EPSILON && fabs(sum - 1.) < outlier_thresh ) max_prob_loc = -1; __END__; return max_prob_loc; } // End of icvGetNumberOfCluster void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r, const CvMat* labels ) { CvMat* counts = 0; CV_FUNCNAME("icvFindClusterLabels"); __BEGIN__; int nclusters, nsamples; int i, j; double* probs_data; CV_ASSERT( ICV_IS_MAT_OF_TYPE(probs, CV_64FC1) ); CV_ASSERT( ICV_IS_MAT_OF_TYPE(labels, CV_32SC1) ); nclusters = probs->cols; nsamples = probs->rows; CV_ASSERT( nsamples == labels->cols ); CV_CALL( counts = cvCreateMat( 1, nclusters + 1, CV_32SC1 ) ); CV_CALL( cvSetZero( counts )); for( i = 0; i < nsamples; i++ ) { labels->data.i[i] = icvGetNumberOfCluster( probs->data.db + i*probs->cols, nclusters, r, outlier_thresh, 1 ); counts->data.i[labels->data.i[i] + 1]++; } CV_ASSERT((int)cvSum(counts).val[0] == nsamples); // Filling empty clusters with the vector, that has the maximal probability for( j = 0; j < nclusters; j++ ) // outliers are ignored { int maxprob_loc = -1; double maxprob = 0; if( counts->data.i[j+1] ) // j-th class is not empty continue; // look for the presentative, which is not lonely in it's cluster // and that has a maximal probability among all these vectors probs_data = probs->data.db; for( i = 0; i < nsamples; i++, probs_data++ ) { int label = labels->data.i[i]; double prob; if( counts->data.i[label+1] == 0 || (counts->data.i[label+1] <= 1 && label != -1) ) continue; prob = *probs_data; if( prob >= maxprob ) { maxprob = prob; maxprob_loc = i; } } // maxprob_loc == 0 <=> number of vectors less then number of clusters CV_ASSERT( maxprob_loc >= 0 ); counts->data.i[labels->data.i[maxprob_loc] + 1]--; labels->data.i[maxprob_loc] = j; counts->data.i[j + 1]++; } __END__; cvReleaseMat( &counts ); } // End of icvFindClusterLabels /* End of file */