/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathOpsTypes_DEFINED #define SkPathOpsTypes_DEFINED #include // for FLT_EPSILON #include // for fabs, sqrt #include "SkFloatingPoint.h" #include "SkPath.h" #include "SkPathOps.h" #include "SkPathOpsDebug.h" #include "SkScalar.h" enum SkPathOpsMask { kWinding_PathOpsMask = -1, kNo_PathOpsMask = 0, kEvenOdd_PathOpsMask = 1 }; class SkOpCoincidence; class SkOpContour; class SkOpContourHead; class SkOpGlobalState { public: SkOpGlobalState(SkOpCoincidence* coincidence, SkOpContourHead* head) : fCoincidence(coincidence) , fContourHead(head) , fWindingFailed(false) , fAngleCoincidence(false) #if DEBUG_VALIDATE , fPhase(kIntersecting) #endif SkDEBUGPARAMS(fAngleID(0)) SkDEBUGPARAMS(fContourID(0)) SkDEBUGPARAMS(fPtTID(0)) SkDEBUGPARAMS(fSegmentID(0)) SkDEBUGPARAMS(fSpanID(0)) { } #if DEBUG_VALIDATE enum Phase { kIntersecting, kWalking }; #endif enum { kMaxWindingTries = 10 }; bool angleCoincidence() { return fAngleCoincidence; } SkOpCoincidence* coincidence() { return fCoincidence; } SkOpContourHead* contourHead() { return fContourHead; } #ifdef SK_DEBUG const struct SkOpAngle* debugAngle(int id) const; SkOpContour* debugContour(int id); const class SkOpPtT* debugPtT(int id) const; const class SkOpSegment* debugSegment(int id) const; const class SkOpSpanBase* debugSpan(int id) const; int nextAngleID() { return ++fAngleID; } int nextContourID() { return ++fContourID; } int nextPtTID() { return ++fPtTID; } int nextSegmentID() { return ++fSegmentID; } int nextSpanID() { return ++fSpanID; } #endif #if DEBUG_VALIDATE Phase phase() const { return fPhase; } #endif void setAngleCoincidence() { fAngleCoincidence = true; } void setContourHead(SkOpContourHead* contourHead) { fContourHead = contourHead; } #if DEBUG_VALIDATE void setPhase(Phase phase) { SkASSERT(fPhase != phase); fPhase = phase; } #endif // called in very rare cases where angles are sorted incorrectly -- signfies op will fail void setWindingFailed() { fWindingFailed = true; } bool windingFailed() const { return fWindingFailed; } private: SkOpCoincidence* fCoincidence; SkOpContourHead* fContourHead; bool fWindingFailed; bool fAngleCoincidence; #if DEBUG_VALIDATE Phase fPhase; #endif #ifdef SK_DEBUG int fAngleID; int fContourID; int fPtTID; int fSegmentID; int fSpanID; #endif }; // Use Almost Equal when comparing coordinates. Use epsilon to compare T values. bool AlmostEqualUlps(float a, float b); inline bool AlmostEqualUlps(double a, double b) { return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } // Use Almost Dequal when comparing should not special case denormalized values. bool AlmostDequalUlps(float a, float b); bool AlmostDequalUlps(double a, double b); bool NotAlmostEqualUlps(float a, float b); inline bool NotAlmostEqualUlps(double a, double b) { return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool NotAlmostDequalUlps(float a, float b); inline bool NotAlmostDequalUlps(double a, double b) { return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } // Use Almost Bequal when comparing coordinates in conjunction with between. bool AlmostBequalUlps(float a, float b); inline bool AlmostBequalUlps(double a, double b) { return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool AlmostPequalUlps(float a, float b); inline bool AlmostPequalUlps(double a, double b) { return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool RoughlyEqualUlps(float a, float b); inline bool RoughlyEqualUlps(double a, double b) { return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool AlmostLessUlps(float a, float b); inline bool AlmostLessUlps(double a, double b) { return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool AlmostLessOrEqualUlps(float a, float b); inline bool AlmostLessOrEqualUlps(double a, double b) { return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); } bool AlmostBetweenUlps(float a, float b, float c); inline bool AlmostBetweenUlps(double a, double b, double c) { return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c)); } int UlpsDistance(float a, float b); inline int UlpsDistance(double a, double b) { return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b)); } // FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23) // DBL_EPSILON == 2.22045e-16 const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON; const double FLT_EPSILON_HALF = FLT_EPSILON / 2; const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2; const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16; const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON; const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON); const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON; const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16; const double ROUGH_EPSILON = FLT_EPSILON * 64; const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256; const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048; const double BUMP_EPSILON = FLT_EPSILON * 4096; inline bool zero_or_one(double x) { return x == 0 || x == 1; } inline bool approximately_zero(double x) { return fabs(x) < FLT_EPSILON; } inline bool precisely_zero(double x) { return fabs(x) < DBL_EPSILON_ERR; } inline bool precisely_subdivide_zero(double x) { return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR; } inline bool approximately_zero(float x) { return fabs(x) < FLT_EPSILON; } inline bool approximately_zero_cubed(double x) { return fabs(x) < FLT_EPSILON_CUBED; } inline bool approximately_zero_half(double x) { return fabs(x) < FLT_EPSILON_HALF; } inline bool approximately_zero_double(double x) { return fabs(x) < FLT_EPSILON_DOUBLE; } inline bool approximately_zero_orderable(double x) { return fabs(x) < FLT_EPSILON_ORDERABLE_ERR; } inline bool approximately_zero_squared(double x) { return fabs(x) < FLT_EPSILON_SQUARED; } inline bool approximately_zero_sqrt(double x) { return fabs(x) < FLT_EPSILON_SQRT; } inline bool roughly_zero(double x) { return fabs(x) < ROUGH_EPSILON; } inline bool approximately_zero_inverse(double x) { return fabs(x) > FLT_EPSILON_INVERSE; } // OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead inline bool approximately_zero_when_compared_to(double x, double y) { return x == 0 || fabs(x) < fabs(y * FLT_EPSILON); } inline bool precisely_zero_when_compared_to(double x, double y) { return x == 0 || fabs(x) < fabs(y * DBL_EPSILON); } // Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use // AlmostEqualUlps instead. inline bool approximately_equal(double x, double y) { return approximately_zero(x - y); } inline bool precisely_equal(double x, double y) { return precisely_zero(x - y); } inline bool precisely_subdivide_equal(double x, double y) { return precisely_subdivide_zero(x - y); } inline bool approximately_equal_half(double x, double y) { return approximately_zero_half(x - y); } inline bool approximately_equal_double(double x, double y) { return approximately_zero_double(x - y); } inline bool approximately_equal_orderable(double x, double y) { return approximately_zero_orderable(x - y); } inline bool approximately_equal_squared(double x, double y) { return approximately_equal(x, y); } inline bool approximately_greater(double x, double y) { return x - FLT_EPSILON >= y; } inline bool approximately_greater_double(double x, double y) { return x - FLT_EPSILON_DOUBLE >= y; } inline bool approximately_greater_orderable(double x, double y) { return x - FLT_EPSILON_ORDERABLE_ERR >= y; } inline bool approximately_greater_or_equal(double x, double y) { return x + FLT_EPSILON > y; } inline bool approximately_greater_or_equal_double(double x, double y) { return x + FLT_EPSILON_DOUBLE > y; } inline bool approximately_greater_or_equal_orderable(double x, double y) { return x + FLT_EPSILON_ORDERABLE_ERR > y; } inline bool approximately_lesser(double x, double y) { return x + FLT_EPSILON <= y; } inline bool approximately_lesser_double(double x, double y) { return x + FLT_EPSILON_DOUBLE <= y; } inline bool approximately_lesser_orderable(double x, double y) { return x + FLT_EPSILON_ORDERABLE_ERR <= y; } inline bool approximately_lesser_or_equal(double x, double y) { return x - FLT_EPSILON < y; } inline bool approximately_lesser_or_equal_double(double x, double y) { return x - FLT_EPSILON_DOUBLE < y; } inline bool approximately_lesser_or_equal_orderable(double x, double y) { return x - FLT_EPSILON_ORDERABLE_ERR < y; } inline bool approximately_greater_than_one(double x) { return x > 1 - FLT_EPSILON; } inline bool precisely_greater_than_one(double x) { return x > 1 - DBL_EPSILON_ERR; } inline bool approximately_less_than_zero(double x) { return x < FLT_EPSILON; } inline bool precisely_less_than_zero(double x) { return x < DBL_EPSILON_ERR; } inline bool approximately_negative(double x) { return x < FLT_EPSILON; } inline bool approximately_negative_orderable(double x) { return x < FLT_EPSILON_ORDERABLE_ERR; } inline bool precisely_negative(double x) { return x < DBL_EPSILON_ERR; } inline bool approximately_one_or_less(double x) { return x < 1 + FLT_EPSILON; } inline bool approximately_one_or_less_double(double x) { return x < 1 + FLT_EPSILON_DOUBLE; } inline bool approximately_positive(double x) { return x > -FLT_EPSILON; } inline bool approximately_positive_squared(double x) { return x > -(FLT_EPSILON_SQUARED); } inline bool approximately_zero_or_more(double x) { return x > -FLT_EPSILON; } inline bool approximately_zero_or_more_double(double x) { return x > -FLT_EPSILON_DOUBLE; } inline bool approximately_between_orderable(double a, double b, double c) { return a <= c ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c) : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b); } inline bool approximately_between(double a, double b, double c) { return a <= c ? approximately_negative(a - b) && approximately_negative(b - c) : approximately_negative(b - a) && approximately_negative(c - b); } inline bool precisely_between(double a, double b, double c) { return a <= c ? precisely_negative(a - b) && precisely_negative(b - c) : precisely_negative(b - a) && precisely_negative(c - b); } // returns true if (a <= b <= c) || (a >= b >= c) inline bool between(double a, double b, double c) { SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0) || (precisely_zero(a) && precisely_zero(b) && precisely_zero(c))); return (a - b) * (c - b) <= 0; } inline bool roughly_equal(double x, double y) { return fabs(x - y) < ROUGH_EPSILON; } inline bool roughly_negative(double x) { return x < ROUGH_EPSILON; } inline bool roughly_between(double a, double b, double c) { return a <= c ? roughly_negative(a - b) && roughly_negative(b - c) : roughly_negative(b - a) && roughly_negative(c - b); } inline bool more_roughly_equal(double x, double y) { return fabs(x - y) < MORE_ROUGH_EPSILON; } inline bool way_roughly_equal(double x, double y) { return fabs(x - y) < WAY_ROUGH_EPSILON; } struct SkDPoint; struct SkDVector; struct SkDLine; struct SkDQuad; struct SkDConic; struct SkDCubic; struct SkDRect; inline SkPath::Verb SkPathOpsPointsToVerb(int points) { int verb = (1 << points) >> 1; #ifdef SK_DEBUG switch (points) { case 0: SkASSERT(SkPath::kMove_Verb == verb); break; case 1: SkASSERT(SkPath::kLine_Verb == verb); break; case 2: SkASSERT(SkPath::kQuad_Verb == verb); break; case 3: SkASSERT(SkPath::kCubic_Verb == verb); break; default: SkDEBUGFAIL("should not be here"); } #endif return (SkPath::Verb)verb; } inline int SkPathOpsVerbToPoints(SkPath::Verb verb) { int points = (int) verb - (((int) verb + 1) >> 2); #ifdef SK_DEBUG switch (verb) { case SkPath::kLine_Verb: SkASSERT(1 == points); break; case SkPath::kQuad_Verb: SkASSERT(2 == points); break; case SkPath::kConic_Verb: SkASSERT(2 == points); break; case SkPath::kCubic_Verb: SkASSERT(3 == points); break; default: SkDEBUGFAIL("should not get here"); } #endif return points; } inline double SkDInterp(double A, double B, double t) { return A + (B - A) * t; } double SkDCubeRoot(double x); /* Returns -1 if negative, 0 if zero, 1 if positive */ inline int SkDSign(double x) { return (x > 0) - (x < 0); } /* Returns 0 if negative, 1 if zero, 2 if positive */ inline int SKDSide(double x) { return (x > 0) + (x >= 0); } /* Returns 1 if negative, 2 if zero, 4 if positive */ inline int SkDSideBit(double x) { return 1 << SKDSide(x); } inline double SkPinT(double t) { return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t; } #endif