// Copyright 2010 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file is an internal atomic implementation, use atomicops.h instead. #ifndef V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_ #define V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_ namespace v8 { namespace base { // This struct is not part of the public API of this module; clients may not // use it. // Features of this x86. Values may not be correct before main() is run, // but are set conservatively. struct AtomicOps_x86CPUFeatureStruct { bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence // after acquire compare-and-swap. #if !defined(__SSE2__) bool has_sse2; // Processor has SSE2. #endif }; extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures; #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory") // 32-bit low-level operations on any platform. inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 prev; __asm__ __volatile__("lock; cmpxchgl %1,%2" : "=a" (prev) : "q" (new_value), "m" (*ptr), "0" (old_value) : "memory"); return prev; } inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { __asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg. : "=r" (new_value) : "m" (*ptr), "0" (new_value) : "memory"); return new_value; // Now it's the previous value. } inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { Atomic32 temp = increment; __asm__ __volatile__("lock; xaddl %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now holds the old value of *ptr return temp + increment; } inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { Atomic32 temp = increment; __asm__ __volatile__("lock; xaddl %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now holds the old value of *ptr if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return temp + increment; } inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return x; } inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) { *ptr = value; } inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; } #if defined(__x86_64__) || defined(__SSE2__) // 64-bit implementations of memory barrier can be simpler, because it // "mfence" is guaranteed to exist. inline void MemoryBarrier() { __asm__ __volatile__("mfence" : : : "memory"); } inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; MemoryBarrier(); } #else inline void MemoryBarrier() { if (AtomicOps_Internalx86CPUFeatures.has_sse2) { __asm__ __volatile__("mfence" : : : "memory"); } else { // mfence is faster but not present on PIII Atomic32 x = 0; NoBarrier_AtomicExchange(&x, 0); // acts as a barrier on PIII } } inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { if (AtomicOps_Internalx86CPUFeatures.has_sse2) { *ptr = value; __asm__ __volatile__("mfence" : : : "memory"); } else { NoBarrier_AtomicExchange(ptr, value); // acts as a barrier on PIII } } #endif inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { ATOMICOPS_COMPILER_BARRIER(); *ptr = value; // An x86 store acts as a release barrier. // See comments in Atomic64 version of Release_Store(), below. } inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; } inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { Atomic32 value = *ptr; // An x86 load acts as a acquire barrier. // See comments in Atomic64 version of Release_Store(), below. ATOMICOPS_COMPILER_BARRIER(); return value; } inline Atomic32 Release_Load(volatile const Atomic32* ptr) { MemoryBarrier(); return *ptr; } #if defined(__x86_64__) && defined(V8_HOST_ARCH_64_BIT) // 64-bit low-level operations on 64-bit platform. inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 prev; __asm__ __volatile__("lock; cmpxchgq %1,%2" : "=a" (prev) : "q" (new_value), "m" (*ptr), "0" (old_value) : "memory"); return prev; } inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { __asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg. : "=r" (new_value) : "m" (*ptr), "0" (new_value) : "memory"); return new_value; // Now it's the previous value. } inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 temp = increment; __asm__ __volatile__("lock; xaddq %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now contains the previous value of *ptr return temp + increment; } inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 temp = increment; __asm__ __volatile__("lock; xaddq %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now contains the previous value of *ptr if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return temp + increment; } inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; } inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; MemoryBarrier(); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { ATOMICOPS_COMPILER_BARRIER(); *ptr = value; // An x86 store acts as a release barrier // for current AMD/Intel chips as of Jan 2008. // See also Acquire_Load(), below. // When new chips come out, check: // IA-32 Intel Architecture Software Developer's Manual, Volume 3: // System Programming Guide, Chatper 7: Multiple-processor management, // Section 7.2, Memory Ordering. // Last seen at: // http://developer.intel.com/design/pentium4/manuals/index_new.htm // // x86 stores/loads fail to act as barriers for a few instructions (clflush // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are // not generated by the compiler, and are rare. Users of these instructions // need to know about cache behaviour in any case since all of these involve // either flushing cache lines or non-temporal cache hints. } inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { return *ptr; } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { Atomic64 value = *ptr; // An x86 load acts as a acquire barrier, // for current AMD/Intel chips as of Jan 2008. // See also Release_Store(), above. ATOMICOPS_COMPILER_BARRIER(); return value; } inline Atomic64 Release_Load(volatile const Atomic64* ptr) { MemoryBarrier(); return *ptr; } inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return x; } inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } #endif // defined(__x86_64__) } } // namespace v8::base #undef ATOMICOPS_COMPILER_BARRIER #endif // V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_