// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include "src/v8.h" #if V8_TARGET_ARCH_ARM64 #include "src/arm64/decoder-arm64-inl.h" #include "src/arm64/disasm-arm64.h" #include "src/base/platform/platform.h" #include "src/disasm.h" #include "src/macro-assembler.h" namespace v8 { namespace internal { Disassembler::Disassembler() { buffer_size_ = 256; buffer_ = reinterpret_cast(malloc(buffer_size_)); buffer_pos_ = 0; own_buffer_ = true; } Disassembler::Disassembler(char* text_buffer, int buffer_size) { buffer_size_ = buffer_size; buffer_ = text_buffer; buffer_pos_ = 0; own_buffer_ = false; } Disassembler::~Disassembler() { if (own_buffer_) { free(buffer_); } } char* Disassembler::GetOutput() { return buffer_; } void Disassembler::VisitAddSubImmediate(Instruction* instr) { bool rd_is_zr = RdIsZROrSP(instr); bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) && (instr->ImmAddSub() == 0) ? true : false; const char *mnemonic = ""; const char *form = "'Rds, 'Rns, 'IAddSub"; const char *form_cmp = "'Rns, 'IAddSub"; const char *form_mov = "'Rds, 'Rns"; switch (instr->Mask(AddSubImmediateMask)) { case ADD_w_imm: case ADD_x_imm: { mnemonic = "add"; if (stack_op) { mnemonic = "mov"; form = form_mov; } break; } case ADDS_w_imm: case ADDS_x_imm: { mnemonic = "adds"; if (rd_is_zr) { mnemonic = "cmn"; form = form_cmp; } break; } case SUB_w_imm: case SUB_x_imm: mnemonic = "sub"; break; case SUBS_w_imm: case SUBS_x_imm: { mnemonic = "subs"; if (rd_is_zr) { mnemonic = "cmp"; form = form_cmp; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitAddSubShifted(Instruction* instr) { bool rd_is_zr = RdIsZROrSP(instr); bool rn_is_zr = RnIsZROrSP(instr); const char *mnemonic = ""; const char *form = "'Rd, 'Rn, 'Rm'HDP"; const char *form_cmp = "'Rn, 'Rm'HDP"; const char *form_neg = "'Rd, 'Rm'HDP"; switch (instr->Mask(AddSubShiftedMask)) { case ADD_w_shift: case ADD_x_shift: mnemonic = "add"; break; case ADDS_w_shift: case ADDS_x_shift: { mnemonic = "adds"; if (rd_is_zr) { mnemonic = "cmn"; form = form_cmp; } break; } case SUB_w_shift: case SUB_x_shift: { mnemonic = "sub"; if (rn_is_zr) { mnemonic = "neg"; form = form_neg; } break; } case SUBS_w_shift: case SUBS_x_shift: { mnemonic = "subs"; if (rd_is_zr) { mnemonic = "cmp"; form = form_cmp; } else if (rn_is_zr) { mnemonic = "negs"; form = form_neg; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitAddSubExtended(Instruction* instr) { bool rd_is_zr = RdIsZROrSP(instr); const char *mnemonic = ""; Extend mode = static_cast(instr->ExtendMode()); const char *form = ((mode == UXTX) || (mode == SXTX)) ? "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext"; const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ? "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext"; switch (instr->Mask(AddSubExtendedMask)) { case ADD_w_ext: case ADD_x_ext: mnemonic = "add"; break; case ADDS_w_ext: case ADDS_x_ext: { mnemonic = "adds"; if (rd_is_zr) { mnemonic = "cmn"; form = form_cmp; } break; } case SUB_w_ext: case SUB_x_ext: mnemonic = "sub"; break; case SUBS_w_ext: case SUBS_x_ext: { mnemonic = "subs"; if (rd_is_zr) { mnemonic = "cmp"; form = form_cmp; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitAddSubWithCarry(Instruction* instr) { bool rn_is_zr = RnIsZROrSP(instr); const char *mnemonic = ""; const char *form = "'Rd, 'Rn, 'Rm"; const char *form_neg = "'Rd, 'Rm"; switch (instr->Mask(AddSubWithCarryMask)) { case ADC_w: case ADC_x: mnemonic = "adc"; break; case ADCS_w: case ADCS_x: mnemonic = "adcs"; break; case SBC_w: case SBC_x: { mnemonic = "sbc"; if (rn_is_zr) { mnemonic = "ngc"; form = form_neg; } break; } case SBCS_w: case SBCS_x: { mnemonic = "sbcs"; if (rn_is_zr) { mnemonic = "ngcs"; form = form_neg; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitLogicalImmediate(Instruction* instr) { bool rd_is_zr = RdIsZROrSP(instr); bool rn_is_zr = RnIsZROrSP(instr); const char *mnemonic = ""; const char *form = "'Rds, 'Rn, 'ITri"; if (instr->ImmLogical() == 0) { // The immediate encoded in the instruction is not in the expected format. Format(instr, "unallocated", "(LogicalImmediate)"); return; } switch (instr->Mask(LogicalImmediateMask)) { case AND_w_imm: case AND_x_imm: mnemonic = "and"; break; case ORR_w_imm: case ORR_x_imm: { mnemonic = "orr"; unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSizeInBits : kWRegSizeInBits; if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) { mnemonic = "mov"; form = "'Rds, 'ITri"; } break; } case EOR_w_imm: case EOR_x_imm: mnemonic = "eor"; break; case ANDS_w_imm: case ANDS_x_imm: { mnemonic = "ands"; if (rd_is_zr) { mnemonic = "tst"; form = "'Rn, 'ITri"; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) { DCHECK((reg_size == kXRegSizeInBits) || ((reg_size == kWRegSizeInBits) && (value <= 0xffffffff))); // Test for movz: 16-bits set at positions 0, 16, 32 or 48. if (((value & 0xffffffffffff0000UL) == 0UL) || ((value & 0xffffffff0000ffffUL) == 0UL) || ((value & 0xffff0000ffffffffUL) == 0UL) || ((value & 0x0000ffffffffffffUL) == 0UL)) { return true; } // Test for movn: NOT(16-bits set at positions 0, 16, 32 or 48). if ((reg_size == kXRegSizeInBits) && (((value & 0xffffffffffff0000UL) == 0xffffffffffff0000UL) || ((value & 0xffffffff0000ffffUL) == 0xffffffff0000ffffUL) || ((value & 0xffff0000ffffffffUL) == 0xffff0000ffffffffUL) || ((value & 0x0000ffffffffffffUL) == 0x0000ffffffffffffUL))) { return true; } if ((reg_size == kWRegSizeInBits) && (((value & 0xffff0000) == 0xffff0000) || ((value & 0x0000ffff) == 0x0000ffff))) { return true; } return false; } void Disassembler::VisitLogicalShifted(Instruction* instr) { bool rd_is_zr = RdIsZROrSP(instr); bool rn_is_zr = RnIsZROrSP(instr); const char *mnemonic = ""; const char *form = "'Rd, 'Rn, 'Rm'HLo"; switch (instr->Mask(LogicalShiftedMask)) { case AND_w: case AND_x: mnemonic = "and"; break; case BIC_w: case BIC_x: mnemonic = "bic"; break; case EOR_w: case EOR_x: mnemonic = "eor"; break; case EON_w: case EON_x: mnemonic = "eon"; break; case BICS_w: case BICS_x: mnemonic = "bics"; break; case ANDS_w: case ANDS_x: { mnemonic = "ands"; if (rd_is_zr) { mnemonic = "tst"; form = "'Rn, 'Rm'HLo"; } break; } case ORR_w: case ORR_x: { mnemonic = "orr"; if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) { mnemonic = "mov"; form = "'Rd, 'Rm"; } break; } case ORN_w: case ORN_x: { mnemonic = "orn"; if (rn_is_zr) { mnemonic = "mvn"; form = "'Rd, 'Rm'HLo"; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitConditionalCompareRegister(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rn, 'Rm, 'INzcv, 'Cond"; switch (instr->Mask(ConditionalCompareRegisterMask)) { case CCMN_w: case CCMN_x: mnemonic = "ccmn"; break; case CCMP_w: case CCMP_x: mnemonic = "ccmp"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rn, 'IP, 'INzcv, 'Cond"; switch (instr->Mask(ConditionalCompareImmediateMask)) { case CCMN_w_imm: case CCMN_x_imm: mnemonic = "ccmn"; break; case CCMP_w_imm: case CCMP_x_imm: mnemonic = "ccmp"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitConditionalSelect(Instruction* instr) { bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr)); bool rn_is_rm = (instr->Rn() == instr->Rm()); const char *mnemonic = ""; const char *form = "'Rd, 'Rn, 'Rm, 'Cond"; const char *form_test = "'Rd, 'CInv"; const char *form_update = "'Rd, 'Rn, 'CInv"; Condition cond = static_cast(instr->Condition()); bool invertible_cond = (cond != al) && (cond != nv); switch (instr->Mask(ConditionalSelectMask)) { case CSEL_w: case CSEL_x: mnemonic = "csel"; break; case CSINC_w: case CSINC_x: { mnemonic = "csinc"; if (rnm_is_zr && invertible_cond) { mnemonic = "cset"; form = form_test; } else if (rn_is_rm && invertible_cond) { mnemonic = "cinc"; form = form_update; } break; } case CSINV_w: case CSINV_x: { mnemonic = "csinv"; if (rnm_is_zr && invertible_cond) { mnemonic = "csetm"; form = form_test; } else if (rn_is_rm && invertible_cond) { mnemonic = "cinv"; form = form_update; } break; } case CSNEG_w: case CSNEG_x: { mnemonic = "csneg"; if (rn_is_rm && invertible_cond) { mnemonic = "cneg"; form = form_update; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitBitfield(Instruction* instr) { unsigned s = instr->ImmS(); unsigned r = instr->ImmR(); unsigned rd_size_minus_1 = ((instr->SixtyFourBits() == 1) ? kXRegSizeInBits : kWRegSizeInBits) - 1; const char *mnemonic = ""; const char *form = ""; const char *form_shift_right = "'Rd, 'Rn, 'IBr"; const char *form_extend = "'Rd, 'Wn"; const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1"; const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1"; const char *form_lsl = "'Rd, 'Rn, 'IBZ-r"; switch (instr->Mask(BitfieldMask)) { case SBFM_w: case SBFM_x: { mnemonic = "sbfx"; form = form_bfx; if (r == 0) { form = form_extend; if (s == 7) { mnemonic = "sxtb"; } else if (s == 15) { mnemonic = "sxth"; } else if ((s == 31) && (instr->SixtyFourBits() == 1)) { mnemonic = "sxtw"; } else { form = form_bfx; } } else if (s == rd_size_minus_1) { mnemonic = "asr"; form = form_shift_right; } else if (s < r) { mnemonic = "sbfiz"; form = form_bfiz; } break; } case UBFM_w: case UBFM_x: { mnemonic = "ubfx"; form = form_bfx; if (r == 0) { form = form_extend; if (s == 7) { mnemonic = "uxtb"; } else if (s == 15) { mnemonic = "uxth"; } else { form = form_bfx; } } if (s == rd_size_minus_1) { mnemonic = "lsr"; form = form_shift_right; } else if (r == s + 1) { mnemonic = "lsl"; form = form_lsl; } else if (s < r) { mnemonic = "ubfiz"; form = form_bfiz; } break; } case BFM_w: case BFM_x: { mnemonic = "bfxil"; form = form_bfx; if (s < r) { mnemonic = "bfi"; form = form_bfiz; } } } Format(instr, mnemonic, form); } void Disassembler::VisitExtract(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rd, 'Rn, 'Rm, 'IExtract"; switch (instr->Mask(ExtractMask)) { case EXTR_w: case EXTR_x: { if (instr->Rn() == instr->Rm()) { mnemonic = "ror"; form = "'Rd, 'Rn, 'IExtract"; } else { mnemonic = "extr"; } break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitPCRelAddressing(Instruction* instr) { switch (instr->Mask(PCRelAddressingMask)) { case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break; // ADRP is not implemented. default: Format(instr, "unimplemented", "(PCRelAddressing)"); } } void Disassembler::VisitConditionalBranch(Instruction* instr) { switch (instr->Mask(ConditionalBranchMask)) { case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break; default: UNREACHABLE(); } } void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Xn"; switch (instr->Mask(UnconditionalBranchToRegisterMask)) { case BR: mnemonic = "br"; break; case BLR: mnemonic = "blr"; break; case RET: { mnemonic = "ret"; if (instr->Rn() == kLinkRegCode) { form = NULL; } break; } default: form = "(UnconditionalBranchToRegister)"; } Format(instr, mnemonic, form); } void Disassembler::VisitUnconditionalBranch(Instruction* instr) { const char *mnemonic = ""; const char *form = "'BImmUncn"; switch (instr->Mask(UnconditionalBranchMask)) { case B: mnemonic = "b"; break; case BL: mnemonic = "bl"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitDataProcessing1Source(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rd, 'Rn"; switch (instr->Mask(DataProcessing1SourceMask)) { #define FORMAT(A, B) \ case A##_w: \ case A##_x: mnemonic = B; break; FORMAT(RBIT, "rbit"); FORMAT(REV16, "rev16"); FORMAT(REV, "rev"); FORMAT(CLZ, "clz"); FORMAT(CLS, "cls"); #undef FORMAT case REV32_x: mnemonic = "rev32"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitDataProcessing2Source(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Rd, 'Rn, 'Rm"; switch (instr->Mask(DataProcessing2SourceMask)) { #define FORMAT(A, B) \ case A##_w: \ case A##_x: mnemonic = B; break; FORMAT(UDIV, "udiv"); FORMAT(SDIV, "sdiv"); FORMAT(LSLV, "lsl"); FORMAT(LSRV, "lsr"); FORMAT(ASRV, "asr"); FORMAT(RORV, "ror"); #undef FORMAT default: form = "(DataProcessing2Source)"; } Format(instr, mnemonic, form); } void Disassembler::VisitDataProcessing3Source(Instruction* instr) { bool ra_is_zr = RaIsZROrSP(instr); const char *mnemonic = ""; const char *form = "'Xd, 'Wn, 'Wm, 'Xa"; const char *form_rrr = "'Rd, 'Rn, 'Rm"; const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra"; const char *form_xww = "'Xd, 'Wn, 'Wm"; const char *form_xxx = "'Xd, 'Xn, 'Xm"; switch (instr->Mask(DataProcessing3SourceMask)) { case MADD_w: case MADD_x: { mnemonic = "madd"; form = form_rrrr; if (ra_is_zr) { mnemonic = "mul"; form = form_rrr; } break; } case MSUB_w: case MSUB_x: { mnemonic = "msub"; form = form_rrrr; if (ra_is_zr) { mnemonic = "mneg"; form = form_rrr; } break; } case SMADDL_x: { mnemonic = "smaddl"; if (ra_is_zr) { mnemonic = "smull"; form = form_xww; } break; } case SMSUBL_x: { mnemonic = "smsubl"; if (ra_is_zr) { mnemonic = "smnegl"; form = form_xww; } break; } case UMADDL_x: { mnemonic = "umaddl"; if (ra_is_zr) { mnemonic = "umull"; form = form_xww; } break; } case UMSUBL_x: { mnemonic = "umsubl"; if (ra_is_zr) { mnemonic = "umnegl"; form = form_xww; } break; } case SMULH_x: { mnemonic = "smulh"; form = form_xxx; break; } case UMULH_x: { mnemonic = "umulh"; form = form_xxx; break; } default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitCompareBranch(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rt, 'BImmCmpa"; switch (instr->Mask(CompareBranchMask)) { case CBZ_w: case CBZ_x: mnemonic = "cbz"; break; case CBNZ_w: case CBNZ_x: mnemonic = "cbnz"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitTestBranch(Instruction* instr) { const char *mnemonic = ""; // If the top bit of the immediate is clear, the tested register is // disassembled as Wt, otherwise Xt. As the top bit of the immediate is // encoded in bit 31 of the instruction, we can reuse the Rt form, which // uses bit 31 (normally "sf") to choose the register size. const char *form = "'Rt, 'IS, 'BImmTest"; switch (instr->Mask(TestBranchMask)) { case TBZ: mnemonic = "tbz"; break; case TBNZ: mnemonic = "tbnz"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitMoveWideImmediate(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rd, 'IMoveImm"; // Print the shift separately for movk, to make it clear which half word will // be overwritten. Movn and movz print the computed immediate, which includes // shift calculation. switch (instr->Mask(MoveWideImmediateMask)) { case MOVN_w: case MOVN_x: mnemonic = "movn"; break; case MOVZ_w: case MOVZ_x: mnemonic = "movz"; break; case MOVK_w: case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } #define LOAD_STORE_LIST(V) \ V(STRB_w, "strb", "'Wt") \ V(STRH_w, "strh", "'Wt") \ V(STR_w, "str", "'Wt") \ V(STR_x, "str", "'Xt") \ V(LDRB_w, "ldrb", "'Wt") \ V(LDRH_w, "ldrh", "'Wt") \ V(LDR_w, "ldr", "'Wt") \ V(LDR_x, "ldr", "'Xt") \ V(LDRSB_x, "ldrsb", "'Xt") \ V(LDRSH_x, "ldrsh", "'Xt") \ V(LDRSW_x, "ldrsw", "'Xt") \ V(LDRSB_w, "ldrsb", "'Wt") \ V(LDRSH_w, "ldrsh", "'Wt") \ V(STR_s, "str", "'St") \ V(STR_d, "str", "'Dt") \ V(LDR_s, "ldr", "'St") \ V(LDR_d, "ldr", "'Dt") void Disassembler::VisitLoadStorePreIndex(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStorePreIndex)"; switch (instr->Mask(LoadStorePreIndexMask)) { #define LS_PREINDEX(A, B, C) \ case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break; LOAD_STORE_LIST(LS_PREINDEX) #undef LS_PREINDEX } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStorePostIndex(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStorePostIndex)"; switch (instr->Mask(LoadStorePostIndexMask)) { #define LS_POSTINDEX(A, B, C) \ case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break; LOAD_STORE_LIST(LS_POSTINDEX) #undef LS_POSTINDEX } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStoreUnsignedOffset)"; switch (instr->Mask(LoadStoreUnsignedOffsetMask)) { #define LS_UNSIGNEDOFFSET(A, B, C) \ case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break; LOAD_STORE_LIST(LS_UNSIGNEDOFFSET) #undef LS_UNSIGNEDOFFSET case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]"; } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStoreRegisterOffset)"; switch (instr->Mask(LoadStoreRegisterOffsetMask)) { #define LS_REGISTEROFFSET(A, B, C) \ case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break; LOAD_STORE_LIST(LS_REGISTEROFFSET) #undef LS_REGISTEROFFSET case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]"; } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Wt, ['Xns'ILS]"; const char *form_x = "'Xt, ['Xns'ILS]"; const char *form_s = "'St, ['Xns'ILS]"; const char *form_d = "'Dt, ['Xns'ILS]"; switch (instr->Mask(LoadStoreUnscaledOffsetMask)) { case STURB_w: mnemonic = "sturb"; break; case STURH_w: mnemonic = "sturh"; break; case STUR_w: mnemonic = "stur"; break; case STUR_x: mnemonic = "stur"; form = form_x; break; case STUR_s: mnemonic = "stur"; form = form_s; break; case STUR_d: mnemonic = "stur"; form = form_d; break; case LDURB_w: mnemonic = "ldurb"; break; case LDURH_w: mnemonic = "ldurh"; break; case LDUR_w: mnemonic = "ldur"; break; case LDUR_x: mnemonic = "ldur"; form = form_x; break; case LDUR_s: mnemonic = "ldur"; form = form_s; break; case LDUR_d: mnemonic = "ldur"; form = form_d; break; case LDURSB_x: form = form_x; // Fall through. case LDURSB_w: mnemonic = "ldursb"; break; case LDURSH_x: form = form_x; // Fall through. case LDURSH_w: mnemonic = "ldursh"; break; case LDURSW_x: mnemonic = "ldursw"; form = form_x; break; default: form = "(LoadStoreUnscaledOffset)"; } Format(instr, mnemonic, form); } void Disassembler::VisitLoadLiteral(Instruction* instr) { const char *mnemonic = "ldr"; const char *form = "(LoadLiteral)"; switch (instr->Mask(LoadLiteralMask)) { case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break; case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break; case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break; case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break; default: mnemonic = "unimplemented"; } Format(instr, mnemonic, form); } #define LOAD_STORE_PAIR_LIST(V) \ V(STP_w, "stp", "'Wt, 'Wt2", "4") \ V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \ V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \ V(STP_x, "stp", "'Xt, 'Xt2", "8") \ V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \ V(STP_s, "stp", "'St, 'St2", "4") \ V(LDP_s, "ldp", "'St, 'St2", "4") \ V(STP_d, "stp", "'Dt, 'Dt2", "8") \ V(LDP_d, "ldp", "'Dt, 'Dt2", "8") void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStorePairPostIndex)"; switch (instr->Mask(LoadStorePairPostIndexMask)) { #define LSP_POSTINDEX(A, B, C, D) \ case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break; LOAD_STORE_PAIR_LIST(LSP_POSTINDEX) #undef LSP_POSTINDEX } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStorePairPreIndex)"; switch (instr->Mask(LoadStorePairPreIndexMask)) { #define LSP_PREINDEX(A, B, C, D) \ case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break; LOAD_STORE_PAIR_LIST(LSP_PREINDEX) #undef LSP_PREINDEX } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStorePairOffset(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(LoadStorePairOffset)"; switch (instr->Mask(LoadStorePairOffsetMask)) { #define LSP_OFFSET(A, B, C, D) \ case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break; LOAD_STORE_PAIR_LIST(LSP_OFFSET) #undef LSP_OFFSET } Format(instr, mnemonic, form); } void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form; switch (instr->Mask(LoadStorePairNonTemporalMask)) { case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; default: form = "(LoadStorePairNonTemporal)"; } Format(instr, mnemonic, form); } void Disassembler::VisitFPCompare(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Fn, 'Fm"; const char *form_zero = "'Fn, #0.0"; switch (instr->Mask(FPCompareMask)) { case FCMP_s_zero: case FCMP_d_zero: form = form_zero; // Fall through. case FCMP_s: case FCMP_d: mnemonic = "fcmp"; break; default: form = "(FPCompare)"; } Format(instr, mnemonic, form); } void Disassembler::VisitFPConditionalCompare(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Fn, 'Fm, 'INzcv, 'Cond"; switch (instr->Mask(FPConditionalCompareMask)) { case FCCMP_s: case FCCMP_d: mnemonic = "fccmp"; break; case FCCMPE_s: case FCCMPE_d: mnemonic = "fccmpe"; break; default: form = "(FPConditionalCompare)"; } Format(instr, mnemonic, form); } void Disassembler::VisitFPConditionalSelect(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Fd, 'Fn, 'Fm, 'Cond"; switch (instr->Mask(FPConditionalSelectMask)) { case FCSEL_s: case FCSEL_d: mnemonic = "fcsel"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'Fd, 'Fn"; switch (instr->Mask(FPDataProcessing1SourceMask)) { #define FORMAT(A, B) \ case A##_s: \ case A##_d: mnemonic = B; break; FORMAT(FMOV, "fmov"); FORMAT(FABS, "fabs"); FORMAT(FNEG, "fneg"); FORMAT(FSQRT, "fsqrt"); FORMAT(FRINTN, "frintn"); FORMAT(FRINTP, "frintp"); FORMAT(FRINTM, "frintm"); FORMAT(FRINTZ, "frintz"); FORMAT(FRINTA, "frinta"); FORMAT(FRINTX, "frintx"); FORMAT(FRINTI, "frinti"); #undef FORMAT case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break; case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break; default: form = "(FPDataProcessing1Source)"; } Format(instr, mnemonic, form); } void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Fd, 'Fn, 'Fm"; switch (instr->Mask(FPDataProcessing2SourceMask)) { #define FORMAT(A, B) \ case A##_s: \ case A##_d: mnemonic = B; break; FORMAT(FMUL, "fmul"); FORMAT(FDIV, "fdiv"); FORMAT(FADD, "fadd"); FORMAT(FSUB, "fsub"); FORMAT(FMAX, "fmax"); FORMAT(FMIN, "fmin"); FORMAT(FMAXNM, "fmaxnm"); FORMAT(FMINNM, "fminnm"); FORMAT(FNMUL, "fnmul"); #undef FORMAT default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Fd, 'Fn, 'Fm, 'Fa"; switch (instr->Mask(FPDataProcessing3SourceMask)) { #define FORMAT(A, B) \ case A##_s: \ case A##_d: mnemonic = B; break; FORMAT(FMADD, "fmadd"); FORMAT(FMSUB, "fmsub"); FORMAT(FNMADD, "fnmadd"); FORMAT(FNMSUB, "fnmsub"); #undef FORMAT default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitFPImmediate(Instruction* instr) { const char *mnemonic = ""; const char *form = "(FPImmediate)"; switch (instr->Mask(FPImmediateMask)) { case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break; case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break; default: UNREACHABLE(); } Format(instr, mnemonic, form); } void Disassembler::VisitFPIntegerConvert(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "(FPIntegerConvert)"; const char *form_rf = "'Rd, 'Fn"; const char *form_fr = "'Fd, 'Rn"; switch (instr->Mask(FPIntegerConvertMask)) { case FMOV_ws: case FMOV_xd: mnemonic = "fmov"; form = form_rf; break; case FMOV_sw: case FMOV_dx: mnemonic = "fmov"; form = form_fr; break; case FCVTAS_ws: case FCVTAS_xs: case FCVTAS_wd: case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break; case FCVTAU_ws: case FCVTAU_xs: case FCVTAU_wd: case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break; case FCVTMS_ws: case FCVTMS_xs: case FCVTMS_wd: case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break; case FCVTMU_ws: case FCVTMU_xs: case FCVTMU_wd: case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break; case FCVTNS_ws: case FCVTNS_xs: case FCVTNS_wd: case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break; case FCVTNU_ws: case FCVTNU_xs: case FCVTNU_wd: case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break; case FCVTZU_xd: case FCVTZU_ws: case FCVTZU_wd: case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break; case FCVTZS_xd: case FCVTZS_wd: case FCVTZS_xs: case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break; case SCVTF_sw: case SCVTF_sx: case SCVTF_dw: case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break; case UCVTF_sw: case UCVTF_sx: case UCVTF_dw: case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break; } Format(instr, mnemonic, form); } void Disassembler::VisitFPFixedPointConvert(Instruction* instr) { const char *mnemonic = ""; const char *form = "'Rd, 'Fn, 'IFPFBits"; const char *form_fr = "'Fd, 'Rn, 'IFPFBits"; switch (instr->Mask(FPFixedPointConvertMask)) { case FCVTZS_ws_fixed: case FCVTZS_xs_fixed: case FCVTZS_wd_fixed: case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break; case FCVTZU_ws_fixed: case FCVTZU_xs_fixed: case FCVTZU_wd_fixed: case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break; case SCVTF_sw_fixed: case SCVTF_sx_fixed: case SCVTF_dw_fixed: case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break; case UCVTF_sw_fixed: case UCVTF_sx_fixed: case UCVTF_dw_fixed: case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break; } Format(instr, mnemonic, form); } void Disassembler::VisitSystem(Instruction* instr) { // Some system instructions hijack their Op and Cp fields to represent a // range of immediates instead of indicating a different instruction. This // makes the decoding tricky. const char *mnemonic = "unimplemented"; const char *form = "(System)"; if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { switch (instr->Mask(SystemSysRegMask)) { case MRS: { mnemonic = "mrs"; switch (instr->ImmSystemRegister()) { case NZCV: form = "'Xt, nzcv"; break; case FPCR: form = "'Xt, fpcr"; break; default: form = "'Xt, (unknown)"; break; } break; } case MSR: { mnemonic = "msr"; switch (instr->ImmSystemRegister()) { case NZCV: form = "nzcv, 'Xt"; break; case FPCR: form = "fpcr, 'Xt"; break; default: form = "(unknown), 'Xt"; break; } break; } } } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { DCHECK(instr->Mask(SystemHintMask) == HINT); switch (instr->ImmHint()) { case NOP: { mnemonic = "nop"; form = NULL; break; } } } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { switch (instr->Mask(MemBarrierMask)) { case DMB: { mnemonic = "dmb"; form = "'M"; break; } case DSB: { mnemonic = "dsb"; form = "'M"; break; } case ISB: { mnemonic = "isb"; form = NULL; break; } } } Format(instr, mnemonic, form); } void Disassembler::VisitException(Instruction* instr) { const char *mnemonic = "unimplemented"; const char *form = "'IDebug"; switch (instr->Mask(ExceptionMask)) { case HLT: mnemonic = "hlt"; break; case BRK: mnemonic = "brk"; break; case SVC: mnemonic = "svc"; break; case HVC: mnemonic = "hvc"; break; case SMC: mnemonic = "smc"; break; case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break; case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break; case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break; default: form = "(Exception)"; } Format(instr, mnemonic, form); } void Disassembler::VisitUnimplemented(Instruction* instr) { Format(instr, "unimplemented", "(Unimplemented)"); } void Disassembler::VisitUnallocated(Instruction* instr) { Format(instr, "unallocated", "(Unallocated)"); } void Disassembler::ProcessOutput(Instruction* /*instr*/) { // The base disasm does nothing more than disassembling into a buffer. } void Disassembler::Format(Instruction* instr, const char* mnemonic, const char* format) { // TODO(mcapewel) don't think I can use the instr address here - there needs // to be a base address too DCHECK(mnemonic != NULL); ResetOutput(); Substitute(instr, mnemonic); if (format != NULL) { buffer_[buffer_pos_++] = ' '; Substitute(instr, format); } buffer_[buffer_pos_] = 0; ProcessOutput(instr); } void Disassembler::Substitute(Instruction* instr, const char* string) { char chr = *string++; while (chr != '\0') { if (chr == '\'') { string += SubstituteField(instr, string); } else { buffer_[buffer_pos_++] = chr; } chr = *string++; } } int Disassembler::SubstituteField(Instruction* instr, const char* format) { switch (format[0]) { case 'R': // Register. X or W, selected by sf bit. case 'F': // FP Register. S or D, selected by type field. case 'W': case 'X': case 'S': case 'D': return SubstituteRegisterField(instr, format); case 'I': return SubstituteImmediateField(instr, format); case 'L': return SubstituteLiteralField(instr, format); case 'H': return SubstituteShiftField(instr, format); case 'P': return SubstitutePrefetchField(instr, format); case 'C': return SubstituteConditionField(instr, format); case 'E': return SubstituteExtendField(instr, format); case 'A': return SubstitutePCRelAddressField(instr, format); case 'B': return SubstituteBranchTargetField(instr, format); case 'O': return SubstituteLSRegOffsetField(instr, format); case 'M': return SubstituteBarrierField(instr, format); default: { UNREACHABLE(); return 1; } } } int Disassembler::SubstituteRegisterField(Instruction* instr, const char* format) { unsigned reg_num = 0; unsigned field_len = 2; switch (format[1]) { case 'd': reg_num = instr->Rd(); break; case 'n': reg_num = instr->Rn(); break; case 'm': reg_num = instr->Rm(); break; case 'a': reg_num = instr->Ra(); break; case 't': { if (format[2] == '2') { reg_num = instr->Rt2(); field_len = 3; } else { reg_num = instr->Rt(); } break; } default: UNREACHABLE(); } // Increase field length for registers tagged as stack. if (format[2] == 's') { field_len = 3; } char reg_type; if (format[0] == 'R') { // Register type is R: use sf bit to choose X and W. reg_type = instr->SixtyFourBits() ? 'x' : 'w'; } else if (format[0] == 'F') { // Floating-point register: use type field to choose S or D. reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd'; } else { // Register type is specified. Make it lower case. reg_type = format[0] + 0x20; } if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) { // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31. // Filter special registers if ((reg_type == 'x') && (reg_num == 27)) { AppendToOutput("cp"); } else if ((reg_type == 'x') && (reg_num == 28)) { AppendToOutput("jssp"); } else if ((reg_type == 'x') && (reg_num == 29)) { AppendToOutput("fp"); } else if ((reg_type == 'x') && (reg_num == 30)) { AppendToOutput("lr"); } else { AppendToOutput("%c%d", reg_type, reg_num); } } else if (format[2] == 's') { // Disassemble w31/x31 as stack pointer wcsp/csp. AppendToOutput("%s", (reg_type == 'w') ? "wcsp" : "csp"); } else { // Disassemble w31/x31 as zero register wzr/xzr. AppendToOutput("%czr", reg_type); } return field_len; } int Disassembler::SubstituteImmediateField(Instruction* instr, const char* format) { DCHECK(format[0] == 'I'); switch (format[1]) { case 'M': { // IMoveImm or IMoveLSL. if (format[5] == 'I') { uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide()); AppendToOutput("#0x%" PRIx64, imm); } else { DCHECK(format[5] == 'L'); AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide()); if (instr->ShiftMoveWide() > 0) { AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide()); } } return 8; } case 'L': { switch (format[2]) { case 'L': { // ILLiteral - Immediate Load Literal. AppendToOutput("pc%+" PRId64, instr->ImmLLiteral() << kLoadLiteralScaleLog2); return 9; } case 'S': { // ILS - Immediate Load/Store. if (instr->ImmLS() != 0) { AppendToOutput(", #%" PRId64, instr->ImmLS()); } return 3; } case 'P': { // ILPx - Immediate Load/Store Pair, x = access size. if (instr->ImmLSPair() != 0) { // format[3] is the scale value. Convert to a number. int scale = format[3] - 0x30; AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale); } return 4; } case 'U': { // ILU - Immediate Load/Store Unsigned. if (instr->ImmLSUnsigned() != 0) { AppendToOutput(", #%" PRIu64, instr->ImmLSUnsigned() << instr->SizeLS()); } return 3; } } } case 'C': { // ICondB - Immediate Conditional Branch. int64_t offset = instr->ImmCondBranch() << 2; char sign = (offset >= 0) ? '+' : '-'; AppendToOutput("#%c0x%" PRIx64, sign, offset); return 6; } case 'A': { // IAddSub. DCHECK(instr->ShiftAddSub() <= 1); int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub()); AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm); return 7; } case 'F': { // IFPSingle, IFPDouble or IFPFBits. if (format[3] == 'F') { // IFPFBits. AppendToOutput("#%d", 64 - instr->FPScale()); return 8; } else { AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(), format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64()); return 9; } } case 'T': { // ITri - Immediate Triangular Encoded. AppendToOutput("#0x%" PRIx64, instr->ImmLogical()); return 4; } case 'N': { // INzcv. int nzcv = (instr->Nzcv() << Flags_offset); AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N', ((nzcv & ZFlag) == 0) ? 'z' : 'Z', ((nzcv & CFlag) == 0) ? 'c' : 'C', ((nzcv & VFlag) == 0) ? 'v' : 'V'); return 5; } case 'P': { // IP - Conditional compare. AppendToOutput("#%d", instr->ImmCondCmp()); return 2; } case 'B': { // Bitfields. return SubstituteBitfieldImmediateField(instr, format); } case 'E': { // IExtract. AppendToOutput("#%d", instr->ImmS()); return 8; } case 'S': { // IS - Test and branch bit. AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) | instr->ImmTestBranchBit40()); return 2; } case 'D': { // IDebug - HLT and BRK instructions. AppendToOutput("#0x%x", instr->ImmException()); return 6; } default: { UNREACHABLE(); return 0; } } } int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr, const char* format) { DCHECK((format[0] == 'I') && (format[1] == 'B')); unsigned r = instr->ImmR(); unsigned s = instr->ImmS(); switch (format[2]) { case 'r': { // IBr. AppendToOutput("#%d", r); return 3; } case 's': { // IBs+1 or IBs-r+1. if (format[3] == '+') { AppendToOutput("#%d", s + 1); return 5; } else { DCHECK(format[3] == '-'); AppendToOutput("#%d", s - r + 1); return 7; } } case 'Z': { // IBZ-r. DCHECK((format[3] == '-') && (format[4] == 'r')); unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSizeInBits : kWRegSizeInBits; AppendToOutput("#%d", reg_size - r); return 5; } default: { UNREACHABLE(); return 0; } } } int Disassembler::SubstituteLiteralField(Instruction* instr, const char* format) { DCHECK(strncmp(format, "LValue", 6) == 0); USE(format); switch (instr->Mask(LoadLiteralMask)) { case LDR_w_lit: case LDR_x_lit: case LDR_s_lit: case LDR_d_lit: AppendToOutput("(addr 0x%016" PRIxPTR ")", instr->LiteralAddress()); break; default: UNREACHABLE(); } return 6; } int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) { DCHECK(format[0] == 'H'); DCHECK(instr->ShiftDP() <= 0x3); switch (format[1]) { case 'D': { // HDP. DCHECK(instr->ShiftDP() != ROR); } // Fall through. case 'L': { // HLo. if (instr->ImmDPShift() != 0) { const char* shift_type[] = {"lsl", "lsr", "asr", "ror"}; AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()], instr->ImmDPShift()); } return 3; } default: UNREACHABLE(); return 0; } } int Disassembler::SubstituteConditionField(Instruction* instr, const char* format) { DCHECK(format[0] == 'C'); const char* condition_code[] = { "eq", "ne", "hs", "lo", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", "nv" }; int cond; switch (format[1]) { case 'B': cond = instr->ConditionBranch(); break; case 'I': { cond = NegateCondition(static_cast(instr->Condition())); break; } default: cond = instr->Condition(); } AppendToOutput("%s", condition_code[cond]); return 4; } int Disassembler::SubstitutePCRelAddressField(Instruction* instr, const char* format) { USE(format); DCHECK(strncmp(format, "AddrPCRel", 9) == 0); int offset = instr->ImmPCRel(); // Only ADR (AddrPCRelByte) is supported. DCHECK(strcmp(format, "AddrPCRelByte") == 0); char sign = '+'; if (offset < 0) { offset = -offset; sign = '-'; } AppendToOutput("#%c0x%x (addr %p)", sign, offset, instr->InstructionAtOffset(offset, Instruction::NO_CHECK)); return 13; } int Disassembler::SubstituteBranchTargetField(Instruction* instr, const char* format) { DCHECK(strncmp(format, "BImm", 4) == 0); int64_t offset = 0; switch (format[5]) { // BImmUncn - unconditional branch immediate. case 'n': offset = instr->ImmUncondBranch(); break; // BImmCond - conditional branch immediate. case 'o': offset = instr->ImmCondBranch(); break; // BImmCmpa - compare and branch immediate. case 'm': offset = instr->ImmCmpBranch(); break; // BImmTest - test and branch immediate. case 'e': offset = instr->ImmTestBranch(); break; default: UNREACHABLE(); } offset <<= kInstructionSizeLog2; char sign = '+'; if (offset < 0) { sign = '-'; } AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, Abs(offset), instr->InstructionAtOffset(offset), Instruction::NO_CHECK); return 8; } int Disassembler::SubstituteExtendField(Instruction* instr, const char* format) { DCHECK(strncmp(format, "Ext", 3) == 0); DCHECK(instr->ExtendMode() <= 7); USE(format); const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx", "sxtb", "sxth", "sxtw", "sxtx" }; // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit // registers becomes lsl. if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) && (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) || (instr->ExtendMode() == UXTX))) { if (instr->ImmExtendShift() > 0) { AppendToOutput(", lsl #%d", instr->ImmExtendShift()); } } else { AppendToOutput(", %s", extend_mode[instr->ExtendMode()]); if (instr->ImmExtendShift() > 0) { AppendToOutput(" #%d", instr->ImmExtendShift()); } } return 3; } int Disassembler::SubstituteLSRegOffsetField(Instruction* instr, const char* format) { DCHECK(strncmp(format, "Offsetreg", 9) == 0); const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl", "undefined", "undefined", "sxtw", "sxtx" }; USE(format); unsigned shift = instr->ImmShiftLS(); Extend ext = static_cast(instr->ExtendMode()); char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x'; unsigned rm = instr->Rm(); if (rm == kZeroRegCode) { AppendToOutput("%czr", reg_type); } else { AppendToOutput("%c%d", reg_type, rm); } // Extend mode UXTX is an alias for shift mode LSL here. if (!((ext == UXTX) && (shift == 0))) { AppendToOutput(", %s", extend_mode[ext]); if (shift != 0) { AppendToOutput(" #%d", instr->SizeLS()); } } return 9; } int Disassembler::SubstitutePrefetchField(Instruction* instr, const char* format) { DCHECK(format[0] == 'P'); USE(format); int prefetch_mode = instr->PrefetchMode(); const char* ls = (prefetch_mode & 0x10) ? "st" : "ld"; int level = (prefetch_mode >> 1) + 1; const char* ks = (prefetch_mode & 1) ? "strm" : "keep"; AppendToOutput("p%sl%d%s", ls, level, ks); return 6; } int Disassembler::SubstituteBarrierField(Instruction* instr, const char* format) { DCHECK(format[0] == 'M'); USE(format); static const char* options[4][4] = { { "sy (0b0000)", "oshld", "oshst", "osh" }, { "sy (0b0100)", "nshld", "nshst", "nsh" }, { "sy (0b1000)", "ishld", "ishst", "ish" }, { "sy (0b1100)", "ld", "st", "sy" } }; int domain = instr->ImmBarrierDomain(); int type = instr->ImmBarrierType(); AppendToOutput("%s", options[domain][type]); return 1; } void Disassembler::ResetOutput() { buffer_pos_ = 0; buffer_[buffer_pos_] = 0; } void Disassembler::AppendToOutput(const char* format, ...) { va_list args; va_start(args, format); buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args); va_end(args); } void PrintDisassembler::ProcessOutput(Instruction* instr) { fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n", reinterpret_cast(instr), instr->InstructionBits(), GetOutput()); } } } // namespace v8::internal namespace disasm { const char* NameConverter::NameOfAddress(byte* addr) const { v8::internal::SNPrintF(tmp_buffer_, "%p", addr); return tmp_buffer_.start(); } const char* NameConverter::NameOfConstant(byte* addr) const { return NameOfAddress(addr); } const char* NameConverter::NameOfCPURegister(int reg) const { unsigned ureg = reg; // Avoid warnings about signed/unsigned comparisons. if (ureg >= v8::internal::kNumberOfRegisters) { return "noreg"; } if (ureg == v8::internal::kZeroRegCode) { return "xzr"; } v8::internal::SNPrintF(tmp_buffer_, "x%u", ureg); return tmp_buffer_.start(); } const char* NameConverter::NameOfByteCPURegister(int reg) const { UNREACHABLE(); // ARM64 does not have the concept of a byte register return "nobytereg"; } const char* NameConverter::NameOfXMMRegister(int reg) const { UNREACHABLE(); // ARM64 does not have any XMM registers return "noxmmreg"; } const char* NameConverter::NameInCode(byte* addr) const { // The default name converter is called for unknown code, so we will not try // to access any memory. return ""; } //------------------------------------------------------------------------------ class BufferDisassembler : public v8::internal::Disassembler { public: explicit BufferDisassembler(v8::internal::Vector out_buffer) : out_buffer_(out_buffer) { } ~BufferDisassembler() { } virtual void ProcessOutput(v8::internal::Instruction* instr) { v8::internal::SNPrintF(out_buffer_, "%s", GetOutput()); } private: v8::internal::Vector out_buffer_; }; Disassembler::Disassembler(const NameConverter& converter) : converter_(converter) {} Disassembler::~Disassembler() { USE(converter_); } int Disassembler::InstructionDecode(v8::internal::Vector buffer, byte* instr) { v8::internal::Decoder decoder; BufferDisassembler disasm(buffer); decoder.AppendVisitor(&disasm); decoder.Decode(reinterpret_cast(instr)); return v8::internal::kInstructionSize; } int Disassembler::ConstantPoolSizeAt(byte* instr) { return v8::internal::Assembler::ConstantPoolSizeAt( reinterpret_cast(instr)); } void Disassembler::Disassemble(FILE* file, byte* start, byte* end) { v8::internal::Decoder decoder; v8::internal::PrintDisassembler disasm(file); decoder.AppendVisitor(&disasm); for (byte* pc = start; pc < end; pc += v8::internal::kInstructionSize) { decoder.Decode(reinterpret_cast(pc)); } } } // namespace disasm #endif // V8_TARGET_ARCH_ARM64