// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/v8.h" #if V8_TARGET_ARCH_ARM #include "src/arm/assembler-arm-inl.h" #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/macro-assembler.h" #include "src/serialize.h" namespace v8 { namespace internal { // Get the CPU features enabled by the build. For cross compilation the // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS // can be defined to enable ARMv7 and VFPv3 instructions when building the // snapshot. static unsigned CpuFeaturesImpliedByCompiler() { unsigned answer = 0; #ifdef CAN_USE_ARMV7_INSTRUCTIONS if (FLAG_enable_armv7) answer |= 1u << ARMv7; #endif // CAN_USE_ARMV7_INSTRUCTIONS #ifdef CAN_USE_VFP3_INSTRUCTIONS if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7; #endif // CAN_USE_VFP3_INSTRUCTIONS #ifdef CAN_USE_VFP32DREGS if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS; #endif // CAN_USE_VFP32DREGS #ifdef CAN_USE_NEON if (FLAG_enable_neon) answer |= 1u << NEON; #endif // CAN_USE_VFP32DREGS if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) { answer |= 1u << UNALIGNED_ACCESSES; } return answer; } void CpuFeatures::ProbeImpl(bool cross_compile) { supported_ |= CpuFeaturesImpliedByCompiler(); cache_line_size_ = 64; // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; #ifndef __arm__ // For the simulator build, use whatever the flags specify. if (FLAG_enable_armv7) { supported_ |= 1u << ARMv7; if (FLAG_enable_vfp3) supported_ |= 1u << VFP3; if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS; if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV; if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS; if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS; } if (FLAG_enable_mls) supported_ |= 1u << MLS; if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES; #else // __arm__ // Probe for additional features at runtime. base::CPU cpu; if (FLAG_enable_vfp3 && cpu.has_vfp3()) { // This implementation also sets the VFP flags if runtime // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI // 0406B, page A1-6. supported_ |= 1u << VFP3 | 1u << ARMv7; } if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON; if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV; if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS; if (cpu.architecture() >= 7) { if (FLAG_enable_armv7) supported_ |= 1u << ARMv7; if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES; // Use movw/movt for QUALCOMM ARMv7 cores. if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) { supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS; } } // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines. if (cpu.implementer() == base::CPU::ARM && (cpu.part() == base::CPU::ARM_CORTEX_A5 || cpu.part() == base::CPU::ARM_CORTEX_A9)) { cache_line_size_ = 32; } if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS; #endif DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7)); } void CpuFeatures::PrintTarget() { const char* arm_arch = NULL; const char* arm_target_type = ""; const char* arm_no_probe = ""; const char* arm_fpu = ""; const char* arm_thumb = ""; const char* arm_float_abi = NULL; #if !defined __arm__ arm_target_type = " simulator"; #endif #if defined ARM_TEST_NO_FEATURE_PROBE arm_no_probe = " noprobe"; #endif #if defined CAN_USE_ARMV7_INSTRUCTIONS arm_arch = "arm v7"; #else arm_arch = "arm v6"; #endif #if defined CAN_USE_NEON arm_fpu = " neon"; #elif defined CAN_USE_VFP3_INSTRUCTIONS # if defined CAN_USE_VFP32DREGS arm_fpu = " vfp3"; # else arm_fpu = " vfp3-d16"; # endif #else arm_fpu = " vfp2"; #endif #ifdef __arm__ arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp"; #elif USE_EABI_HARDFLOAT arm_float_abi = "hard"; #else arm_float_abi = "softfp"; #endif #if defined __arm__ && (defined __thumb__) || (defined __thumb2__) arm_thumb = " thumb"; #endif printf("target%s%s %s%s%s %s\n", arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb, arm_float_abi); } void CpuFeatures::PrintFeatures() { printf( "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d " "MOVW_MOVT_IMMEDIATE_LOADS=%d", CpuFeatures::IsSupported(ARMv7), CpuFeatures::IsSupported(VFP3), CpuFeatures::IsSupported(VFP32DREGS), CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV), CpuFeatures::IsSupported(UNALIGNED_ACCESSES), CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS)); #ifdef __arm__ bool eabi_hardfloat = base::OS::ArmUsingHardFloat(); #elif USE_EABI_HARDFLOAT bool eabi_hardfloat = true; #else bool eabi_hardfloat = false; #endif printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat); } // ----------------------------------------------------------------------------- // Implementation of DwVfpRegister const char* DwVfpRegister::AllocationIndexToString(int index) { DCHECK(index >= 0 && index < NumAllocatableRegisters()); DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() == kNumReservedRegisters - 1); if (index >= kDoubleRegZero.code()) index += kNumReservedRegisters; return VFPRegisters::Name(index, true); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = 0; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded.  Being // specially coded on ARM means that it is a movw/movt instruction, or is an // out of line constant pool entry.  These only occur if // FLAG_enable_ool_constant_pool is true. return FLAG_enable_ool_constant_pool; } bool RelocInfo::IsInConstantPool() { return Assembler::is_constant_pool_load(pc_); } void RelocInfo::PatchCode(byte* instructions, int instruction_count) { // Patch the code at the current address with the supplied instructions. Instr* pc = reinterpret_cast(pc_); Instr* instr = reinterpret_cast(instructions); for (int i = 0; i < instruction_count; i++) { *(pc + i) = *(instr + i); } // Indicate that code has changed. CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize); } // Patch the code at the current PC with a call to the target address. // Additional guard instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Patch the code at the current address with a call to the target. UNIMPLEMENTED(); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand // See assembler-arm-inl.h for inlined constructors Operand::Operand(Handle handle) { AllowDeferredHandleDereference using_raw_address; rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; if (obj->IsHeapObject()) { DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj)); imm32_ = reinterpret_cast(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // no relocation needed imm32_ = reinterpret_cast(obj); rmode_ = RelocInfo::NONE32; } } Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { DCHECK(is_uint5(shift_imm)); rm_ = rm; rs_ = no_reg; shift_op_ = shift_op; shift_imm_ = shift_imm & 31; if ((shift_op == ROR) && (shift_imm == 0)) { // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode // RRX as ROR #0 (See below). shift_op = LSL; } else if (shift_op == RRX) { // encoded as ROR with shift_imm == 0 DCHECK(shift_imm == 0); shift_op_ = ROR; shift_imm_ = 0; } } Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { DCHECK(shift_op != RRX); rm_ = rm; rs_ = no_reg; shift_op_ = shift_op; rs_ = rs; } MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { rn_ = rn; rm_ = no_reg; offset_ = offset; am_ = am; } MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { rn_ = rn; rm_ = rm; shift_op_ = LSL; shift_imm_ = 0; am_ = am; } MemOperand::MemOperand(Register rn, Register rm, ShiftOp shift_op, int shift_imm, AddrMode am) { DCHECK(is_uint5(shift_imm)); rn_ = rn; rm_ = rm; shift_op_ = shift_op; shift_imm_ = shift_imm & 31; am_ = am; } NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) { DCHECK((am == Offset) || (am == PostIndex)); rn_ = rn; rm_ = (am == Offset) ? pc : sp; SetAlignment(align); } NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) { rn_ = rn; rm_ = rm; SetAlignment(align); } void NeonMemOperand::SetAlignment(int align) { switch (align) { case 0: align_ = 0; break; case 64: align_ = 1; break; case 128: align_ = 2; break; case 256: align_ = 3; break; default: UNREACHABLE(); align_ = 0; break; } } NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) { base_ = base; switch (registers_count) { case 1: type_ = nlt_1; break; case 2: type_ = nlt_2; break; case 3: type_ = nlt_3; break; case 4: type_ = nlt_4; break; default: UNREACHABLE(); type_ = nlt_1; break; } } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) // register r is not encoded. const Instr kPushRegPattern = al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16; // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) // register r is not encoded. const Instr kPopRegPattern = al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16; // ldr rd, [pc, #offset] const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16; const Instr kLdrPCImmedPattern = 5 * B24 | L | kRegister_pc_Code * B16; // ldr rd, [pp, #offset] const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16; const Instr kLdrPpImmedPattern = 5 * B24 | L | kRegister_r8_Code * B16; // ldr rd, [pp, rn] const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16; const Instr kLdrPpRegPattern = 7 * B24 | L | kRegister_r8_Code * B16; // vldr dd, [pc, #offset] const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8; // vldr dd, [pp, #offset] const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8; // blxcc rm const Instr kBlxRegMask = 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; const Instr kBlxRegPattern = B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX; const Instr kBlxIp = al | kBlxRegPattern | ip.code(); const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16; const Instr kMovMvnPattern = 0xd * B21; const Instr kMovMvnFlip = B22; const Instr kMovLeaveCCMask = 0xdff * B16; const Instr kMovLeaveCCPattern = 0x1a0 * B16; const Instr kMovwPattern = 0x30 * B20; const Instr kMovtPattern = 0x34 * B20; const Instr kMovwLeaveCCFlip = 0x5 * B21; const Instr kMovImmedMask = 0x7f * B21; const Instr kMovImmedPattern = 0x1d * B21; const Instr kOrrImmedMask = 0x7f * B21; const Instr kOrrImmedPattern = 0x1c * B21; const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12; const Instr kCmpCmnPattern = 0x15 * B20; const Instr kCmpCmnFlip = B21; const Instr kAddSubFlip = 0x6 * B21; const Instr kAndBicFlip = 0xe * B21; // A mask for the Rd register for push, pop, ldr, str instructions. const Instr kLdrRegFpOffsetPattern = al | B26 | L | Offset | kRegister_fp_Code * B16; const Instr kStrRegFpOffsetPattern = al | B26 | Offset | kRegister_fp_Code * B16; const Instr kLdrRegFpNegOffsetPattern = al | B26 | L | NegOffset | kRegister_fp_Code * B16; const Instr kStrRegFpNegOffsetPattern = al | B26 | NegOffset | kRegister_fp_Code * B16; const Instr kLdrStrInstrTypeMask = 0xffff0000; Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) : AssemblerBase(isolate, buffer, buffer_size), recorded_ast_id_(TypeFeedbackId::None()), constant_pool_builder_(), positions_recorder_(this) { reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); num_pending_32_bit_reloc_info_ = 0; num_pending_64_bit_reloc_info_ = 0; next_buffer_check_ = 0; const_pool_blocked_nesting_ = 0; no_const_pool_before_ = 0; first_const_pool_32_use_ = -1; first_const_pool_64_use_ = -1; last_bound_pos_ = 0; constant_pool_available_ = !FLAG_enable_ool_constant_pool; ClearRecordedAstId(); } Assembler::~Assembler() { DCHECK(const_pool_blocked_nesting_ == 0); } void Assembler::GetCode(CodeDesc* desc) { if (!FLAG_enable_ool_constant_pool) { // Emit constant pool if necessary. CheckConstPool(true, false); DCHECK(num_pending_32_bit_reloc_info_ == 0); DCHECK(num_pending_64_bit_reloc_info_ == 0); } // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; } void Assembler::Align(int m) { DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // Preferred alignment of jump targets on some ARM chips. Align(8); } Condition Assembler::GetCondition(Instr instr) { return Instruction::ConditionField(instr); } bool Assembler::IsBranch(Instr instr) { return (instr & (B27 | B25)) == (B27 | B25); } int Assembler::GetBranchOffset(Instr instr) { DCHECK(IsBranch(instr)); // Take the jump offset in the lower 24 bits, sign extend it and multiply it // with 4 to get the offset in bytes. return ((instr & kImm24Mask) << 8) >> 6; } bool Assembler::IsLdrRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20); } bool Assembler::IsVldrDRegisterImmediate(Instr instr) { return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8); } int Assembler::GetLdrRegisterImmediateOffset(Instr instr) { DCHECK(IsLdrRegisterImmediate(instr)); bool positive = (instr & B23) == B23; int offset = instr & kOff12Mask; // Zero extended offset. return positive ? offset : -offset; } int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) { DCHECK(IsVldrDRegisterImmediate(instr)); bool positive = (instr & B23) == B23; int offset = instr & kOff8Mask; // Zero extended offset. offset <<= 2; return positive ? offset : -offset; } Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsLdrRegisterImmediate(instr)); bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint12(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. return (instr & ~kOff12Mask) | offset; } Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsVldrDRegisterImmediate(instr)); DCHECK((offset & ~3) == offset); // Must be 64-bit aligned. bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint10(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. Its bottom 2 bits are zero. return (instr & ~kOff8Mask) | (offset >> 2); } bool Assembler::IsStrRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B22 | B20)) == B26; } Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsStrRegisterImmediate(instr)); bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint12(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. return (instr & ~kOff12Mask) | offset; } bool Assembler::IsAddRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23); } Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsAddRegisterImmediate(instr)); DCHECK(offset >= 0); DCHECK(is_uint12(offset)); // Set the offset. return (instr & ~kOff12Mask) | offset; } Register Assembler::GetRd(Instr instr) { Register reg; reg.code_ = Instruction::RdValue(instr); return reg; } Register Assembler::GetRn(Instr instr) { Register reg; reg.code_ = Instruction::RnValue(instr); return reg; } Register Assembler::GetRm(Instr instr) { Register reg; reg.code_ = Instruction::RmValue(instr); return reg; } Instr Assembler::GetConsantPoolLoadPattern() { if (FLAG_enable_ool_constant_pool) { return kLdrPpImmedPattern; } else { return kLdrPCImmedPattern; } } Instr Assembler::GetConsantPoolLoadMask() { if (FLAG_enable_ool_constant_pool) { return kLdrPpImmedMask; } else { return kLdrPCImmedMask; } } bool Assembler::IsPush(Instr instr) { return ((instr & ~kRdMask) == kPushRegPattern); } bool Assembler::IsPop(Instr instr) { return ((instr & ~kRdMask) == kPopRegPattern); } bool Assembler::IsStrRegFpOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern); } bool Assembler::IsLdrRegFpOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern); } bool Assembler::IsStrRegFpNegOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern); } bool Assembler::IsLdrRegFpNegOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern); } bool Assembler::IsLdrPcImmediateOffset(Instr instr) { // Check the instruction is indeed a // ldr , [pc +/- offset_12]. return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern; } bool Assembler::IsLdrPpImmediateOffset(Instr instr) { // Check the instruction is indeed a // ldr , [pp +/- offset_12]. return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern; } bool Assembler::IsLdrPpRegOffset(Instr instr) { // Check the instruction is indeed a // ldr , [pp, +/- ]. return (instr & kLdrPpRegMask) == kLdrPpRegPattern; } Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; } bool Assembler::IsVldrDPcImmediateOffset(Instr instr) { // Check the instruction is indeed a // vldr
, [pc +/- offset_10]. return (instr & kVldrDPCMask) == kVldrDPCPattern; } bool Assembler::IsVldrDPpImmediateOffset(Instr instr) { // Check the instruction is indeed a // vldr
, [pp +/- offset_10]. return (instr & kVldrDPpMask) == kVldrDPpPattern; } bool Assembler::IsBlxReg(Instr instr) { // Check the instruction is indeed a // blxcc return (instr & kBlxRegMask) == kBlxRegPattern; } bool Assembler::IsBlxIp(Instr instr) { // Check the instruction is indeed a // blx ip return instr == kBlxIp; } bool Assembler::IsTstImmediate(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | TST | S); } bool Assembler::IsCmpRegister(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) == (CMP | S); } bool Assembler::IsCmpImmediate(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | CMP | S); } Register Assembler::GetCmpImmediateRegister(Instr instr) { DCHECK(IsCmpImmediate(instr)); return GetRn(instr); } int Assembler::GetCmpImmediateRawImmediate(Instr instr) { DCHECK(IsCmpImmediate(instr)); return instr & kOff12Mask; } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // // The linked labels form a link chain by making the branch offset // in the instruction steam to point to the previous branch // instruction using the same label. // // The link chain is terminated by a branch offset pointing to the // same position. int Assembler::target_at(int pos) { Instr instr = instr_at(pos); if (is_uint24(instr)) { // Emitted link to a label, not part of a branch. return instr; } DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 int imm26 = ((instr & kImm24Mask) << 8) >> 6; if ((Instruction::ConditionField(instr) == kSpecialCondition) && ((instr & B24) != 0)) { // blx uses bit 24 to encode bit 2 of imm26 imm26 += 2; } return pos + kPcLoadDelta + imm26; } void Assembler::target_at_put(int pos, int target_pos) { Instr instr = instr_at(pos); if (is_uint24(instr)) { DCHECK(target_pos == pos || target_pos >= 0); // Emitted link to a label, not part of a branch. // Load the position of the label relative to the generated code object // pointer in a register. // Here are the instructions we need to emit: // For ARMv7: target24 => target16_1:target16_0 // movw dst, #target16_0 // movt dst, #target16_1 // For ARMv6: target24 => target8_2:target8_1:target8_0 // mov dst, #target8_0 // orr dst, dst, #target8_1 << 8 // orr dst, dst, #target8_2 << 16 // We extract the destination register from the emitted nop instruction. Register dst = Register::from_code( Instruction::RmValue(instr_at(pos + kInstrSize))); DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code())); uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag); DCHECK(is_uint24(target24)); if (is_uint8(target24)) { // If the target fits in a byte then only patch with a mov // instruction. CodePatcher patcher(reinterpret_cast(buffer_ + pos), 1, CodePatcher::DONT_FLUSH); patcher.masm()->mov(dst, Operand(target24)); } else { uint16_t target16_0 = target24 & kImm16Mask; uint16_t target16_1 = target24 >> 16; if (CpuFeatures::IsSupported(ARMv7)) { // Patch with movw/movt. if (target16_1 == 0) { CodePatcher patcher(reinterpret_cast(buffer_ + pos), 1, CodePatcher::DONT_FLUSH); patcher.masm()->movw(dst, target16_0); } else { CodePatcher patcher(reinterpret_cast(buffer_ + pos), 2, CodePatcher::DONT_FLUSH); patcher.masm()->movw(dst, target16_0); patcher.masm()->movt(dst, target16_1); } } else { // Patch with a sequence of mov/orr/orr instructions. uint8_t target8_0 = target16_0 & kImm8Mask; uint8_t target8_1 = target16_0 >> 8; uint8_t target8_2 = target16_1 & kImm8Mask; if (target8_2 == 0) { CodePatcher patcher(reinterpret_cast(buffer_ + pos), 2, CodePatcher::DONT_FLUSH); patcher.masm()->mov(dst, Operand(target8_0)); patcher.masm()->orr(dst, dst, Operand(target8_1 << 8)); } else { CodePatcher patcher(reinterpret_cast(buffer_ + pos), 3, CodePatcher::DONT_FLUSH); patcher.masm()->mov(dst, Operand(target8_0)); patcher.masm()->orr(dst, dst, Operand(target8_1 << 8)); patcher.masm()->orr(dst, dst, Operand(target8_2 << 16)); } } } return; } int imm26 = target_pos - (pos + kPcLoadDelta); DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 if (Instruction::ConditionField(instr) == kSpecialCondition) { // blx uses bit 24 to encode bit 2 of imm26 DCHECK((imm26 & 1) == 0); instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24; } else { DCHECK((imm26 & 3) == 0); instr &= ~kImm24Mask; } int imm24 = imm26 >> 2; DCHECK(is_int24(imm24)); instr_at_put(pos, instr | (imm24 & kImm24Mask)); } void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm24Mask) == 0) { PrintF("value\n"); } else { DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx Condition cond = Instruction::ConditionField(instr); const char* b; const char* c; if (cond == kSpecialCondition) { b = "blx"; c = ""; } else { if ((instr & B24) != 0) b = "bl"; else b = "b"; switch (cond) { case eq: c = "eq"; break; case ne: c = "ne"; break; case hs: c = "hs"; break; case lo: c = "lo"; break; case mi: c = "mi"; break; case pl: c = "pl"; break; case vs: c = "vs"; break; case vc: c = "vc"; break; case hi: c = "hi"; break; case ls: c = "ls"; break; case ge: c = "ge"; break; case lt: c = "lt"; break; case gt: c = "gt"; break; case le: c = "le"; break; case al: c = ""; break; default: c = ""; UNREACHABLE(); } } PrintF("%s%s\n", b, c); } next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { int fixup_pos = L->pos(); next(L); // call next before overwriting link with target at fixup_pos target_at_put(fixup_pos, pos); } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { DCHECK(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::next(Label* L) { DCHECK(L->is_linked()); int link = target_at(L->pos()); if (link == L->pos()) { // Branch target points to the same instuction. This is the end of the link // chain. L->Unuse(); } else { DCHECK(link >= 0); L->link_to(link); } } // Low-level code emission routines depending on the addressing mode. // If this returns true then you have to use the rotate_imm and immed_8 // that it returns, because it may have already changed the instruction // to match them! static bool fits_shifter(uint32_t imm32, uint32_t* rotate_imm, uint32_t* immed_8, Instr* instr) { // imm32 must be unsigned. for (int rot = 0; rot < 16; rot++) { uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); if ((imm8 <= 0xff)) { *rotate_imm = rot; *immed_8 = imm8; return true; } } // If the opcode is one with a complementary version and the complementary // immediate fits, change the opcode. if (instr != NULL) { if ((*instr & kMovMvnMask) == kMovMvnPattern) { if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { *instr ^= kMovMvnFlip; return true; } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) { if (CpuFeatures::IsSupported(ARMv7)) { if (imm32 < 0x10000) { *instr ^= kMovwLeaveCCFlip; *instr |= Assembler::EncodeMovwImmediate(imm32); *rotate_imm = *immed_8 = 0; // Not used for movw. return true; } } } } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) { if (fits_shifter(-static_cast(imm32), rotate_imm, immed_8, NULL)) { *instr ^= kCmpCmnFlip; return true; } } else { Instr alu_insn = (*instr & kALUMask); if (alu_insn == ADD || alu_insn == SUB) { if (fits_shifter(-static_cast(imm32), rotate_imm, immed_8, NULL)) { *instr ^= kAddSubFlip; return true; } } else if (alu_insn == AND || alu_insn == BIC) { if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { *instr ^= kAndBicFlip; return true; } } } } return false; } // We have to use the temporary register for things that can be relocated even // if they can be encoded in the ARM's 12 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Operand::must_output_reloc_info(const Assembler* assembler) const { if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) { if (assembler != NULL && assembler->predictable_code_size()) return true; return assembler->serializer_enabled(); } else if (RelocInfo::IsNone(rmode_)) { return false; } return true; } static bool use_mov_immediate_load(const Operand& x, const Assembler* assembler) { if (assembler != NULL && !assembler->is_constant_pool_available()) { return true; } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) && (assembler == NULL || !assembler->predictable_code_size())) { // Prefer movw / movt to constant pool if it is more efficient on the CPU. return true; } else if (x.must_output_reloc_info(assembler)) { // Prefer constant pool if data is likely to be patched. return false; } else { // Otherwise, use immediate load if movw / movt is available. return CpuFeatures::IsSupported(ARMv7); } } int Operand::instructions_required(const Assembler* assembler, Instr instr) const { if (rm_.is_valid()) return 1; uint32_t dummy1, dummy2; if (must_output_reloc_info(assembler) || !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) { // The immediate operand cannot be encoded as a shifter operand, or use of // constant pool is required. First account for the instructions required // for the constant pool or immediate load int instructions; if (use_mov_immediate_load(*this, assembler)) { // A movw / movt or mov / orr immediate load. instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4; } else if (assembler != NULL && assembler->use_extended_constant_pool()) { // An extended constant pool load. instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5; } else { // A small constant pool load. instructions = 1; } if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set // For a mov or mvn instruction which doesn't set the condition // code, the constant pool or immediate load is enough, otherwise we need // to account for the actual instruction being requested. instructions += 1; } return instructions; } else { // No use of constant pool and the immediate operand can be encoded as a // shifter operand. return 1; } } void Assembler::move_32_bit_immediate(Register rd, const Operand& x, Condition cond) { RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL); uint32_t imm32 = static_cast(x.imm32_); if (x.must_output_reloc_info(this)) { RecordRelocInfo(rinfo); } if (use_mov_immediate_load(x, this)) { Register target = rd.code() == pc.code() ? ip : rd; if (CpuFeatures::IsSupported(ARMv7)) { if (!FLAG_enable_ool_constant_pool && x.must_output_reloc_info(this)) { // Make sure the movw/movt doesn't get separated. BlockConstPoolFor(2); } movw(target, imm32 & 0xffff, cond); movt(target, imm32 >> 16, cond); } else { DCHECK(FLAG_enable_ool_constant_pool); mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond); orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond); orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond); orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond); } if (target.code() != rd.code()) { mov(rd, target, LeaveCC, cond); } } else { DCHECK(is_constant_pool_available()); ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo); if (section == ConstantPoolArray::EXTENDED_SECTION) { DCHECK(FLAG_enable_ool_constant_pool); Register target = rd.code() == pc.code() ? ip : rd; // Emit instructions to load constant pool offset. if (CpuFeatures::IsSupported(ARMv7)) { movw(target, 0, cond); movt(target, 0, cond); } else { mov(target, Operand(0), LeaveCC, cond); orr(target, target, Operand(0), LeaveCC, cond); orr(target, target, Operand(0), LeaveCC, cond); orr(target, target, Operand(0), LeaveCC, cond); } // Load from constant pool at offset. ldr(rd, MemOperand(pp, target), cond); } else { DCHECK(section == ConstantPoolArray::SMALL_SECTION); ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond); } } } void Assembler::addrmod1(Instr instr, Register rn, Register rd, const Operand& x) { CheckBuffer(); DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0); if (!x.rm_.is_valid()) { // Immediate. uint32_t rotate_imm; uint32_t immed_8; if (x.must_output_reloc_info(this) || !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { // The immediate operand cannot be encoded as a shifter operand, so load // it first to register ip and change the original instruction to use ip. // However, if the original instruction is a 'mov rd, x' (not setting the // condition code), then replace it with a 'ldr rd, [pc]'. CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed Condition cond = Instruction::ConditionField(instr); if ((instr & ~kCondMask) == 13*B21) { // mov, S not set move_32_bit_immediate(rd, x, cond); } else { mov(ip, x, LeaveCC, cond); addrmod1(instr, rn, rd, Operand(ip)); } return; } instr |= I | rotate_imm*B8 | immed_8; } else if (!x.rs_.is_valid()) { // Immediate shift. instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); } else { // Register shift. DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); } emit(instr | rn.code()*B16 | rd.code()*B12); if (rn.is(pc) || x.rm_.is(pc)) { // Block constant pool emission for one instruction after reading pc. BlockConstPoolFor(1); } } void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { DCHECK((instr & ~(kCondMask | B | L)) == B26); int am = x.am_; if (!x.rm_.is_valid()) { // Immediate offset. int offset_12 = x.offset_; if (offset_12 < 0) { offset_12 = -offset_12; am ^= U; } if (!is_uint12(offset_12)) { // Immediate offset cannot be encoded, load it first to register ip // rn (and rd in a load) should never be ip, or will be trashed. DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr)); addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); return; } DCHECK(offset_12 >= 0); // no masking needed instr |= offset_12; } else { // Register offset (shift_imm_ and shift_op_ are 0) or scaled // register offset the constructors make sure than both shift_imm_ // and shift_op_ are initialized. DCHECK(!x.rm_.is(pc)); instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); } DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); } void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7)); DCHECK(x.rn_.is_valid()); int am = x.am_; if (!x.rm_.is_valid()) { // Immediate offset. int offset_8 = x.offset_; if (offset_8 < 0) { offset_8 = -offset_8; am ^= U; } if (!is_uint8(offset_8)) { // Immediate offset cannot be encoded, load it first to register ip // rn (and rd in a load) should never be ip, or will be trashed. DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr)); addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); return; } DCHECK(offset_8 >= 0); // no masking needed instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); } else if (x.shift_imm_ != 0) { // Scaled register offset not supported, load index first // rn (and rd in a load) should never be ip, or will be trashed. DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, Instruction::ConditionField(instr)); addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); return; } else { // Register offset. DCHECK((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback instr |= x.rm_.code(); } DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); } void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27); DCHECK(rl != 0); DCHECK(!rn.is(pc)); emit(instr | rn.code()*B16 | rl); } void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { // Unindexed addressing is not encoded by this function. DCHECK_EQ((B27 | B26), (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L))); DCHECK(x.rn_.is_valid() && !x.rm_.is_valid()); int am = x.am_; int offset_8 = x.offset_; DCHECK((offset_8 & 3) == 0); // offset must be an aligned word offset offset_8 >>= 2; if (offset_8 < 0) { offset_8 = -offset_8; am ^= U; } DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback // Post-indexed addressing requires W == 1; different than in addrmod2/3. if ((am & P) == 0) am |= W; DCHECK(offset_8 >= 0); // no masking needed emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); } int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { // Point to previous instruction that uses the link. target_pos = L->pos(); } else { // First entry of the link chain points to itself. target_pos = pc_offset(); } L->link_to(pc_offset()); } // Block the emission of the constant pool, since the branch instruction must // be emitted at the pc offset recorded by the label. BlockConstPoolFor(1); return target_pos - (pc_offset() + kPcLoadDelta); } // Branch instructions. void Assembler::b(int branch_offset, Condition cond) { DCHECK((branch_offset & 3) == 0); int imm24 = branch_offset >> 2; DCHECK(is_int24(imm24)); emit(cond | B27 | B25 | (imm24 & kImm24Mask)); if (cond == al) { // Dead code is a good location to emit the constant pool. CheckConstPool(false, false); } } void Assembler::bl(int branch_offset, Condition cond) { positions_recorder()->WriteRecordedPositions(); DCHECK((branch_offset & 3) == 0); int imm24 = branch_offset >> 2; DCHECK(is_int24(imm24)); emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask)); } void Assembler::blx(int branch_offset) { // v5 and above positions_recorder()->WriteRecordedPositions(); DCHECK((branch_offset & 1) == 0); int h = ((branch_offset & 2) >> 1)*B24; int imm24 = branch_offset >> 2; DCHECK(is_int24(imm24)); emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask)); } void Assembler::blx(Register target, Condition cond) { // v5 and above positions_recorder()->WriteRecordedPositions(); DCHECK(!target.is(pc)); emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code()); } void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t positions_recorder()->WriteRecordedPositions(); DCHECK(!target.is(pc)); // use of pc is actually allowed, but discouraged emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code()); } // Data-processing instructions. void Assembler::and_(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | AND | s, src1, dst, src2); } void Assembler::eor(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | EOR | s, src1, dst, src2); } void Assembler::sub(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | SUB | s, src1, dst, src2); } void Assembler::rsb(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | RSB | s, src1, dst, src2); } void Assembler::add(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | ADD | s, src1, dst, src2); } void Assembler::adc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | ADC | s, src1, dst, src2); } void Assembler::sbc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | SBC | s, src1, dst, src2); } void Assembler::rsc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | RSC | s, src1, dst, src2); } void Assembler::tst(Register src1, const Operand& src2, Condition cond) { addrmod1(cond | TST | S, src1, r0, src2); } void Assembler::teq(Register src1, const Operand& src2, Condition cond) { addrmod1(cond | TEQ | S, src1, r0, src2); } void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { addrmod1(cond | CMP | S, src1, r0, src2); } void Assembler::cmp_raw_immediate( Register src, int raw_immediate, Condition cond) { DCHECK(is_uint12(raw_immediate)); emit(cond | I | CMP | S | src.code() << 16 | raw_immediate); } void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { addrmod1(cond | CMN | S, src1, r0, src2); } void Assembler::orr(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | ORR | s, src1, dst, src2); } void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { if (dst.is(pc)) { positions_recorder()->WriteRecordedPositions(); } // Don't allow nop instructions in the form mov rn, rn to be generated using // the mov instruction. They must be generated using nop(int/NopMarkerTypes) // or MarkCode(int/NopMarkerTypes) pseudo instructions. DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al)); addrmod1(cond | MOV | s, r0, dst, src); } void Assembler::mov_label_offset(Register dst, Label* label) { if (label->is_bound()) { mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag))); } else { // Emit the link to the label in the code stream followed by extra nop // instructions. // If the label is not linked, then start a new link chain by linking it to // itself, emitting pc_offset(). int link = label->is_linked() ? label->pos() : pc_offset(); label->link_to(pc_offset()); // When the label is bound, these instructions will be patched with a // sequence of movw/movt or mov/orr/orr instructions. They will load the // destination register with the position of the label from the beginning // of the code. // // The link will be extracted from the first instruction and the destination // register from the second. // For ARMv7: // link // mov dst, dst // For ARMv6: // link // mov dst, dst // mov dst, dst // // When the label gets bound: target_at extracts the link and target_at_put // patches the instructions. DCHECK(is_uint24(link)); BlockConstPoolScope block_const_pool(this); emit(link); nop(dst.code()); if (!CpuFeatures::IsSupported(ARMv7)) { nop(dst.code()); } } } void Assembler::movw(Register reg, uint32_t immediate, Condition cond) { DCHECK(CpuFeatures::IsSupported(ARMv7)); emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate)); } void Assembler::movt(Register reg, uint32_t immediate, Condition cond) { DCHECK(CpuFeatures::IsSupported(ARMv7)); emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate)); } void Assembler::bic(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { addrmod1(cond | BIC | s, src1, dst, src2); } void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { addrmod1(cond | MVN | s, r0, dst, src); } // Multiply instructions. void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, SBit s, Condition cond) { DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::mls(Register dst, Register src1, Register src2, Register srcA, Condition cond) { DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); DCHECK(IsEnabled(MLS)); emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::sdiv(Register dst, Register src1, Register src2, Condition cond) { DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(IsEnabled(SUDIV)); emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 | src2.code()*B8 | B4 | src1.code()); } void Assembler::udiv(Register dst, Register src1, Register src2, Condition cond) { DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(IsEnabled(SUDIV)); emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 | src2.code() * B8 | B4 | src1.code()); } void Assembler::mul(Register dst, Register src1, Register src2, SBit s, Condition cond) { DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); // dst goes in bits 16-19 for this instruction! emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::smlal(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(!dstL.is(dstH)); emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::smull(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(!dstL.is(dstH)); emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::umlal(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(!dstL.is(dstH)); emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } void Assembler::umull(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); DCHECK(!dstL.is(dstH)); emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | src2.code()*B8 | B7 | B4 | src1.code()); } // Miscellaneous arithmetic instructions. void Assembler::clz(Register dst, Register src, Condition cond) { // v5 and above. DCHECK(!dst.is(pc) && !src.is(pc)); emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | 15*B8 | CLZ | src.code()); } // Saturating instructions. // Unsigned saturate. void Assembler::usat(Register dst, int satpos, const Operand& src, Condition cond) { // v6 and above. DCHECK(CpuFeatures::IsSupported(ARMv7)); DCHECK(!dst.is(pc) && !src.rm_.is(pc)); DCHECK((satpos >= 0) && (satpos <= 31)); DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL)); DCHECK(src.rs_.is(no_reg)); int sh = 0; if (src.shift_op_ == ASR) { sh = 1; } emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 | src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code()); } // Bitfield manipulation instructions. // Unsigned bit field extract. // Extracts #width adjacent bits from position #lsb in a register, and // writes them to the low bits of a destination register. // ubfx dst, src, #lsb, #width void Assembler::ubfx(Register dst, Register src, int lsb, int width, Condition cond) { // v7 and above. DCHECK(CpuFeatures::IsSupported(ARMv7)); DCHECK(!dst.is(pc) && !src.is(pc)); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 | lsb*B7 | B6 | B4 | src.code()); } // Signed bit field extract. // Extracts #width adjacent bits from position #lsb in a register, and // writes them to the low bits of a destination register. The extracted // value is sign extended to fill the destination register. // sbfx dst, src, #lsb, #width void Assembler::sbfx(Register dst, Register src, int lsb, int width, Condition cond) { // v7 and above. DCHECK(CpuFeatures::IsSupported(ARMv7)); DCHECK(!dst.is(pc) && !src.is(pc)); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 | lsb*B7 | B6 | B4 | src.code()); } // Bit field clear. // Sets #width adjacent bits at position #lsb in the destination register // to zero, preserving the value of the other bits. // bfc dst, #lsb, #width void Assembler::bfc(Register dst, int lsb, int width, Condition cond) { // v7 and above. DCHECK(CpuFeatures::IsSupported(ARMv7)); DCHECK(!dst.is(pc)); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); int msb = lsb + width - 1; emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf); } // Bit field insert. // Inserts #width adjacent bits from the low bits of the source register // into position #lsb of the destination register. // bfi dst, src, #lsb, #width void Assembler::bfi(Register dst, Register src, int lsb, int width, Condition cond) { // v7 and above. DCHECK(CpuFeatures::IsSupported(ARMv7)); DCHECK(!dst.is(pc) && !src.is(pc)); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); int msb = lsb + width - 1; emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | src.code()); } void Assembler::pkhbt(Register dst, Register src1, const Operand& src2, Condition cond ) { // Instruction details available in ARM DDI 0406C.b, A8.8.125. // cond(31-28) | 01101000(27-20) | Rn(19-16) | // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0) DCHECK(!dst.is(pc)); DCHECK(!src1.is(pc)); DCHECK(!src2.rm().is(pc)); DCHECK(!src2.rm().is(no_reg)); DCHECK(src2.rs().is(no_reg)); DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31)); DCHECK(src2.shift_op() == LSL); emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 | src2.shift_imm_*B7 | B4 | src2.rm().code()); } void Assembler::pkhtb(Register dst, Register src1, const Operand& src2, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.125. // cond(31-28) | 01101000(27-20) | Rn(19-16) | // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0) DCHECK(!dst.is(pc)); DCHECK(!src1.is(pc)); DCHECK(!src2.rm().is(pc)); DCHECK(!src2.rm().is(no_reg)); DCHECK(src2.rs().is(no_reg)); DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32)); DCHECK(src2.shift_op() == ASR); int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_; emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 | asr*B7 | B6 | B4 | src2.rm().code()); } void Assembler::uxtb(Register dst, const Operand& src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.274. // cond(31-28) | 01101110(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(!dst.is(pc)); DCHECK(!src.rm().is(pc)); DCHECK(!src.rm().is(no_reg)); DCHECK(src.rs().is(no_reg)); DCHECK((src.shift_imm_ == 0) || (src.shift_imm_ == 8) || (src.shift_imm_ == 16) || (src.shift_imm_ == 24)); // Operand maps ROR #0 to LSL #0. DCHECK((src.shift_op() == ROR) || ((src.shift_op() == LSL) && (src.shift_imm_ == 0))); emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 | ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code()); } void Assembler::uxtab(Register dst, Register src1, const Operand& src2, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.271. // cond(31-28) | 01101110(27-20) | Rn(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(!dst.is(pc)); DCHECK(!src1.is(pc)); DCHECK(!src2.rm().is(pc)); DCHECK(!src2.rm().is(no_reg)); DCHECK(src2.rs().is(no_reg)); DCHECK((src2.shift_imm_ == 0) || (src2.shift_imm_ == 8) || (src2.shift_imm_ == 16) || (src2.shift_imm_ == 24)); // Operand maps ROR #0 to LSL #0. DCHECK((src2.shift_op() == ROR) || ((src2.shift_op() == LSL) && (src2.shift_imm_ == 0))); emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 | ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code()); } void Assembler::uxtb16(Register dst, const Operand& src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.275. // cond(31-28) | 01101100(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(!dst.is(pc)); DCHECK(!src.rm().is(pc)); DCHECK(!src.rm().is(no_reg)); DCHECK(src.rs().is(no_reg)); DCHECK((src.shift_imm_ == 0) || (src.shift_imm_ == 8) || (src.shift_imm_ == 16) || (src.shift_imm_ == 24)); // Operand maps ROR #0 to LSL #0. DCHECK((src.shift_op() == ROR) || ((src.shift_op() == LSL) && (src.shift_imm_ == 0))); emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 | ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code()); } // Status register access instructions. void Assembler::mrs(Register dst, SRegister s, Condition cond) { DCHECK(!dst.is(pc)); emit(cond | B24 | s | 15*B16 | dst.code()*B12); } void Assembler::msr(SRegisterFieldMask fields, const Operand& src, Condition cond) { DCHECK(fields >= B16 && fields < B20); // at least one field set Instr instr; if (!src.rm_.is_valid()) { // Immediate. uint32_t rotate_imm; uint32_t immed_8; if (src.must_output_reloc_info(this) || !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { // Immediate operand cannot be encoded, load it first to register ip. move_32_bit_immediate(ip, src); msr(fields, Operand(ip), cond); return; } instr = I | rotate_imm*B8 | immed_8; } else { DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed instr = src.rm_.code(); } emit(cond | instr | B24 | B21 | fields | 15*B12); } // Load/Store instructions. void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { if (dst.is(pc)) { positions_recorder()->WriteRecordedPositions(); } addrmod2(cond | B26 | L, dst, src); } void Assembler::str(Register src, const MemOperand& dst, Condition cond) { addrmod2(cond | B26, src, dst); } void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { addrmod2(cond | B26 | B | L, dst, src); } void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { addrmod2(cond | B26 | B, src, dst); } void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { addrmod3(cond | L | B7 | H | B4, dst, src); } void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { addrmod3(cond | B7 | H | B4, src, dst); } void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { addrmod3(cond | L | B7 | S6 | B4, dst, src); } void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { addrmod3(cond | L | B7 | S6 | H | B4, dst, src); } void Assembler::ldrd(Register dst1, Register dst2, const MemOperand& src, Condition cond) { DCHECK(IsEnabled(ARMv7)); DCHECK(src.rm().is(no_reg)); DCHECK(!dst1.is(lr)); // r14. DCHECK_EQ(0, dst1.code() % 2); DCHECK_EQ(dst1.code() + 1, dst2.code()); addrmod3(cond | B7 | B6 | B4, dst1, src); } void Assembler::strd(Register src1, Register src2, const MemOperand& dst, Condition cond) { DCHECK(dst.rm().is(no_reg)); DCHECK(!src1.is(lr)); // r14. DCHECK_EQ(0, src1.code() % 2); DCHECK_EQ(src1.code() + 1, src2.code()); DCHECK(IsEnabled(ARMv7)); addrmod3(cond | B7 | B6 | B5 | B4, src1, dst); } // Preload instructions. void Assembler::pld(const MemOperand& address) { // Instruction details available in ARM DDI 0406C.b, A8.8.128. // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) | // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) | DCHECK(address.rm().is(no_reg)); DCHECK(address.am() == Offset); int U = B23; int offset = address.offset(); if (offset < 0) { offset = -offset; U = 0; } DCHECK(offset < 4096); emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 | 0xf*B12 | offset); } // Load/Store multiple instructions. void Assembler::ldm(BlockAddrMode am, Register base, RegList dst, Condition cond) { // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. DCHECK(base.is(sp) || (dst & sp.bit()) == 0); addrmod4(cond | B27 | am | L, base, dst); // Emit the constant pool after a function return implemented by ldm ..{..pc}. if (cond == al && (dst & pc.bit()) != 0) { // There is a slight chance that the ldm instruction was actually a call, // in which case it would be wrong to return into the constant pool; we // recognize this case by checking if the emission of the pool was blocked // at the pc of the ldm instruction by a mov lr, pc instruction; if this is // the case, we emit a jump over the pool. CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); } } void Assembler::stm(BlockAddrMode am, Register base, RegList src, Condition cond) { addrmod4(cond | B27 | am, base, src); } // Exception-generating instructions and debugging support. // Stops with a non-negative code less than kNumOfWatchedStops support // enabling/disabling and a counter feature. See simulator-arm.h . void Assembler::stop(const char* msg, Condition cond, int32_t code) { #ifndef __arm__ DCHECK(code >= kDefaultStopCode); { // The Simulator will handle the stop instruction and get the message // address. It expects to find the address just after the svc instruction. BlockConstPoolScope block_const_pool(this); if (code >= 0) { svc(kStopCode + code, cond); } else { svc(kStopCode + kMaxStopCode, cond); } emit(reinterpret_cast(msg)); } #else // def __arm__ if (cond != al) { Label skip; b(&skip, NegateCondition(cond)); bkpt(0); bind(&skip); } else { bkpt(0); } #endif // def __arm__ } void Assembler::bkpt(uint32_t imm16) { // v5 and above DCHECK(is_uint16(imm16)); emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf)); } void Assembler::svc(uint32_t imm24, Condition cond) { DCHECK(is_uint24(imm24)); emit(cond | 15*B24 | imm24); } // Coprocessor instructions. void Assembler::cdp(Coprocessor coproc, int opcode_1, CRegister crd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); } void Assembler::cdp2(Coprocessor coproc, int opcode_1, CRegister crd, CRegister crn, CRegister crm, int opcode_2) { // v5 and above cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::mcr(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); } void Assembler::mcr2(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2) { // v5 and above mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::mrc(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); } void Assembler::mrc2(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2) { // v5 and above mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::ldc(Coprocessor coproc, CRegister crd, const MemOperand& src, LFlag l, Condition cond) { addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); } void Assembler::ldc(Coprocessor coproc, CRegister crd, Register rn, int option, LFlag l, Condition cond) { // Unindexed addressing. DCHECK(is_uint8(option)); emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | coproc*B8 | (option & 255)); } void Assembler::ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src, LFlag l) { // v5 and above ldc(coproc, crd, src, l, kSpecialCondition); } void Assembler::ldc2(Coprocessor coproc, CRegister crd, Register rn, int option, LFlag l) { // v5 and above ldc(coproc, crd, rn, option, l, kSpecialCondition); } // Support for VFP. void Assembler::vldr(const DwVfpRegister dst, const Register base, int offset, const Condition cond) { // Ddst = MEM(Rbase + offset). // Instruction details available in ARM DDI 0406C.b, A8-924. // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) | // Vd(15-12) | 1011(11-8) | offset int u = 1; if (offset < 0) { offset = -offset; u = 0; } int vd, d; dst.split_code(&vd, &d); DCHECK(offset >= 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 | 0xB*B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address // in the ip register. DCHECK(!base.is(ip)); if (u == 1) { add(ip, base, Operand(offset)); } else { sub(ip, base, Operand(offset)); } emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8); } } void Assembler::vldr(const DwVfpRegister dst, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { add(ip, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vldr(dst, ip, 0, cond); } else { vldr(dst, operand.rn(), operand.offset(), cond); } } void Assembler::vldr(const SwVfpRegister dst, const Register base, int offset, const Condition cond) { // Sdst = MEM(Rbase + offset). // Instruction details available in ARM DDI 0406A, A8-628. // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) | // Vdst(15-12) | 1010(11-8) | offset int u = 1; if (offset < 0) { offset = -offset; u = 0; } int sd, d; dst.split_code(&sd, &d); DCHECK(offset >= 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 | 0xA*B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address // in the ip register. DCHECK(!base.is(ip)); if (u == 1) { add(ip, base, Operand(offset)); } else { sub(ip, base, Operand(offset)); } emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8); } } void Assembler::vldr(const SwVfpRegister dst, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { add(ip, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vldr(dst, ip, 0, cond); } else { vldr(dst, operand.rn(), operand.offset(), cond); } } void Assembler::vstr(const DwVfpRegister src, const Register base, int offset, const Condition cond) { // MEM(Rbase + offset) = Dsrc. // Instruction details available in ARM DDI 0406C.b, A8-1082. // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) | // Vd(15-12) | 1011(11-8) | (offset/4) int u = 1; if (offset < 0) { offset = -offset; u = 0; } DCHECK(offset >= 0); int vd, d; src.split_code(&vd, &d); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address // in the ip register. DCHECK(!base.is(ip)); if (u == 1) { add(ip, base, Operand(offset)); } else { sub(ip, base, Operand(offset)); } emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8); } } void Assembler::vstr(const DwVfpRegister src, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { add(ip, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vstr(src, ip, 0, cond); } else { vstr(src, operand.rn(), operand.offset(), cond); } } void Assembler::vstr(const SwVfpRegister src, const Register base, int offset, const Condition cond) { // MEM(Rbase + offset) = SSrc. // Instruction details available in ARM DDI 0406A, A8-786. // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) | // Vdst(15-12) | 1010(11-8) | (offset/4) int u = 1; if (offset < 0) { offset = -offset; u = 0; } int sd, d; src.split_code(&sd, &d); DCHECK(offset >= 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 | 0xA*B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address // in the ip register. DCHECK(!base.is(ip)); if (u == 1) { add(ip, base, Operand(offset)); } else { sub(ip, base, Operand(offset)); } emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8); } } void Assembler::vstr(const SwVfpRegister src, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { add(ip, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vstr(src, ip, 0, cond); } else { vstr(src, operand.rn(), operand.offset(), cond); } } void Assembler::vldm(BlockAddrMode am, Register base, DwVfpRegister first, DwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-922. // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count * 2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(!base.is(pc)); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; DCHECK(count <= 16); emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 | 0xB*B8 | count*2); } void Assembler::vstm(BlockAddrMode am, Register base, DwVfpRegister first, DwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-1080. // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count * 2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(!base.is(pc)); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; DCHECK(count <= 16); emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 | 0xB*B8 | count*2); } void Assembler::vldm(BlockAddrMode am, Register base, SwVfpRegister first, SwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-626. // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | // first(15-12) | 1010(11-8) | (count/2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(!base.is(pc)); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 | 0xA*B8 | count); } void Assembler::vstm(BlockAddrMode am, Register base, SwVfpRegister first, SwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-784. // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count/2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(!base.is(pc)); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 | 0xA*B8 | count); } static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) { uint64_t i; memcpy(&i, &d, 8); *lo = i & 0xffffffff; *hi = i >> 32; } // Only works for little endian floating point formats. // We don't support VFP on the mixed endian floating point platform. static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) { DCHECK(CpuFeatures::IsSupported(VFP3)); // VMOV can accept an immediate of the form: // // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7 // // The immediate is encoded using an 8-bit quantity, comprised of two // 4-bit fields. For an 8-bit immediate of the form: // // [abcdefgh] // // where a is the MSB and h is the LSB, an immediate 64-bit double can be // created of the form: // // [aBbbbbbb,bbcdefgh,00000000,00000000, // 00000000,00000000,00000000,00000000] // // where B = ~b. // uint32_t lo, hi; DoubleAsTwoUInt32(d, &lo, &hi); // The most obvious constraint is the long block of zeroes. if ((lo != 0) || ((hi & 0xffff) != 0)) { return false; } // Bits 62:55 must be all clear or all set. if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) { return false; } // Bit 63 must be NOT bit 62. if (((hi ^ (hi << 1)) & (0x40000000)) == 0) { return false; } // Create the encoded immediate in the form: // [00000000,0000abcd,00000000,0000efgh] *encoding = (hi >> 16) & 0xf; // Low nybble. *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble. *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble. return true; } void Assembler::vmov(const DwVfpRegister dst, double imm, const Register scratch) { uint32_t enc; if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) { // The double can be encoded in the instruction. // // Dd = immediate // Instruction details available in ARM DDI 0406C.b, A8-936. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0) int vd, d; dst.split_code(&vd, &d); emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc); } else if (FLAG_enable_vldr_imm && is_constant_pool_available()) { // TODO(jfb) Temporarily turned off until we have constant blinding or // some equivalent mitigation: an attacker can otherwise control // generated data which also happens to be executable, a Very Bad // Thing indeed. // Blinding gets tricky because we don't have xor, we probably // need to add/subtract without losing precision, which requires a // cookie value that Lithium is probably better positioned to // choose. // We could also add a few peepholes here like detecting 0.0 and // -0.0 and doing a vmov from the sequestered d14, forcing denorms // to zero (we set flush-to-zero), and normalizing NaN values. // We could also detect redundant values. // The code could also randomize the order of values, though // that's tricky because vldr has a limited reach. Furthermore // it breaks load locality. RelocInfo rinfo(pc_, imm); ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo); if (section == ConstantPoolArray::EXTENDED_SECTION) { DCHECK(FLAG_enable_ool_constant_pool); // Emit instructions to load constant pool offset. movw(ip, 0); movt(ip, 0); // Load from constant pool at offset. vldr(dst, MemOperand(pp, ip)); } else { DCHECK(section == ConstantPoolArray::SMALL_SECTION); vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0)); } } else { // Synthesise the double from ARM immediates. uint32_t lo, hi; DoubleAsTwoUInt32(imm, &lo, &hi); if (scratch.is(no_reg)) { if (dst.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); // Move the low part of the double into the lower of the corresponsing S // registers of D register dst. mov(ip, Operand(lo)); vmov(loc.low(), ip); // Move the high part of the double into the higher of the // corresponsing S registers of D register dst. mov(ip, Operand(hi)); vmov(loc.high(), ip); } else { // D16-D31 does not have S registers, so move the low and high parts // directly to the D register using vmov.32. // Note: This may be slower, so we only do this when we have to. mov(ip, Operand(lo)); vmov(dst, VmovIndexLo, ip); mov(ip, Operand(hi)); vmov(dst, VmovIndexHi, ip); } } else { // Move the low and high parts of the double to a D register in one // instruction. mov(ip, Operand(lo)); mov(scratch, Operand(hi)); vmov(dst, ip, scratch); } } } void Assembler::vmov(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // Sd = Sm // Instruction details available in ARM DDI 0406B, A8-642. int sd, d, sm, m; dst.split_code(&sd, &d); src.split_code(&sm, &m); emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm); } void Assembler::vmov(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Dd = Dm // Instruction details available in ARM DDI 0406C.b, A8-938. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 | vm); } void Assembler::vmov(const DwVfpRegister dst, const VmovIndex index, const Register src, const Condition cond) { // Dd[index] = Rt // Instruction details available in ARM DDI 0406C.b, A8-940. // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) | // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0) DCHECK(index.index == 0 || index.index == 1); int vd, d; dst.split_code(&vd, &d); emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 | d*B7 | B4); } void Assembler::vmov(const Register dst, const VmovIndex index, const DwVfpRegister src, const Condition cond) { // Dd[index] = Rt // Instruction details available in ARM DDI 0406C.b, A8.8.342. // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) | // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0) DCHECK(index.index == 0 || index.index == 1); int vn, n; src.split_code(&vn, &n); emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 | 0xB*B8 | n*B7 | B4); } void Assembler::vmov(const DwVfpRegister dst, const Register src1, const Register src2, const Condition cond) { // Dm = . // Instruction details available in ARM DDI 0406C.b, A8-948. // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm DCHECK(!src1.is(pc) && !src2.is(pc)); int vm, m; dst.split_code(&vm, &m); emit(cond | 0xC*B24 | B22 | src2.code()*B16 | src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm); } void Assembler::vmov(const Register dst1, const Register dst2, const DwVfpRegister src, const Condition cond) { // = Dm. // Instruction details available in ARM DDI 0406C.b, A8-948. // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm DCHECK(!dst1.is(pc) && !dst2.is(pc)); int vm, m; src.split_code(&vm, &m); emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm); } void Assembler::vmov(const SwVfpRegister dst, const Register src, const Condition cond) { // Sn = Rt. // Instruction details available in ARM DDI 0406A, A8-642. // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) DCHECK(!src.is(pc)); int sn, n; dst.split_code(&sn, &n); emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4); } void Assembler::vmov(const Register dst, const SwVfpRegister src, const Condition cond) { // Rt = Sn. // Instruction details available in ARM DDI 0406A, A8-642. // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) DCHECK(!dst.is(pc)); int sn, n; src.split_code(&sn, &n); emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4); } // Type of data to read from or write to VFP register. // Used as specifier in generic vcvt instruction. enum VFPType { S32, U32, F32, F64 }; static bool IsSignedVFPType(VFPType type) { switch (type) { case S32: return true; case U32: return false; default: UNREACHABLE(); return false; } } static bool IsIntegerVFPType(VFPType type) { switch (type) { case S32: case U32: return true; case F32: case F64: return false; default: UNREACHABLE(); return false; } } static bool IsDoubleVFPType(VFPType type) { switch (type) { case F32: return false; case F64: return true; default: UNREACHABLE(); return false; } } // Split five bit reg_code based on size of reg_type. // 32-bit register codes are Vm:M // 64-bit register codes are M:Vm // where Vm is four bits, and M is a single bit. static void SplitRegCode(VFPType reg_type, int reg_code, int* vm, int* m) { DCHECK((reg_code >= 0) && (reg_code <= 31)); if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) { // 32 bit type. *m = reg_code & 0x1; *vm = reg_code >> 1; } else { // 64 bit type. *m = (reg_code & 0x10) >> 4; *vm = reg_code & 0x0F; } } // Encode vcvt.src_type.dst_type instruction. static Instr EncodeVCVT(const VFPType dst_type, const int dst_code, const VFPType src_type, const int src_code, VFPConversionMode mode, const Condition cond) { DCHECK(src_type != dst_type); int D, Vd, M, Vm; SplitRegCode(src_type, src_code, &Vm, &M); SplitRegCode(dst_type, dst_code, &Vd, &D); if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) { // Conversion between IEEE floating point and 32-bit integer. // Instruction details available in ARM DDI 0406B, A8.6.295. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) | // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type)); int sz, opc2, op; if (IsIntegerVFPType(dst_type)) { opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4; sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; op = mode; } else { DCHECK(IsIntegerVFPType(src_type)); opc2 = 0x0; sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0; op = IsSignedVFPType(src_type) ? 0x1 : 0x0; } return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 | Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm); } else { // Conversion between IEEE double and single precision. // Instruction details available in ARM DDI 0406B, A8.6.298. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) | // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 | Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm); } } void Assembler::vcvt_f64_s32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond)); } void Assembler::vcvt_f32_s32(const SwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond)); } void Assembler::vcvt_f64_u32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond)); } void Assembler::vcvt_s32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_u32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_f64_f32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond)); } void Assembler::vcvt_f32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_f64_s32(const DwVfpRegister dst, int fraction_bits, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-874. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) | // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0) DCHECK(fraction_bits > 0 && fraction_bits <= 32); DCHECK(CpuFeatures::IsSupported(VFP3)); int vd, d; dst.split_code(&vd, &d); int imm5 = 32 - fraction_bits; int i = imm5 & 1; int imm4 = (imm5 >> 1) & 0xf; emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 | vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4); } void Assembler::vneg(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-968. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 | vm); } void Assembler::vabs(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-524. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 | m*B5 | vm); } void Assembler::vadd(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vadd(Dn, Dm) double precision floating point addition. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-830. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 | vm); } void Assembler::vsub(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vsub(Dn, Dm) double precision floating point subtraction. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-1086. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 | m*B5 | vm); } void Assembler::vmul(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vmul(Dn, Dm) double precision floating point multiplication. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-960. // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 | vm); } void Assembler::vmla(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 | vm); } void Assembler::vmls(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 | m*B5 | vm); } void Assembler::vdiv(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vdiv(Dn, Dm) double precision floating point division. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-882. // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 | vm); } void Assembler::vcmp(const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // vcmp(Dd, Dm) double precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; src1.split_code(&vd, &d); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 | vm); } void Assembler::vcmp(const DwVfpRegister src1, const double src2, const Condition cond) { // vcmp(Dd, #0.0) double precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0) DCHECK(src2 == 0.0); int vd, d; src1.split_code(&vd, &d); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6); } void Assembler::vmsr(Register dst, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-652. // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) emit(cond | 0xE*B24 | 0xE*B20 | B16 | dst.code()*B12 | 0xA*B8 | B4); } void Assembler::vmrs(Register dst, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-652. // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) emit(cond | 0xE*B24 | 0xF*B20 | B16 | dst.code()*B12 | 0xA*B8 | B4); } void Assembler::vsqrt(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-1058. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 | m*B5 | vm); } // Support for NEON. void Assembler::vld1(NeonSize size, const NeonListOperand& dst, const NeonMemOperand& src) { // Instruction details available in ARM DDI 0406C.b, A8.8.320. // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) DCHECK(CpuFeatures::IsSupported(NEON)); int vd, d; dst.base().split_code(&vd, &d); emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 | dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code()); } void Assembler::vst1(NeonSize size, const NeonListOperand& src, const NeonMemOperand& dst) { // Instruction details available in ARM DDI 0406C.b, A8.8.404. // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) DCHECK(CpuFeatures::IsSupported(NEON)); int vd, d; src.base().split_code(&vd, &d); emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 | size*B6 | dst.align()*B4 | dst.rm().code()); } void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) { // Instruction details available in ARM DDI 0406C.b, A8.8.346. // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) | // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0) DCHECK(CpuFeatures::IsSupported(NEON)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 | (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm); } // Pseudo instructions. void Assembler::nop(int type) { // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes // some of the CPU's pipeline and has to issue. Older ARM chips simply used // MOV Rx, Rx as NOP and it performs better even in newer CPUs. // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode // a type. DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop. emit(al | 13*B21 | type*B12 | type); } bool Assembler::IsMovT(Instr instr) { instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions ((kNumRegisters-1)*B12) | // mask out register EncodeMovwImmediate(0xFFFF)); // mask out immediate value return instr == kMovtPattern; } bool Assembler::IsMovW(Instr instr) { instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions ((kNumRegisters-1)*B12) | // mask out destination EncodeMovwImmediate(0xFFFF)); // mask out immediate value return instr == kMovwPattern; } Instr Assembler::GetMovTPattern() { return kMovtPattern; } Instr Assembler::GetMovWPattern() { return kMovwPattern; } Instr Assembler::EncodeMovwImmediate(uint32_t immediate) { DCHECK(immediate < 0x10000); return ((immediate & 0xf000) << 4) | (immediate & 0xfff); } Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) { instruction &= ~EncodeMovwImmediate(0xffff); return instruction | EncodeMovwImmediate(immediate); } int Assembler::DecodeShiftImm(Instr instr) { int rotate = Instruction::RotateValue(instr) * 2; int immed8 = Instruction::Immed8Value(instr); return (immed8 >> rotate) | (immed8 << (32 - rotate)); } Instr Assembler::PatchShiftImm(Instr instr, int immed) { uint32_t rotate_imm = 0; uint32_t immed_8 = 0; bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL); DCHECK(immed_fits); USE(immed_fits); return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8; } bool Assembler::IsNop(Instr instr, int type) { DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop. // Check for mov rx, rx where x = type. return instr == (al | 13*B21 | type*B12 | type); } bool Assembler::IsMovImmed(Instr instr) { return (instr & kMovImmedMask) == kMovImmedPattern; } bool Assembler::IsOrrImmed(Instr instr) { return (instr & kOrrImmedMask) == kOrrImmedPattern; } // static bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { uint32_t dummy1; uint32_t dummy2; return fits_shifter(imm32, &dummy1, &dummy2, NULL); } bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) { return is_uint12(abs(imm32)); } // Debugging. void Assembler::RecordJSReturn() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordDebugBreakSlot() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } void Assembler::RecordComment(const char* msg) { if (FLAG_code_comments) { CheckBuffer(); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast(msg)); } } void Assembler::RecordConstPool(int size) { // We only need this for debugger support, to correctly compute offsets in the // code. RecordRelocInfo(RelocInfo::CONST_POOL, static_cast(size)); } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 1 * MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } CHECK_GT(desc.buffer_size, 0); // no overflow // Set up new buffer. desc.buffer = NewArray(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); MemMove(desc.buffer, buffer_, desc.instr_size); MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // None of our relocation types are pc relative pointing outside the code // buffer nor pc absolute pointing inside the code buffer, so there is no need // to relocate any emitted relocation entries. // Relocate pending relocation entries. for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) { RelocInfo& rinfo = pending_32_bit_reloc_info_[i]; DCHECK(rinfo.rmode() != RelocInfo::COMMENT && rinfo.rmode() != RelocInfo::POSITION); if (rinfo.rmode() != RelocInfo::JS_RETURN) { rinfo.set_pc(rinfo.pc() + pc_delta); } } for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) { RelocInfo& rinfo = pending_64_bit_reloc_info_[i]; DCHECK(rinfo.rmode() == RelocInfo::NONE64); rinfo.set_pc(rinfo.pc() + pc_delta); } constant_pool_builder_.Relocate(pc_delta); } void Assembler::db(uint8_t data) { // No relocation info should be pending while using db. db is used // to write pure data with no pointers and the constant pool should // be emitted before using db. DCHECK(num_pending_32_bit_reloc_info_ == 0); DCHECK(num_pending_64_bit_reloc_info_ == 0); CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data) { // No relocation info should be pending while using dd. dd is used // to write pure data with no pointers and the constant pool should // be emitted before using dd. DCHECK(num_pending_32_bit_reloc_info_ == 0); DCHECK(num_pending_64_bit_reloc_info_ == 0); CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint32_t); } void Assembler::emit_code_stub_address(Code* stub) { CheckBuffer(); *reinterpret_cast(pc_) = reinterpret_cast(stub->instruction_start()); pc_ += sizeof(uint32_t); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { RelocInfo rinfo(pc_, rmode, data, NULL); RecordRelocInfo(rinfo); } void Assembler::RecordRelocInfo(const RelocInfo& rinfo) { if (!RelocInfo::IsNone(rinfo.rmode())) { // Don't record external references unless the heap will be serialized. if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() && !emit_debug_code()) { return; } DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) { RelocInfo reloc_info_with_ast_id(rinfo.pc(), rinfo.rmode(), RecordedAstId().ToInt(), NULL); ClearRecordedAstId(); reloc_info_writer.Write(&reloc_info_with_ast_id); } else { reloc_info_writer.Write(&rinfo); } } } ConstantPoolArray::LayoutSection Assembler::ConstantPoolAddEntry( const RelocInfo& rinfo) { if (FLAG_enable_ool_constant_pool) { return constant_pool_builder_.AddEntry(this, rinfo); } else { if (rinfo.rmode() == RelocInfo::NONE64) { DCHECK(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo); if (num_pending_64_bit_reloc_info_ == 0) { first_const_pool_64_use_ = pc_offset(); } pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo; } else { DCHECK(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo); if (num_pending_32_bit_reloc_info_ == 0) { first_const_pool_32_use_ = pc_offset(); } pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo; } // Make sure the constant pool is not emitted in place of the next // instruction for which we just recorded relocation info. BlockConstPoolFor(1); return ConstantPoolArray::SMALL_SECTION; } } void Assembler::BlockConstPoolFor(int instructions) { if (FLAG_enable_ool_constant_pool) { // Should be a no-op if using an out-of-line constant pool. DCHECK(num_pending_32_bit_reloc_info_ == 0); DCHECK(num_pending_64_bit_reloc_info_ == 0); return; } int pc_limit = pc_offset() + instructions * kInstrSize; if (no_const_pool_before_ < pc_limit) { // Max pool start (if we need a jump and an alignment). #ifdef DEBUG int start = pc_limit + kInstrSize + 2 * kPointerSize; DCHECK((num_pending_32_bit_reloc_info_ == 0) || (start - first_const_pool_32_use_ + num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool)); DCHECK((num_pending_64_bit_reloc_info_ == 0) || (start - first_const_pool_64_use_ < kMaxDistToFPPool)); #endif no_const_pool_before_ = pc_limit; } if (next_buffer_check_ < no_const_pool_before_) { next_buffer_check_ = no_const_pool_before_; } } void Assembler::CheckConstPool(bool force_emit, bool require_jump) { if (FLAG_enable_ool_constant_pool) { // Should be a no-op if using an out-of-line constant pool. DCHECK(num_pending_32_bit_reloc_info_ == 0); DCHECK(num_pending_64_bit_reloc_info_ == 0); return; } // Some short sequence of instruction mustn't be broken up by constant pool // emission, such sequences are protected by calls to BlockConstPoolFor and // BlockConstPoolScope. if (is_const_pool_blocked()) { // Something is wrong if emission is forced and blocked at the same time. DCHECK(!force_emit); return; } // There is nothing to do if there are no pending constant pool entries. if ((num_pending_32_bit_reloc_info_ == 0) && (num_pending_64_bit_reloc_info_ == 0)) { // Calculate the offset of the next check. next_buffer_check_ = pc_offset() + kCheckPoolInterval; return; } // Check that the code buffer is large enough before emitting the constant // pool (include the jump over the pool and the constant pool marker and // the gap to the relocation information). int jump_instr = require_jump ? kInstrSize : 0; int size_up_to_marker = jump_instr + kInstrSize; int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize; bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0); bool require_64_bit_align = false; if (has_fp_values) { require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7); if (require_64_bit_align) { size_after_marker += kInstrSize; } size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize; } int size = size_up_to_marker + size_after_marker; // We emit a constant pool when: // * requested to do so by parameter force_emit (e.g. after each function). // * the distance from the first instruction accessing the constant pool to // any of the constant pool entries will exceed its limit the next // time the pool is checked. This is overly restrictive, but we don't emit // constant pool entries in-order so it's conservatively correct. // * the instruction doesn't require a jump after itself to jump over the // constant pool, and we're getting close to running out of range. if (!force_emit) { DCHECK((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0)); bool need_emit = false; if (has_fp_values) { int dist64 = pc_offset() + size - num_pending_32_bit_reloc_info_ * kPointerSize - first_const_pool_64_use_; if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) || (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) { need_emit = true; } } int dist32 = pc_offset() + size - first_const_pool_32_use_; if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) || (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) { need_emit = true; } if (!need_emit) return; } int needed_space = size + kGap; while (buffer_space() <= needed_space) GrowBuffer(); { // Block recursive calls to CheckConstPool. BlockConstPoolScope block_const_pool(this); RecordComment("[ Constant Pool"); RecordConstPool(size); // Emit jump over constant pool if necessary. Label after_pool; if (require_jump) { b(&after_pool); } // Put down constant pool marker "Undefined instruction". // The data size helps disassembly know what to print. emit(kConstantPoolMarker | EncodeConstantPoolLength(size_after_marker / kPointerSize)); if (require_64_bit_align) { emit(kConstantPoolMarker); } // Emit 64-bit constant pool entries first: their range is smaller than // 32-bit entries. for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) { RelocInfo& rinfo = pending_64_bit_reloc_info_[i]; DCHECK(!((uintptr_t)pc_ & 0x7)); // Check 64-bit alignment. Instr instr = instr_at(rinfo.pc()); // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0. DCHECK((IsVldrDPcImmediateOffset(instr) && GetVldrDRegisterImmediateOffset(instr) == 0)); int delta = pc_ - rinfo.pc() - kPcLoadDelta; DCHECK(is_uint10(delta)); bool found = false; uint64_t value = rinfo.raw_data64(); for (int j = 0; j < i; j++) { RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j]; if (value == rinfo2.raw_data64()) { found = true; DCHECK(rinfo2.rmode() == RelocInfo::NONE64); Instr instr2 = instr_at(rinfo2.pc()); DCHECK(IsVldrDPcImmediateOffset(instr2)); delta = GetVldrDRegisterImmediateOffset(instr2); delta += rinfo2.pc() - rinfo.pc(); break; } } instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta)); if (!found) { uint64_t uint_data = rinfo.raw_data64(); emit(uint_data & 0xFFFFFFFF); emit(uint_data >> 32); } } // Emit 32-bit constant pool entries. for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) { RelocInfo& rinfo = pending_32_bit_reloc_info_[i]; DCHECK(rinfo.rmode() != RelocInfo::COMMENT && rinfo.rmode() != RelocInfo::POSITION && rinfo.rmode() != RelocInfo::STATEMENT_POSITION && rinfo.rmode() != RelocInfo::CONST_POOL && rinfo.rmode() != RelocInfo::NONE64); Instr instr = instr_at(rinfo.pc()); // 64-bit loads shouldn't get here. DCHECK(!IsVldrDPcImmediateOffset(instr)); if (IsLdrPcImmediateOffset(instr) && GetLdrRegisterImmediateOffset(instr) == 0) { int delta = pc_ - rinfo.pc() - kPcLoadDelta; DCHECK(is_uint12(delta)); // 0 is the smallest delta: // ldr rd, [pc, #0] // constant pool marker // data bool found = false; if (!serializer_enabled() && rinfo.rmode() >= RelocInfo::CELL) { for (int j = 0; j < i; j++) { RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j]; if ((rinfo2.data() == rinfo.data()) && (rinfo2.rmode() == rinfo.rmode())) { Instr instr2 = instr_at(rinfo2.pc()); if (IsLdrPcImmediateOffset(instr2)) { delta = GetLdrRegisterImmediateOffset(instr2); delta += rinfo2.pc() - rinfo.pc(); found = true; break; } } } } instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta)); if (!found) { emit(rinfo.data()); } } else { DCHECK(IsMovW(instr)); } } num_pending_32_bit_reloc_info_ = 0; num_pending_64_bit_reloc_info_ = 0; first_const_pool_32_use_ = -1; first_const_pool_64_use_ = -1; RecordComment("]"); if (after_pool.is_linked()) { bind(&after_pool); } } // Since a constant pool was just emitted, move the check offset forward by // the standard interval. next_buffer_check_ = pc_offset() + kCheckPoolInterval; } Handle Assembler::NewConstantPool(Isolate* isolate) { if (!FLAG_enable_ool_constant_pool) { return isolate->factory()->empty_constant_pool_array(); } return constant_pool_builder_.New(isolate); } void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) { constant_pool_builder_.Populate(this, constant_pool); } ConstantPoolBuilder::ConstantPoolBuilder() : entries_(), current_section_(ConstantPoolArray::SMALL_SECTION) {} bool ConstantPoolBuilder::IsEmpty() { return entries_.size() == 0; } ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType( RelocInfo::Mode rmode) { if (rmode == RelocInfo::NONE64) { return ConstantPoolArray::INT64; } else if (!RelocInfo::IsGCRelocMode(rmode)) { return ConstantPoolArray::INT32; } else if (RelocInfo::IsCodeTarget(rmode)) { return ConstantPoolArray::CODE_PTR; } else { DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode)); return ConstantPoolArray::HEAP_PTR; } } ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry( Assembler* assm, const RelocInfo& rinfo) { RelocInfo::Mode rmode = rinfo.rmode(); DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION && rmode != RelocInfo::STATEMENT_POSITION && rmode != RelocInfo::CONST_POOL); // Try to merge entries which won't be patched. int merged_index = -1; ConstantPoolArray::LayoutSection entry_section = current_section_; if (RelocInfo::IsNone(rmode) || (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) { size_t i; std::vector::const_iterator it; for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) { if (RelocInfo::IsEqual(rinfo, it->rinfo_)) { // Merge with found entry. merged_index = i; entry_section = entries_[i].section_; break; } } } DCHECK(entry_section <= current_section_); entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index)); if (merged_index == -1) { // Not merged, so update the appropriate count. number_of_entries_[entry_section].increment(GetConstantPoolType(rmode)); } // Check if we still have room for another entry in the small section // given Arm's ldr and vldr immediate offset range. if (current_section_ == ConstantPoolArray::SMALL_SECTION && !(is_uint12(ConstantPoolArray::SizeFor(*small_entries())) && is_uint10(ConstantPoolArray::MaxInt64Offset( small_entries()->count_of(ConstantPoolArray::INT64))))) { current_section_ = ConstantPoolArray::EXTENDED_SECTION; } return entry_section; } void ConstantPoolBuilder::Relocate(int pc_delta) { for (std::vector::iterator entry = entries_.begin(); entry != entries_.end(); entry++) { DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN); entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta); } } Handle ConstantPoolBuilder::New(Isolate* isolate) { if (IsEmpty()) { return isolate->factory()->empty_constant_pool_array(); } else if (extended_entries()->is_empty()) { return isolate->factory()->NewConstantPoolArray(*small_entries()); } else { DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION); return isolate->factory()->NewExtendedConstantPoolArray( *small_entries(), *extended_entries()); } } void ConstantPoolBuilder::Populate(Assembler* assm, ConstantPoolArray* constant_pool) { DCHECK_EQ(extended_entries()->is_empty(), !constant_pool->is_extended_layout()); DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries( constant_pool, ConstantPoolArray::SMALL_SECTION))); if (constant_pool->is_extended_layout()) { DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries( constant_pool, ConstantPoolArray::EXTENDED_SECTION))); } // Set up initial offsets. int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS] [ConstantPoolArray::NUMBER_OF_TYPES]; for (int section = 0; section <= constant_pool->final_section(); section++) { int section_start = (section == ConstantPoolArray::EXTENDED_SECTION) ? small_entries()->total_count() : 0; for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) { ConstantPoolArray::Type type = static_cast(i); if (number_of_entries_[section].count_of(type) != 0) { offsets[section][type] = constant_pool->OffsetOfElementAt( number_of_entries_[section].base_of(type) + section_start); } } } for (std::vector::iterator entry = entries_.begin(); entry != entries_.end(); entry++) { RelocInfo rinfo = entry->rinfo_; RelocInfo::Mode rmode = entry->rinfo_.rmode(); ConstantPoolArray::Type type = GetConstantPoolType(rmode); // Update constant pool if necessary and get the entry's offset. int offset; if (entry->merged_index_ == -1) { offset = offsets[entry->section_][type]; offsets[entry->section_][type] += ConstantPoolArray::entry_size(type); if (type == ConstantPoolArray::INT64) { constant_pool->set_at_offset(offset, rinfo.data64()); } else if (type == ConstantPoolArray::INT32) { constant_pool->set_at_offset(offset, static_cast(rinfo.data())); } else if (type == ConstantPoolArray::CODE_PTR) { constant_pool->set_at_offset(offset, reinterpret_cast
(rinfo.data())); } else { DCHECK(type == ConstantPoolArray::HEAP_PTR); constant_pool->set_at_offset(offset, reinterpret_cast(rinfo.data())); } offset -= kHeapObjectTag; entry->merged_index_ = offset; // Stash offset for merged entries. } else { DCHECK(entry->merged_index_ < (entry - entries_.begin())); offset = entries_[entry->merged_index_].merged_index_; } // Patch vldr/ldr instruction with correct offset. Instr instr = assm->instr_at(rinfo.pc()); if (entry->section_ == ConstantPoolArray::EXTENDED_SECTION) { if (CpuFeatures::IsSupported(ARMv7)) { // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0]. Instr next_instr = assm->instr_at(rinfo.pc() + Assembler::kInstrSize); DCHECK((Assembler::IsMovW(instr) && Instruction::ImmedMovwMovtValue(instr) == 0)); DCHECK((Assembler::IsMovT(next_instr) && Instruction::ImmedMovwMovtValue(next_instr) == 0)); assm->instr_at_put( rinfo.pc(), Assembler::PatchMovwImmediate(instr, offset & 0xffff)); assm->instr_at_put( rinfo.pc() + Assembler::kInstrSize, Assembler::PatchMovwImmediate(next_instr, offset >> 16)); } else { // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0]. Instr instr_2 = assm->instr_at(rinfo.pc() + Assembler::kInstrSize); Instr instr_3 = assm->instr_at(rinfo.pc() + 2 * Assembler::kInstrSize); Instr instr_4 = assm->instr_at(rinfo.pc() + 3 * Assembler::kInstrSize); DCHECK((Assembler::IsMovImmed(instr) && Instruction::Immed8Value(instr) == 0)); DCHECK((Assembler::IsOrrImmed(instr_2) && Instruction::Immed8Value(instr_2) == 0) && Assembler::GetRn(instr_2).is(Assembler::GetRd(instr_2))); DCHECK((Assembler::IsOrrImmed(instr_3) && Instruction::Immed8Value(instr_3) == 0) && Assembler::GetRn(instr_3).is(Assembler::GetRd(instr_3))); DCHECK((Assembler::IsOrrImmed(instr_4) && Instruction::Immed8Value(instr_4) == 0) && Assembler::GetRn(instr_4).is(Assembler::GetRd(instr_4))); assm->instr_at_put( rinfo.pc(), Assembler::PatchShiftImm(instr, (offset & kImm8Mask))); assm->instr_at_put( rinfo.pc() + Assembler::kInstrSize, Assembler::PatchShiftImm(instr_2, (offset & (kImm8Mask << 8)))); assm->instr_at_put( rinfo.pc() + 2 * Assembler::kInstrSize, Assembler::PatchShiftImm(instr_3, (offset & (kImm8Mask << 16)))); assm->instr_at_put( rinfo.pc() + 3 * Assembler::kInstrSize, Assembler::PatchShiftImm(instr_4, (offset & (kImm8Mask << 24)))); } } else if (type == ConstantPoolArray::INT64) { // Instruction to patch must be 'vldr rd, [pp, #0]'. DCHECK((Assembler::IsVldrDPpImmediateOffset(instr) && Assembler::GetVldrDRegisterImmediateOffset(instr) == 0)); DCHECK(is_uint10(offset)); assm->instr_at_put(rinfo.pc(), Assembler::SetVldrDRegisterImmediateOffset( instr, offset)); } else { // Instruction to patch must be 'ldr rd, [pp, #0]'. DCHECK((Assembler::IsLdrPpImmediateOffset(instr) && Assembler::GetLdrRegisterImmediateOffset(instr) == 0)); DCHECK(is_uint12(offset)); assm->instr_at_put( rinfo.pc(), Assembler::SetLdrRegisterImmediateOffset(instr, offset)); } } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM