/* * datatypes.h * * data types for bit vectors and finite fields * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2006, Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef _DATATYPES_H #define _DATATYPES_H #include "integers.h" /* definitions of uint32_t, et cetera */ #include "alloc.h" #include #ifndef SRTP_KERNEL # include # include # include # ifdef HAVE_NETINET_IN_H # include # elif defined HAVE_WINSOCK2_H # include # endif #endif /* if DATATYPES_USE_MACROS is defined, then little functions are macros */ #define DATATYPES_USE_MACROS typedef union { uint8_t v8[2]; uint16_t value; } v16_t; typedef union { uint8_t v8[4]; uint16_t v16[2]; uint32_t value; } v32_t; typedef union { uint8_t v8[8]; uint16_t v16[4]; uint32_t v32[2]; uint64_t value; } v64_t; typedef union { uint8_t v8[16]; uint16_t v16[8]; uint32_t v32[4]; uint64_t v64[2]; } v128_t; /* some useful and simple math functions */ #define pow_2(X) ( (unsigned int)1 << (X) ) /* 2^X */ #define pow_minus_one(X) ( (X) ? -1 : 1 ) /* (-1)^X */ /* * octet_get_weight(x) returns the hamming weight (number of bits equal to * one) in the octet x */ int octet_get_weight(uint8_t octet); char * octet_bit_string(uint8_t x); #define MAX_PRINT_STRING_LEN 1024 char * octet_string_hex_string(const void *str, int length); char * v128_bit_string(v128_t *x); char * v128_hex_string(v128_t *x); uint8_t nibble_to_hex_char(uint8_t nibble); char * char_to_hex_string(char *x, int num_char); uint8_t hex_string_to_octet(char *s); /* * hex_string_to_octet_string(raw, hex, len) converts the hexadecimal * string at *hex (of length len octets) to the equivalent raw data * and writes it to *raw. * * if a character in the hex string that is not a hexadeciaml digit * (0123456789abcdefABCDEF) is encountered, the function stops writing * data to *raw * * the number of hex digits copied (which is two times the number of * octets in *raw) is returned */ int hex_string_to_octet_string(char *raw, char *hex, int len); v128_t hex_string_to_v128(char *s); void v128_copy_octet_string(v128_t *x, const uint8_t s[16]); void v128_left_shift(v128_t *x, int index); void v128_right_shift(v128_t *x, int index); /* * the following macros define the data manipulation functions * * If DATATYPES_USE_MACROS is defined, then these macros are used * directly (and function call overhead is avoided). Otherwise, * the macros are used through the functions defined in datatypes.c * (and the compiler provides better warnings). */ #define _v128_set_to_zero(x) \ ( \ (x)->v32[0] = 0, \ (x)->v32[1] = 0, \ (x)->v32[2] = 0, \ (x)->v32[3] = 0 \ ) #define _v128_copy(x, y) \ ( \ (x)->v32[0] = (y)->v32[0], \ (x)->v32[1] = (y)->v32[1], \ (x)->v32[2] = (y)->v32[2], \ (x)->v32[3] = (y)->v32[3] \ ) #define _v128_xor(z, x, y) \ ( \ (z)->v32[0] = (x)->v32[0] ^ (y)->v32[0], \ (z)->v32[1] = (x)->v32[1] ^ (y)->v32[1], \ (z)->v32[2] = (x)->v32[2] ^ (y)->v32[2], \ (z)->v32[3] = (x)->v32[3] ^ (y)->v32[3] \ ) #define _v128_and(z, x, y) \ ( \ (z)->v32[0] = (x)->v32[0] & (y)->v32[0], \ (z)->v32[1] = (x)->v32[1] & (y)->v32[1], \ (z)->v32[2] = (x)->v32[2] & (y)->v32[2], \ (z)->v32[3] = (x)->v32[3] & (y)->v32[3] \ ) #define _v128_or(z, x, y) \ ( \ (z)->v32[0] = (x)->v32[0] | (y)->v32[0], \ (z)->v32[1] = (x)->v32[1] | (y)->v32[1], \ (z)->v32[2] = (x)->v32[2] | (y)->v32[2], \ (z)->v32[3] = (x)->v32[3] | (y)->v32[3] \ ) #define _v128_complement(x) \ ( \ (x)->v32[0] = ~(x)->v32[0], \ (x)->v32[1] = ~(x)->v32[1], \ (x)->v32[2] = ~(x)->v32[2], \ (x)->v32[3] = ~(x)->v32[3] \ ) /* ok for NO_64BIT_MATH if it can compare uint64_t's (even as structures) */ #define _v128_is_eq(x, y) \ (((x)->v64[0] == (y)->v64[0]) && ((x)->v64[1] == (y)->v64[1])) #ifdef NO_64BIT_MATH #define _v128_xor_eq(z, x) \ ( \ (z)->v32[0] ^= (x)->v32[0], \ (z)->v32[1] ^= (x)->v32[1], \ (z)->v32[2] ^= (x)->v32[2], \ (z)->v32[3] ^= (x)->v32[3] \ ) #else #define _v128_xor_eq(z, x) \ ( \ (z)->v64[0] ^= (x)->v64[0], \ (z)->v64[1] ^= (x)->v64[1] \ ) #endif /* NOTE! This assumes an odd ordering! */ /* This will not be compatible directly with math on some processors */ /* bit 0 is first 32-bit word, low order bit. in little-endian, that's the first byte of the first 32-bit word. In big-endian, that's the 3rd byte of the first 32-bit word */ /* The get/set bit code is used by the replay code ONLY, and it doesn't really care which bit is which. AES does care which bit is which, but doesn't use the 128-bit get/set or 128-bit shifts */ #define _v128_get_bit(x, bit) \ ( \ ((((x)->v32[(bit) >> 5]) >> ((bit) & 31)) & 1) \ ) #define _v128_set_bit(x, bit) \ ( \ (((x)->v32[(bit) >> 5]) |= ((uint32_t)1 << ((bit) & 31))) \ ) #define _v128_clear_bit(x, bit) \ ( \ (((x)->v32[(bit) >> 5]) &= ~((uint32_t)1 << ((bit) & 31))) \ ) #define _v128_set_bit_to(x, bit, value) \ ( \ (value) ? _v128_set_bit(x, bit) : \ _v128_clear_bit(x, bit) \ ) #if 0 /* nothing uses this */ #ifdef WORDS_BIGENDIAN #define _v128_add(z, x, y) { \ uint64_t tmp; \ \ tmp = x->v32[3] + y->v32[3]; \ z->v32[3] = (uint32_t) tmp; \ \ tmp = x->v32[2] + y->v32[2] + (tmp >> 32); \ z->v32[2] = (uint32_t) tmp; \ \ tmp = x->v32[1] + y->v32[1] + (tmp >> 32); \ z->v32[1] = (uint32_t) tmp; \ \ tmp = x->v32[0] + y->v32[0] + (tmp >> 32); \ z->v32[0] = (uint32_t) tmp; \ } #else /* assume little endian architecture */ #define _v128_add(z, x, y) { \ uint64_t tmp; \ \ tmp = htonl(x->v32[3]) + htonl(y->v32[3]); \ z->v32[3] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[2]) + htonl(y->v32[2]) \ + htonl(tmp >> 32); \ z->v32[2] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[1]) + htonl(y->v32[1]) \ + htonl(tmp >> 32); \ z->v32[1] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[0]) + htonl(y->v32[0]) \ + htonl(tmp >> 32); \ z->v32[0] = ntohl((uint32_t) tmp); \ } #endif /* WORDS_BIGENDIAN */ #endif /* 0 */ #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ #define v128_set_to_zero(z) _v128_set_to_zero(z) #define v128_copy(z, x) _v128_copy(z, x) #define v128_xor(z, x, y) _v128_xor(z, x, y) #define v128_and(z, x, y) _v128_and(z, x, y) #define v128_or(z, x, y) _v128_or(z, x, y) #define v128_complement(x) _v128_complement(x) #define v128_is_eq(x, y) _v128_is_eq(x, y) #define v128_xor_eq(x, y) _v128_xor_eq(x, y) #define v128_get_bit(x, i) _v128_get_bit(x, i) #define v128_set_bit(x, i) _v128_set_bit(x, i) #define v128_clear_bit(x, i) _v128_clear_bit(x, i) #define v128_set_bit_to(x, i, y) _v128_set_bit_to(x, i, y) #else void v128_set_to_zero(v128_t *x); int v128_is_eq(const v128_t *x, const v128_t *y); void v128_copy(v128_t *x, const v128_t *y); void v128_xor(v128_t *z, v128_t *x, v128_t *y); void v128_and(v128_t *z, v128_t *x, v128_t *y); void v128_or(v128_t *z, v128_t *x, v128_t *y); void v128_complement(v128_t *x); int v128_get_bit(const v128_t *x, int i); void v128_set_bit(v128_t *x, int i) ; void v128_clear_bit(v128_t *x, int i); void v128_set_bit_to(v128_t *x, int i, int y); #endif /* DATATYPES_USE_MACROS */ /* * octet_string_is_eq(a,b, len) returns 1 if the length len strings a * and b are not equal, returns 0 otherwise */ int octet_string_is_eq(uint8_t *a, uint8_t *b, int len); void octet_string_set_to_zero(uint8_t *s, int len); #ifndef SRTP_KERNEL_LINUX /* * Convert big endian integers to CPU byte order. */ #ifdef WORDS_BIGENDIAN /* Nothing to do. */ # define be32_to_cpu(x) (x) # define be64_to_cpu(x) (x) #elif defined(HAVE_BYTESWAP_H) /* We have (hopefully) optimized versions in byteswap.h */ # include # define be32_to_cpu(x) bswap_32((x)) # define be64_to_cpu(x) bswap_64((x)) #else #if defined(__GNUC__) && defined(HAVE_X86) /* Fall back. */ static inline uint32_t be32_to_cpu(uint32_t v) { /* optimized for x86. */ asm("bswap %0" : "=r" (v) : "0" (v)); return v; } # else /* HAVE_X86 */ # ifdef HAVE_NETINET_IN_H # include # elif defined HAVE_WINSOCK2_H # include # endif # define be32_to_cpu(x) ntohl((x)) # endif /* HAVE_X86 */ static inline uint64_t be64_to_cpu(uint64_t v) { # ifdef NO_64BIT_MATH /* use the make64 functions to do 64-bit math */ v = make64(htonl(low32(v)),htonl(high32(v))); # else /* use the native 64-bit math */ v= (uint64_t)((be32_to_cpu((uint32_t)(v >> 32))) | (((uint64_t)be32_to_cpu((uint32_t)v)) << 32)); # endif return v; } #endif /* ! SRTP_KERNEL_LINUX */ #endif /* WORDS_BIGENDIAN */ /* * functions manipulating bitvector_t * * A bitvector_t consists of an array of words and an integer * representing the number of significant bits stored in the array. * The bits are packed as follows: the least significant bit is that * of word[0], while the most significant bit is the nth most * significant bit of word[m], where length = bits_per_word * m + n. * */ #define bits_per_word 32 #define bytes_per_word 4 typedef struct { uint32_t length; uint32_t *word; } bitvector_t; #define _bitvector_get_bit(v, bit_index) \ ( \ ((((v)->word[((bit_index) >> 5)]) >> ((bit_index) & 31)) & 1) \ ) #define _bitvector_set_bit(v, bit_index) \ ( \ (((v)->word[((bit_index) >> 5)] |= ((uint32_t)1 << ((bit_index) & 31)))) \ ) #define _bitvector_clear_bit(v, bit_index) \ ( \ (((v)->word[((bit_index) >> 5)] &= ~((uint32_t)1 << ((bit_index) & 31)))) \ ) #define _bitvector_get_length(v) \ ( \ ((v)->length) \ ) #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ #define bitvector_get_bit(v, bit_index) _bitvector_get_bit(v, bit_index) #define bitvector_set_bit(v, bit_index) _bitvector_set_bit(v, bit_index) #define bitvector_clear_bit(v, bit_index) _bitvector_clear_bit(v, bit_index) #define bitvector_get_length(v) _bitvector_get_length(v) #else int bitvector_get_bit(const bitvector_t *v, int bit_index); void bitvector_set_bit(bitvector_t *v, int bit_index); void bitvector_clear_bit(bitvector_t *v, int bit_index); unsigned long bitvector_get_length(const bitvector_t *v); #endif int bitvector_alloc(bitvector_t *v, unsigned long length); void bitvector_dealloc(bitvector_t *v); void bitvector_set_to_zero(bitvector_t *x); void bitvector_left_shift(bitvector_t *x, int index); char * bitvector_bit_string(bitvector_t *x, char* buf, int len); #endif /* _DATATYPES_H */